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An effective tiling approach is proposed for the structural description of icosahedral quasicrystals  
based on the original substitution algorithm. The atomic structure of icosahedral quasicrystals 
may by derived by using the iterative and recursive inflation/deflation procedure with subsequent  
decoration of quasi-unit cells. The quasi-unit cells are stacked in three-dimensional space face-
to-face without any gaps between them producing the whole infinite icosahedral structure in the 
same manner as the usual periodic crystals are generated by multiplication of their unit cells 
containing one or more atoms in a specific spatial arrangement. A variety of examples illustrating 
the efficiency of the general algorithm is presented. Stacking of quasi-unit cells along the five-
fold axis, as well as the arrangement of cells normal to the five-fold, three-fold, and two-fold 
axes are presented. The possible atomic structure of an icosahedral single-component quasicrystal  
is derived. Three types of inequivalent sites with exact icosahedral symmetry may simultaneously 
exist in the quasicrystalline structure. The structure of characteristic clusters enforced by the 
compatibility with the quasicrystalline type of ordering is discussed. 

Introduction

The discovery of quasicrystals by Shechtman  et al.1 revealed 
new principles for packing of atoms and molecules in solids.  
Steinhardt  et  al.2-4 coined  the  notion  of  quasicrystal and 
offered the first  theoretical explanation of aperiodic crystals. 
Mackay5 demonstrated  that  the  diffraction  pattern  from  the 
Penrose tiling showed all  the  special  features  of  those from 
usual  crystals  lacking only the periodicity.  The discovery of 
quasicrystals  and  pioneering  works  on  their  explanation  are 
now reckoned among the milestones in crystallography. 

Significant progress has been achieved in understanding the 
general  principles  underlying  the  structure  and  behavior  of 
quasicrystals  since  then,6-16 but  they  remained  a  puzzle  in 
many aspects.  Moreover,  there  is  still  no generally accepted 
definition of a quasicrystal.12 The discreteness of the Fourier 
transform  is  adopted  as  a  basis  for  the  new  most  general  
definition  of  an  aperiodic  crystal.17,18 However,  the  self-
evident question19 forces itself upon us – What kinds of order 
are necessary and sufficient for a pattern of points to have a 
diffraction pattern with bright spots? 

Next  question  is:  Where  are  the  atoms?  In  general  this 
question is still not fully answered in spite of a great variety 
of  specific  structures,  which  have  been  explicitly 
described.20,21  There are two principal ways of describing the 
structure of quasicrystals. First of them is based on the higher-
dimensional  approach22-24 and uses  either  the strip-projection 
of  the  Ammann  grid  or  the  embedding  method.  The 
quasiperiodic  3D  structure  is  envisioned  as  the  proper 

irrational section of a periodic  nD crystalline hyperlattice, so 
that  it  enables  the  direct  indexing  of  the  experimental 
diffraction pattern in the nD reciprocal hyperspace. 

Higher-dimensional approach is not without shortcomings. 
It  is  based on the assumption of a straight strip subjected to 
the  projection  from  hyperspace.  Denial  of  this  assumption 
leads  to  stacking  faults  like  phason  shifts  and  to  a  lot  of  
uncertainties.  On  the  other  hand,  Steurer  and  Deloudi 24 

showed that the optimum cluster packing in real space may be 
reached  only  if  the  strip  follows  the  boundaries  of  the 
interlinked  unit  cells  in  the  hyperspace,  so  that  the  average 
slope  of  resulting  zigzag  lines  remains  without  changes. 
Therefore, the initial cut-and-project method usually provides 
the averaged  structure  information  only.25 In  order  to  derive 
the true structure from the averaged one, one should have in 
availability the corresponding electron microscopic images as 
well as the energetically reasonable configurations of covering 
clusters. That is why “the powerful but arcane description of 
quasiperiodic  structures  as  projections  from  hyperspace  has 
still an aura of mystery” for many researchers.24 

The  second  way  provides  the  description  of  the  full 
quasiperiodic  structure  by  partially  overlapping  covering 
clusters.26-30 The  structural  similarities  between  quasicrystals 
and  their  rational  crystalline  approximants  facilitate  the 
correct  determination  of  the  cluster  geometry. 31-37 Another 
closely related approach is based on the concept of aperiodic  
tilings and is similar to the description of periodic structures 
by  multiplication  of  unit  cells  decorated  with  atoms. 38 The 
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canonical Danzer tiling39 is  often used for  the description of 
specific  icosahedral  quasicrystals.40,41 Both the Danzer  tiling 
and  the  Socolar-Steinhardt  tiling  have  been  shown  to  be 
equivalent.42 Unfortunately, the original deflation rules for the 
Socolar-Steinhardt tiling cannot be applied iteratively because 
they  do  not  meet  the  composition/decomposition 
requirements.43 The Danzer tiling is free from this limitation, 
but  very  complicated  deflation  rules  and  low  symmetry  of 
tetrahedral units prevent one from seeing the symmetry of the 
tiling as a whole and hinder the accurate analysis. 

The  most  recent  studies  use  the  combined  complex  of 
various  methods  and  approaches.44,45 However,  some 
important  questions  remain  without  clear  answers.  How  to 
predict  the  characteristic  clusters,  if  the  corresponding 
crystalline approximant does not exist? How to determine the 
exact  positions  of  so-called  glue  atoms?  Why  do  the 
incomplete or partially fragmented clusters exist? What is the 
role of such defective clusters? 

Engel  et al.46 showed that icosahedral quasicrystals can be 
assembled  from  a  one-component  system  of  particles  by 
means of molecular dynamics simulations. The internal parts 
of simulated self-assembled particles revealed ordered spatial 
regions  with  typical  icosahedral  clusters.  Calculated 
diffraction  patterns  along  five-fold,  three-fold  and  two-fold 
axes  exhibited  sharp  Bragg  peaks  and  confirmed  the 
icosahedricity.  However,  no  structures  with  exact  global 
icosahedral  symmetry  appeared  as  a  result  of  simulation. 
Recently, de Boissieu47 emphasized that computer simulations 
of one-component three-dimensional icosahedral quasicrystals 
will  help  to  understand  the  mechanisms  that  may  stabilize 
them in experiments. Surprisingly, no structural models were 
proposed  up  to  now  for  an  infinite  single-component 
icosahedral quasicrystal. 

We are going to offer a solution of this problem.
Recently,  we  have  proposed  an  effective  tiling  approach 

based on the original substitution algorithm. 48 We considered 
four types of golden zonohedra which form a basic set of tiles 
for  the Socolar-Steinhardt tiling.  Next,  we  adopted the main 
ideas of the fractal approach49 bearing in mind that every tile 
may be fragmented infinitely many times.50-52 This formalism 
allowed  us  to  formulate  the  mutually  consistent 
inflation/deflation rules and natural matching rules for all four  
types  of  golden  zonohedra.  Finally,  we  have  shown  how to 
generate infinite icosahedral tiling from an arbitrarily chosen 
finite quasicrystalline fragment.52 All that was lacking in order 
to make possible the generation of the strongly-regular infinite 
icosahedral packing of atoms, was the appropriate decoration 
procedure for zonohedra. 

Usual periodic crystals are characterized by their unit cells 
containing  one  or  more  atoms  in  a  specific  spatial 
arrangement.  The unit  cells are stacked in three-dimensional 
space  face-to-face  without  any  gaps  between  them.  In  the 
same manner, the atomic structure of icosahedral quasicrystals 
may  by  derived  by  using  the  iterative  and  recursive 
inflation/deflation  procedure  with  subsequent  decoration  of 
quasi-unit cells. The golden zonohedra properly decorated by 
atoms may also be stacked in three-dimensional space face-to-
face  and,  also,  without  any gaps  between them so that  they 

produce  the  infinite  consistent  packing  of  atoms  with  ideal 
icosahedral  order.  In  comparison  with  crystals,  quasicrystals 
represent simply another type of ordering and nothing more. 
The  only difference  is  that  the  number  of  unit  cells  is  four 
instead of single one for usual periodic crystals. 

In  the  present  paper,  we  discuss  the  details  of  our 
substitution algorithm combined with decoration and apply it  
to icosahedral quasicrystals in order to construct the five-fold, 
three-fold,  and  two-fold  surfaces.  As  an  example,  we 
demonstrate  how to  derive  the  ideal  infinite  structure  of  an 
icosahedral single-component quasicrystal. 

Inflation/deflation + decoration

Inflation/deflation  rules  combined  with  one  of  the  simplest 
ways of possible decorations are depicted in the Fig. 1. Before  
we  start  the  explanation,  we  would  like  to  quote  three  very 
important claims from the paper by Socolar and Steinhardt:4 
1. “Four  types  of  unit  cells  appear;  the  triacontahedron,  the 
icosahedron,  the  dodecahedron,  and  the  prolate 
rhombohedron, with volumes in the ratios 10:5:2:1.
2. There are three complete packings with a (single) center of 
icosahedral  point  symmetry.  One  of  these  has  a 
triacontahedron at its center, the next shell being composed of 
thirty dodecahedra. The other two have a star at their centers, 
one  having  twelve  icosahedra  as  the  next  shell,  the  other 
having twelve triacontahedra.
3. There is a homogeneity about the packings reminiscent of 
the Penrose tilings.  Given any finite region,  there are others 
identical to it relatively close by.”

Combining  second and  third  claims  together,  we  come to 
conclusion that, in any icosahedral quasicrystal, there always 
exist  exactly  three  types  of  sites  with  icosahedral  local 
symmetry  and  exactly  three  different  kinds  of  icosahedral 
atomic clusters may be always found in the whole packing, no 
matter whatever a specific structure is under consideration. 

Continue  with the  explanation  of  the  inflation/deflation 
rules.48 The four types of unit cells (Fig. 1i) are inflated by a 
factor of 3 (Fig. 1ii), where  is the golden mean, and deflated 
again  to  the  tiles  of  the  original  size  (Fig.  1iii).  When  the 
whole tiling becomes generated  after  performing subsequent 
iterations of the inflation/deflation procedure, the cells should 
be decorated by some specific decoration method (Fig. 1iv). 

When  we  bear  in  mind  that  every  cell  may  be  deflated 
infinitely many times up to the fractal  dust,  there exist  only 
two types of inequivalent vertices in the whole tiling. We have 
denoted  them  as  A  and  B-types,  respectively.  The  A-type 
vertex corresponds to  the center  of  the star  of rhombohedra 
surrounded  by twelve  rhombic  icosahedra  in  the  next  shell, 
whereas  the  B-type  vertex  corresponds  to  the  star  of 
rhombohedra  surrounded  by  twelve  triacontahedra.  For 
example, the A-type vertices of the triacontahedron lie on its 
five-fold axes, whereas the B-type vertices lie on its three-fold 
axes. We emphasize that both types of vertices have complete  
icosahedral symmetry in the corresponding fractal parent and 
that  any arbitrarily chosen vertex converges  to  one of  these 
two types  after  sufficient  iterations  of  subsequent  deflations 
and inflations. 
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Fig. 1 Inflation/deflation + decoration. (a), (b), (c) and (d) Quasi-unit cells – prolate rhombohedron, rhombic dodecahedron, rhombic icosahedron, and 
rhombic triacontahedron, respectively. (i), (ii), (iii) and (iv) Initial, inflated, deflated, and decorated cells, respectively. 

We have also to introduce the C-type site at the center of a 
triacontahedron  surrounded  by  thirty  rhombic  dodecahedra. 
The sites of the last type are not present amongst vertices of  
the  Socolar-Steinhardt  tiling  because  they  represent  the 
centers of corresponding cells. In the icosahedral quasicrystal, 
aforementioned three types of sites represent points with the 
highest possible local symmetry. 

In  the  whole  tiling,  there  are  no  edges  connecting 
equivalent  vertices,  but  only  the  vertices  of  two  alternative 
types, A and B, may be connected by edges. There are exactly 
two types of edges. The first type edge E 1, after deflation, will 
contain a rhombic icosahedron in its middle. The second type 
edge E2 will contain a rhombic triacontahedron next to the A-
type  vertex.  We  have  marked  the  second  type  edge  by  an 
arrow directed to the A-type vertex, indicating the position of 
the reduced triacontahedron after deflation. 

There are exactly three types of inequivalent faces, namely 
F1 (no  edges  with  arrows  present),  F2 (two  arrows  point  to 
opposite  A-type  vertices),  and  F3 (two  arrows  point  to  the 

same A-type vertex). 
Natural matching rules48 ensure that the inflation/deflation 

procedure  may  be  applied  iteratively,  so  that  we  can 
eventually cover  the entire space with zonohedra.  Moreover, 
they  guarantee  that  the  first  type  faces  of  any  zonohedron 
meet only the first type faces of the adjacent cells, the second 
type faces meet only the second type, and the third type faces 
meet only the third type, respectively. As a result, the golden 
zonohedra may be stacked in three-dimensional space face-to-
face  without  any  gaps  between  them.  Common  edges  are 
shared by the adjacent cells so that no conflicts arise due to 
existence of two inequivalent types of edges. 

In  the  study  of  substitutions,  from  one-dimensional 
symbolic substitutions to very general tiling substitutions, the  
substitution  matrix  is  an  indispensable  tool  (see,  e.g.,  the 
review by Frank53). The substitution matrix M is a matrix with 
entries  Mij given  by  the  number  of  tiles  of  type  i in  the 
substitution of the inflated tile of type j. We refer the reader to 
the literature for more details.53-57 It is commonly adopted that 
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distinct  tiles  have  non-intersecting  interiors  for  the  most 
interesting cases, so that the substitution matrix is always an 
integer  matrix  with  non-negative  entries  and  the  Perron–
Frobenius theory is thus relevant. 

It is not so in our case. As usually, the substitution matrix is 
a  4×4  square  matrix,  which  entries  correspond  to  the  four 
types  of  zonohedra.  The  tiles  are  still  inflated  and  then 
covered  by tiles  from the  original  scale,  but  some  of  these  
may partially stick out of the inflated tiles. 

Particularly,  suppose  that  the  initial  volume  of  the 
rhombohedron is equal to one.3,4 If the cell is enlarged with a 
linear  scale  factor  of  3,  its  volume increases  by a  factor  of 
9=21+34. The 3 times enlarged rhombohedron contains one 
whole  triacontahedron  inside  and  three  additional 
triacontahedra  on  the  edges.  These  are  shared  by  adjacent 
cells, so that only one fifth of every triacontahedron belongs 
to  the inflated  rhombohedron.  Next,  there  are  three rhombic 
icosahedra, every of which belongs to the inflated cell by as 
much as one fifth, and six rhombic icosahedra, every of which 
belongs to the inflated cell by as much as two fifths. Further,  
three rhombic dodecahedra may be found inside the cell as a 
whole.  Finally,  twelve  whole  and  eighteen  shared 
rhombohedra exist  in the decomposition.  The deflation rules 
my be analyzed for  all  four  types of  zonohedra in  a  similar 
way52 resulting in the following expression: 

τ
9
⋅(

1
2 τ
5 τ
10 τ

)=(
21+34 τ

68+110 τ
170+275 τ
340+550 τ

)=(
21 3 2

2
5

1
3
5

68 11 6 2
5

5 3
5

170 20 17 15
340 30 36 31

)⋅( 1
2 τ
5 τ
10 τ

) (1)

Here, the entries of the column matrices represent the relative 
volumes  of  zonohedra  –  initial  and  3 times  enlarged  ones, 
respectively. The transpose of a matrix in the right part of this  
equation  is  the  desired  substitution  matrix.  Note  that  some 
entries  are  not  integer.  Thus,  the  substitution  rules  are  so-
called “imperfect” in our case.

After  the  entire  space  is  filled  by  zonohedra,  we  can 
decorate the cells with atoms in a specific spatial arrangement 
producing  the  desired  atomic  structure.  The  matching  rules 
should  cause  some  additional  restrictions  due  to  the 
interlinkage  of  different  cells,  but  we  cannot  yet  formulate 
these  restrictions  rigorously.  The  simplest  way  of  possible 
decoration is obvious. We can suppose that either A, or B, or  
C-type positions are occupied by specific atoms, whereas all  
others  remain  unoccupied.  This  results  in  three  different 
examples  of  single-component  icosahedral  quasicrystals. 
Every  of  them  will  have  specific  triad  of  characteristic 
clusters, each of which will  be repeated hierarchically as the 
main structural motif in corresponding clusters of clusters. 

Specifically,  suppose  that  all  quasi-unit  cells  are  empty,  
except  for  the  triacontahedron  which  we  decorate  with  a 
single atom at its center (Fig. 1d, i, right). After inflation and 
deflation, the 3 times enlarged triacontahedron will contain a 
hierarchical cluster in the form of icosidodecahedron built of  
thirty triacontahedra, plus an additional triacontahedron at its 
center.  Therefore,  after  a  subsequent  decoration,  the 

triacontahedron  transforms  into  the  body-centered 
icosidodecahedron.  Similarly,  the  rhombic  icosahedron  turns 
into the halved icosidodecahedron, the rhombic dodecahedron 
turns  into  the  cluster  resembling  the  orange  lobule,  and  the 
prolate rhombohedron turns into the cluster of four atoms in 
the form of elongated tetrahedron (Fig. 1iv). Note that initial 
zonohedra represent the basic tiles in a certain mathematical 
tiling pattern.  The clusters  derived  from them as a  result  of 
decoration  consist  of  real  atoms  and  reflect  the  special 
features of real atomic packing. 

In  the same manner  as four  types of zonohedra cover  the 
entire space face-to-face, four types of atomic clusters, being 
interlinked,  cover  the  same  space  resulting  in  an  infinite  
icosahedral  quasi-lattice.  Generated  by  this  method,  atomic 
positions  may by occupied  by one  single  component.  Thus,  
such  decoration  represents  one  of  possible  solutions  of  the 
problem raised by de Boissieu.47 We have to emphasize again 
that the triacontahedron centering is not the only possible way 
of decoration. 

Self-similar rods

The  main  concept  based  on  the  packing  of  decorated 
zonohedra  within  the  3-inflated  supercells  is  not  new. 
Yamamoto  et  al.58 investigated  the  structure  of  i-Al-Pd-Mn 
quasicrystals  within  a  six-dimensional  cluster  model.  They 
pointed out that earlier  works on the structure determination, 
based on simple large occupation domains and atomic surfaces 
placed at high symmetry points in a higher-dimensional space, 
can explain the intensity of strong reflections only,  but such 
approaches  are  not  sufficient  to  describe  the  detailed 
quasicrystal  structures.  We  would  like  to  give  a  direct 
quotation  –  “The  use  of  complicated  subdivisions  is  not 
avoidable for a detailed structure refinement of quasicrystals.” 
So, they proposed to introduce the atom shift  from the ideal 
positions.  As a  result,  the  probable  stacking order  along the 
high-symmetry  directions  was  offered  and  the  possible 
decoration  of  triacontahedra  and  stars  of  rhombohedra  by 
specific atoms was derived. Unfortunately, only three types of 
quasi-unit  cells,  instead of  four,  were  involved in  the tiling, 
the possible asymmetry of quasi-unit cells was not taken into 
account, and some of triacontahedra were allowed to overlap. 
As a consequence, the Yamamoto-Takakura-Tsai model 53 was 
not  consistent  with  the  Socolar-Steinhardt  tiling, 4 and  the 
iterative  application of  the proposed rules  was  not  possible. 
Moreover,  it  was  not  even  assumed.  Recall  the  widely 
accepted point of view that quasicrystals cannot be defined as 
packing of identical unit  cells,  and that their ideal state may 
be  described  as  a  unique  way  of  packing  by  overlapping 
clusters only.30 This may be caused by mixing up the terms of 
“identical copies of a single unit cell” and “identical copies of 
multiple unit cells from a given set”. 

In  contrast,  our substitution algorithm48 is  fully consistent 
with the Socolar-Steinhardt tiling.4 Since we remain within the 
frameworks of the three-dimensional formalism, the structure 
details become much more evident. Thus, our first  goal is to 
describe some special features of the Socolar-Steinhardt tiling 
which  escaped  the  attention  of  researchers  for  about  thirty 
years. 
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Fig. 2 Generation of self-similar chains. Stacking quasi-unit cells along the 5-fold axis around the A-type site. (a) Initial local environment of the A-type 
site. (b), (c) Inflation and deflation, respectively. (d) Picking out the cells stacked along the 5-fold axis. (e) Final stacking sequence. (i) and (ii) 1st and 2nd 

iterations, respectively. New cells appear next to the just generated ones at each subsequent iteration. 

As an example,  we  now derive  the characteristic  packing 
sequences  along  the  symmetry  axes  in  an  ideal  icosahedral 
quasicrystal.  Consider  stacking  of  cells  along  the  five-fold 
direction. 

Choose  an  arbitrary  A-type  site  as  a  starting  point  and 
perform  a  pair  of  operations,  deflation  with  subsequent 
inflation, two times in a row according to the rules described 
above. A local environment turns into a star of rhombohedra, 
no matter which cells surrounded the chosen site before. Next, 
pick out the rhombohedra stacked along the five-fold axis (see 
Fig.  2a),  inflate  them in  a  ratio  of  3 (Fig.  2b),  and  deflate 
back to the original size (Fig. 2c). Finally,  pick out only the 
cells stacked along the five-fold axis (Fig. 2d) and rotate them 
around the  symmetry axis  (Fig.  2e).  As  a  result  of  the  first 
iteration (Fig. 2i),  we have got the order of cell sequence in 
the same direction, but in an enlarged scale.  The position of 
the  initial  A-type  site  remained  without  changes,  as  well  as 
those of both nearest-neighboring rhombohedra, but now new 

cells  arose  right  next  to  them.  Further,  we  can  perform the 
second  iteration  (Fig.  2ii)  and  define  the  next  neighboring 
cells. New cells appear next to the just generated ones at each 
subsequent iteration. Adding new cells causes no permutations 
within the already generated segments.

Let's assume, for specificity's sake, that the edges of quasi-
unit cells have the unit length. The first iteration applied to the 
local  environment  of  the  point  A moves  the  image  of  the 
nearest-neighboring point B to the new position at the distance 
of  3=1+2 from  the  origin.  The  second  iteration  creates 
another image of the initial point B at the distance of 6=5+8, 
as well as new images of all newly generated points. The third 
iteration will  create the image at  the distance of  9=21+34, 
and so forth. As a result, the quasi-unit cells become strongly 
ordered along the five-fold symmetry axis  of  an icosahedral 
quasicrystal  and  form a  highly symmetrical  self-similar  rod. 
More  detailed  description  of  this  procedure  may  be  found 
elsewhere.52 
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Fig. 3 Generation of self-similar chains. Stacking quasi-unit cells along the 5-fold axis around the B-type site. (a) Initial local environment of the B-type 
site. (b), (c) Inflation and deflation, respectively. (d) Picking out the cells stacked along the 5-fold axis. (e) Final stacking sequence. (i) and (ii) 1st and 2nd 

iterations, respectively. Twenty rhombohedra are arranged into the star around the B-type site in a different way and thus produce another sequence. 

Choose an arbitrary B-type site and repeat the above steps.  
As previously, we start with the star of twenty rhombohedra, 
but note again that opposite sides of cells are not equivalent.  
The same rhombohedra form the same star, but now they are 
arranged in a different way. Therefore, we get another strongly 
ordered  sequence  of  quasi-unit  cells  along  the  five-fold 
symmetry  axis  (Fig.  3).  As  earlier,  the  initial  environment 
remains unchanged and every subsequent iteration adds new 
cells to the initial chain. This process may be continued up to 
infinity. 

When  starting  with  a  single  triacontahedron,  we  get  the 
third  desired  sequence  (Fig.  4).  All  the  three  self-similar  
chains  –  centered  at  A,  B,  and  C-type  sites,  respectively  –  
possess the central symmetry.

Let's clarify the claim on the homogeneity of the tiling. 4 For 
instance,  suppose  that  we  have  generated  all  three  infinite 
chains of cells, namely with A, B, and C-sites at their origins. 
Then,  any  arbitrarily  large  but  finite  sized  subsequence 

randomly cut from one of three chains will  appear infinitely 
many  times  in  any  of  three  infinite  chains.  Virtually,  there 
exists  the  only  one  fractal sequence.  The  further  from  the 
origin of the C-type chain we consider specific  A or  B-type 
sites, the larger may be their undisturbed local environments,  
and vice versa. 

Now we  describe  the  alternating  of  cells  along  two-  and 
three-fold axes very briefly. For example, we set the origin at 
the C-type site and thus start with a triacontahedron. After the  
first  iteration,  the  position  of  the  central  triacontahedron 
remains  without  changes  but  it  becomes  surrounded by two 
rhombic dodecahedra and additional two triacontahedra from 
both sides along the two-fold axis. After the second iteration,  
every  triacontahedron  turns  into  the  aforementioned 
subsequence,  whereas the rhombic dodecahedra turn into the 
chains  of  dodecahedra  surrounded  by  two  triacontahedra. 
Eventually,  we  get  the  chain  of  alternating subsequences  of 
either one or two triacondahedra spaced by dodecahedra.
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Fig. 4 Generation of self-similar chains. Stacking quasi-unit cells along the 5-fold axis around the C-type site. (a) Initial triacontahedron and initial local 
environment of the C-type site. (b), (c) Inflation and deflation, respectively. (d) Picking out the cells stacked along the 5-fold axis. (e) Final stacking 

sequence. (i) and (ii) 1st and 2nd iterations, respectively. 

When considering the stacking of cells along the three-fold 
axis, we start with the same triacontahedron again. Three-fold 
axis passes through the B-type vertex. After the first iteration, 
the central triacontahedron becomes surrounded by two pairs 

of  elongated  rhombohedra  from both  sides  along  the  three-
fold  axis.  The  rhombohedra  share  the  common  A-type 
vertices,  so that  the subsequence terminates  with  the B-type 
vertex again. After the second iteration, every triacontahedron 
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Fig. 5 Generation of self-similar layers perpendicular to the 5-fold axis. (a) and (b) Layers centered at the A and B-type sites, respectively. 

turns into the aforementioned subsequence, whereas the each 
pair  of  rhombohedra  turns  into  the  pair  of  rhombohedra 
surrounded  by two  triacontahedra  and  by  two  next  pairs  of 
rhombohedra.  Eventually,  we  get  the  chain  of  alternating 
subsequences  of  either  one  or  two  pairs  of  rhombohedra 
spaced by single triacondahedra.

Such properties are characteristic of the Fibonacci sequence 
but, in contrast, our chains are infinite in both directions and 
possess the central symmetry. 

Quasiperiodic surfaces

Quasiperiodic  surface  order  leads  to  several  intriguing 
features,  such  as  a  puzzling  resistance  to  surface  oxidation, 
lower  friction,  and  surprisingly  good  catalytic  activity.  
Quasicrystals  can  enforce  their  bulk  order  in  films,  thus 
opening  new  perspectives  as  potential  templates.  Most  of 
these  special  features  are  deeply related  to  the  bulk  atomic 
structure,  but  the  most  puzzles  are  understood  only 
superficially even now. For more comprehensive surveys, we 
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Fig. 6 Generation of the self-similar 5-fold layer centered at the C-type site. (a) The central triacontahedron transforms into the hierarchical cluster 
containing the ring of triacontahedra. (b) Every of ten triacontahedra moves 3 as far from the origin as it was before and turns into the same supercluster. 

refer  the  reader  to  recent  reviews  on  the  surface  science  of 
quasicrystals.59-61 

In  our  opinion,  the  plane  surface  cannot  be 
comprehensively  interpreted  in  terms  of  the  plane  tiling. 
Indeed, the Penrose tiling has two different sites with the local  
five-fold symmetry. On the contrary, we will demonstrate that 
three different  sites  with exact  five-fold  symmetry can exist 

on  the  unreconstructed  five-fold  surface  of  an  icosahedral 
quasicrystal.  Furthermore,  the  very  successful  interpretation 
of the five-fold surface by means of the Penrose tiling will be 
of no use when a surface of another orientation becomes the 
next  subject  of  interest.  We  will  show  how  the  atomic 
structure of any surface may be derived based on the common 
assumptions of the fractal approach. 
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Fig. 7 Self-similar 5-fold layer centered at the C-type site.

In order to derive the models of unreconstructed surfaces, 
we  superpose  the  origin  with  the  A,  B,  and  C-type  sites, 
respectively, and slice the corresponding layers from the bulk 
of an infinite icosahedral tiling normal to the symmetry axes.  
The  corresponding  five-fold  layers  derived  according  to  the 
substitution rules48 are presented in the Figs. 5-7. 

Very characteristic hierarchical clusters of clusters may be 
detached from the entire infinite packing. When the origin is  
superposed  with  the  A-type  site  at  the  center  of  the 
corresponding star, the triacontahedra form two distinct shells 
around the origin. The inner shell is represented by a Platonic 
dodecahedron,  each  vertex  of  which  is  occupied  by  a 
triacontahedron. The outer shell is an Archimedean solid – the 
equilateral truncated dodecahedron – with triacontahedra at its 
vertices.  All  triacontahedra  are  closely stacked  face-to-face. 
The shells correspond to rings of triacontahedra on the cross-
section (Fig. 5a). 

When  the  origin  is  superposed  with  the  B-type  site,  the 
second  characteristic  cluster  of  clusters  may  be  found.  Its 

inner  shell  is  represented  by  an  icosahedron  made  of 
triacontahedra  stacked  face-to-face.  The  outer  shell  is  a 
dodecahedron  made  of  more  distanced  triacontahedra  (Fig. 
5b). 

The most intriguing case is when the origin is superposed 
with  the  center  of  a  triacontahedron.  Consider  the 
subsequently inflated and deflated triacontahedron (Fig. 1d, iii) 
and  slice  it  normal  to  the  five-fold  axis  (Fig.  6a).  A 
remarkable cluster appears.  It  has the very notable structural 
motif  of  a  ring  of  ten  triacontahedra  stacked  face-to-face 
around  the  central  triacontahedron.  This  plane  motif 
corresponds  to  a  cross-section  of  an  hierarchical  cluster  of 
clusters – icosidodecahedron built of triacontahedra. 

Now we take a next step and inflate a just obtained cluster  
according  to  the  same  rules.  The  central  triacontahedron 
transforms once again into the hierarchical cluster which we 
have  seen  already.  Every  of  ten  ring-shape  arranged 
triacontahedra moves 3 as far from the origin as it was before 
and turns into the same supercluster. Another remarkable 

10  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year]

Page 10 of 19RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 8 Self-similar 3-fold layer centered at the C-type site. (a) and (b) 1st and 2nd iterations, respectively.

cluster appears – a hierarchical wheel built of ten rings of ten  
triacontahedra  (Fig.  6b).  This  wheel,  in  turn,  represents  a 
cross-section  of  an  icosidodecahedron  built  of 
icosidodecahedra,  each  of  which  is  built  of  triacontahedra. 
Finally, we fill the interstitial space by inflating and deflating 
the  rhombic  dodecahedra  in  between  (Fig  7).  Natural 
matching rules ensure that the adjacent cells fit together after 
any  iteration.  This  process  may be  continued  up  to  infinity 

producing  an  amazing  intricate  “chainmail”  of  interlinked 
rings of rings of rings ... of rings of triacontahedra. 

Compare the central part of the obtained layer (Fig. 7) with 
the  unit  cell  configurations  in  the  Socolar-Steinhardt  tiling 
(see Fig. 9 in the original paper by Socolar and Steinhardt 4). 
The  identity  becomes  evident.  The  central  part  of  the  slice 
contains  the  ring  of  ten  triacontahedra  stacked  face-to-face 
surrounded by ten interlinked pentagons made of 
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Fig. 9 Self-similar 2-fold layer centered at the C-type site. (a) and (b) 1st and 2nd iterations, respectively.

triacontahedra in the same manner. The substitutions and the 
Ammann grid projection produce equivalent results! 

We can also slice the icosahedral packing by planes normal  
to the 3rd and 2nd order axes, respectively. The corresponding 
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three-fold and two-fold layers are presented in the Figs.  8,9. 
The  aforementioned  Fibonacci-like  alternation  of 
triacontahedra  and  rhombic  dodecahedra  along  the  two-fold 
axis as well as the alternation of elongated rhombohedra and 
triacontahedra  along  the  three-fold  axis  may be  seen  in  the 
Fig. 9. These chains simultaneously present in the layer sliced 
normal to the two-fold axis. 

We  hope  that  our  models  will  be  useful  in  the  surface 
investigations  of  actual  quasicrystals.62-68 In  particular,  the 
distribution of triacontahedra within the five-fold layers seems 
to resemble the local configurations on surfaces of icosahedral 
Al-Pd-Mn  quasicrystals66 –  so-called  “rings”  and  “white 
flowers.” When replacing the triacontahedra with dots within 
the  three-fold  layers,  the  as-obtained  structural  motif 
resembles the atomic structure of the three-fold surface of the 
icosahedral  Ag–In–Yb quasicrystal,67 namely the distribution 
of the Yb atoms, and so on.

Stacking multiple quasi-unit cells

Let's  show which  kinds  of  icosahedral  atomic  clusters  arise 
and how they are  interlinked into the whole structure when, 
for  example,  the  only  C-type  sites  are  occupied  by  single 
atoms (Fig. 1iv). Three complete packings with a single center 
of  icosahedral  point  symmetry4 produce  three  characteristic 
types  of  shell  clusters  in  any  icosahedral  quasicrystalline 
structure. As a consequence, three types of interlinked multi-
shell  clusters  will  simultaneously  co-exist  in  the  particular 
case we are interested in. 

Fig. 10 Characteristic cluster in the structure of a single-component 
icasahedral quasicrystal centered at the A-type site. Atomic clusters are 

derived from corresponding clusters of zonohedra. 

Consider the local environment of the A-type site. Twenty 
rhombohedra arranged together around the A-type site form a 
star. Every rhombohedron turns into an elongated tetrahedron 
after  decoration  (Fig.  1a,iv).  After  multiplication,  the  single 
detached atom produces a Platonic dodecahedron, whereas the 
more  distant  triangle  turns  into  an  equilateral  truncated 
dodecahedron  (Fig.  10).  The  second  shell  of  the  tiling  is 
formed by twelve rhombic dodecahedra, each of which turns 
into a halved icosidodecahedron after decoration, so that every 
ten-fold  atomic  ring  in  the  previous  shell  becomes  centered 
and  caped.  The  characteristic  cluster  of  the  A-type  site 
surrounded by C-type atoms may be described as follows: 
C20@C60@(C1+C10)12. 

The local environment of the B-type site may be considered 

in  the same manner.  Twenty rhombohedra  arranged together 
around  the  B-type  site  form  a  star  again.  But  now,  the 
triangles produce the inner icosahedron, whereas the detached 
atoms produce  a  larger  dodecahedron  (Fig.  11).  The  second 
shell of the tiling is formed by twelve triacontahedra, each of 
which turns into a complete icosidodecahedron as a result of 
decoration, so that the adjacent icosidodecahedral balls appear 
next to the faces of the large dodecahedron. The characteristic 
cluster of the B-type site surrounded by C-type atoms may be 
described as follows: 
C12@C20@(C1@C30)12. 

Fig. 11 Characteristic cluster centered at the B-type site. Atomic clusters 
are derived from corresponding clusters of zonohedra. 

Fig. 12 Characteristic cluster centered at the C-type site. (a), (b) Atomic 
arrangements in the plane perpendicular to and along the 5-fold axis, 

respectively. Icosidodecahedron at the center between two “lily flowers” 
(right) is not shown. 

The characteristic cluster of the C-type site surrounded by 
C-type atoms is already derived (Fig. 1d,iv) – C1@C30. 

The local environment of the C-type site shows the amazing 
alternation  of  the  convex  and  concave  atomic  surfaces.  The 
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central icosidodecahedron becomes surrounded by interlinked 
lobules  in  the  five-fold  plane  (Fig.  12a).  The  same  lobules 
form lily flowers with five petals in the normal direction, so 
that  every  icosidodecahedral  ball  becomes  surrounded  by 
opposite flowers along the five-fold axis (Fig. 12b). The entire 
hierarchical ring (Fig 7), after complete decoration, turns into 
the wheel  of ten interlinked icosidodecahedra (Fig.  13).  The 
role  of  glue  atoms69 is  clearly  seen.  The  inner  ring  of  ten 
atoms  is  surrounded  by  ten  pentagons.  Thus,  the  3 times 
larger  wheel  of  ten  interlinked  icosidodecahedra  will  be 
surrounded  by  the  ring  of  ten  pentagons  with  interlinked 
icosidodecahedra at their vertices (not shown in the Fig. 13), 
and so forth. 

Fig. 13 Hierarchical ring of ten interlinked icosidodecahedra surrounding 
the C-type site. 

Decoration  of  zonohedra  makes  it  possible  to  derive  the 
stacking sequences  of  characteristic  clusters  along the  high-
symmetry  directions.  In  particular,  the  alternating  order  of 
characteristic clusters along the 5-fold axis derived from the 
upper half of the chain centered at the C-type site (Fig. 4e, ii) 
is presented in the Fig. 14. The lowermost  icosidodecahedron 
is the decoration result of the central triacontahedron in the C-
type  chain of  zonohedra.  All  atomic  positions are  generated 
according to the common algorithm from the position of the 
only atom initially placed at the origin. 

Now  we  can  compare  our  results  with  one  of  the  most  
representative examples of icosahedral quasicrystals, namely,  
with the structure of the stable binary alloy Yb-Cd. 6 We have 
to highlight two special features. The first one is the inflation  
factor of  3. The inflation factor in our consideration has the 
same value.  Recall  that the canonical tiling has the inflation 
factor of . Second, the main structural motif is represented by 
a very remarkable hierarchical cluster – the  3 times inflated 
supercluster in the form of icosidodecahedron consisting of 

Fig. 14 Stacking sequence of characteristic clusters along the 5-fold axis 
derived from the upper half of the chain centered at the C-type site. All 
atoms are generated from the only atom initially placed at the origin. 

14  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year]

initial C-type atom

Page 14 of 19RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 15 Atomic structure of a single-component icosahedral quasicrystal in projection on the two-fold plane. All three types of characteristic clusters co-
exist simultaneously. 

thirty icosidodecahedra formed by Yb atoms. This is in a good 
agreement with our theoretical results. 

On the  other  hand,  the  plane  that  is  usually  described  as  
being seen along the five-fold axis in the structure of Yb-Cd 
alloy does not reveal the exact five-fold symmetry (see,  e.g., 
Fig. 5 in the paper by Takakura  et al.6). It is not clear, either 
this fact is due to uncertainties in the determination of the glue 
atom  positions  or  due  to  the  influence  of  the  most  inner 
tetrahedral  shells  of  the  Tsai  clusters  that  could  enforce  the 
symmetry  lowering  up  to  the  tetrahedral  symmetry.  In  any 
case,  the  ideal  structure  with  exact  icosahedral  symmetry 
would  be  of  special  interest.  Our  models  satisfy  this 
requirement.

The  projection  on  the  two-fold  plane  is  the  most 
informative (Fig. 15). All three types of characteristic clusters 
simultaneously present in this plane after decoration forming a 
notable  triangle  ∆ ABC  –  its  first  vertex  coincides  with  the 
center of the initial triacontahedron, two others coincide with 
two  alternating  vertex  types  of  the  6 times  enlarged 
triacontahedron.  We  emphasize  that  any  packing  of  atomic 
clusters  presented  by us  (e.g.,  Fig.  15)  is  derived  from the 
corresponding  space  tiling  by  zonohedra  (Fig.  9b, 
respectively) by following the common substitution rules and 
chosen decoration method. 

So,  if  the  C-type  site  is  occupied  by  a  single  atom,  the 
centered  icosidodecahedron  becomes  the  most  characteristic 
pattern  that  is  hierarchically  repeated  throughout  the  entire 
structure.  The  C-type  cite  is  occupied  by  the 
icosidodecahedron  itself.  Its  3 times  enlarged  local 
environment  is  represented  by  an  hierarchical  cluster  –  3 

times enlarged icosidodecahedron with each vertex occupied 
by the icosidodecahedra, and so forth. The local environment 
of the A-type site is represented by a dodecahedron inside the 
truncated  dodecahedron  with  centered  large  faces  caped  by 
halved  icosidodecahedra.  Its  3 times  enlarged  local 
environment corresponds to the similar cluster, but with every 
vertex occupied by icosidodecahedra.  The local  environment 
of the B-type site is represented by an icosahedron inscribed 
inside  the  dodecahedron.  Its  3 times  enlarged  local 
environment corresponds to the similar cluster, but with every 
vertex occupied by icosidodecahedra, and so forth. 

If the A-type site is occupied by an atom, then the centered 
icosidodecahedron, icosahedron, and larger icosahedron form 
the most inner shells of characteristic clusters at the A, B, and  
C-type sites, respectively. If the B-type site is occupied by an 
atom, then icosahedron, centered icosidodecahedron, and large 
dodecahedron  form  the  most  inner  shells  of  characteristic 
clusters  at  the  A,  B,  and  C-type  sites,  respectively.  Other 
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possibilities arise when more general positions at the centers 
of corresponding edges and faces (E1,  E2,  F1,  F2,  and F3)  are 
taken  into  account.  We  are  going  to  present  all  clusters 
compatible  with  quasicrystalline  ordering  type,  with  their 
relative positions and shell sizes, in a separate paper. 

Consider the characteristic clusters in more details. First of 
all, we have to draw the reader's attention to the fact that the  
nearest  interatomic distance may have  three different  values 
(see Fig.  15)  – this  agrees  with the fact  that  oscillating pair 
potentials may stabilize the icosahedral structure.46,47 Various 
atoms have different local arrangement, although they are all 
originated  from fully  equivalent  positions  by decorating the 
equivalent  zonohedra.  The  apparent  contradiction  may  be 
cleared by the following reasoning. We can chose an arbitrary 
atom with  its  local  environment,  recover  the  description  by 
closely  stacked  zonohedra,  perform  the  deflation/inflation 
procedure two times in a row – this affects only the scale of 
consideration  –  and  redecorate  the  tiling.  The  described 
procedure replaces the local environment of any atom by the 
standard one with simultaneous rescaling of the structure as a  
whole. Atomic positions are not equivalent in the conventional  
sense. On the other hand, when the deflation is performed up 
to infinity, they are absolutely equivalent in the corresponding 
fractal  parent.  Of  course,  we  have  to  come  to  a  stop 
somewhere, due to the atomicity. 

Further, three types of characteristic clusters that frequently 
appear in icosahedral quasicrystals are the Mackay, Bergman, 
and Tsai-type clusters.70-73 The specific structures are usually 
described  in  terms  of  overlapping  clusters  of  one  of  these 
basic  types  and  sometimes  by  overlapping  clusters  of  two 
different  types.  For  the  comparative  review,  see,  e.g.,  the 
monograph  by  Steurer  and  Deloudi.14 On  the  contrary,  we 
came to conclusion that exactly three different clusters must 
simultaneously  exist  in  any  specific  icosahedral  structure. 
Moreover,  besides  stereochemical  restrictions  and  favorable 
cluster  energetics,74,75 the  icosahedral  clusters  can have  pure 
geometrical  reasons  of  being  compatible  with  hierarchicity. 
The  same  geometrical  reasons  can  cause  the  appearance  of 
defect clusters like the icosahedron with an omitted vertex – 
in full accordance with experimental results of Loreto et al.,34 

who  also  mentioned  the  existence  of  “invalid”  clusters  in 
specific quasicrystalline structures. 

Discussion

First of all, we have to emphasize that we didn't introduce any 
new tilings. The subject of interest is the well-known Socolar-
Steinhardt tiling.3,4 We do have offered a  new approach that 
makes  possible  to  treat  the  structure  of  icosahedral 
quasicrystals  without  appealing  to  higher  dimensions.  This 
pursuit is far from trivial.  We would like to give a quotation  
from an  article  by  Yamamoto,  Takakura  and  Tsai 58 –  “It  is 
clear that in order to describe aperiodic crystal structures such 
as quasicrystals, the description in a higher-dimensional space 
is inevitable.” So, we started with the assumption that seemed 
to  contradict  common  sense.  As  a  result,  we  succeeded  to 
reveal some new aspects of the Socolar-Steinhardt tiling that 
plays  a  key  role  in  understanding  the  special  features  of 
icosahedral packings. 

There  are  three  kinds  of  infinite  packings  with  exact 
icosahedral point symmetry. They represent the only Socolar-
Steinhardt  tiling and  differ  by the choice  of  the origin.  The 
corresponding three types of ideally ordered finite blocks are 
uniformly distributed within the entire tiling. The further the 
blocks are from one another, the larger they are. All the three 
characteristic packings can be generated from single cells or 
from  trivial  clusters  by  using  the  unique  substitution  rules. 
The quasi-unit  cells can be easily expanded in all  directions 
producing infinite self-similar rods and layers.

Further,  the  ideal  infinite  structure  of  a  single-component 
icosahedral quasicrystal may be generated from a single atom 
after  the  same  rules.  The  positions  of  all  atoms  become 
predetermined after the only atom is placed at the origin. 

We  hope  that  we  have  given  enough  examples  to 
demonstrate the accuracy of our approach. The main benefit is 
that we do not need the higher-dimensions since the iterative 
and recursive substitution algorithm is derived 48 and a specific 
decoration method is chosen. The main problem is – How to 
incorporate  the  fractal  approach  into  the  standard  fitting 
procedure, if necessary? The comparison of the experimental  
and  computed  diffraction  patterns  needs  a  more  suitable 
algorithm  to  calculate  the  Fourier  transform  for  the  self-
similar  distribution  of  point  masses  rather  than  the  trivial  
point-by-point counting. The calculation of the nD diffraction 
pattern  within  the  frameworks  of  high-dimensional 
crystallography is based on the standard nD reciprocal lattice 
and thus encounters no additional difficulties. On the contrary, 
the problem of diffraction of self-similar structures is far from 
solution.  We would  like  to  refer  the  reader  to  the  paper  by 
Lenz76 to  have  a  look  at  the  list  of  open  problems  in  the 
mathematical  diffraction  theory,  concerning  especially  the 
aperiodic structures. 

How to derive  the right  decoration  method for  the quasi-
unit  cells  for  a  complicated  multi-component  structure  from 
the  experimental  diffraction  pattern,  even  though  a  set  of 
relatively preferred atomic configurations is known? Humbly,  
we  have  to  admit  that  the  higher-dimensional  approach 
remains still  preferable here,  at  least as far as regarding this 
specific problem. However, it may be put aside as soon as the 
cell decoration is finished. 

On  the  other  hand,  our  approach  may  become  an 
indispensable  tool  in  predicting  the  structures  of  artificial 
solids. We can imagine a substitution packing irrelative of the 
cluster  energetics  at  all,  exactly  in  the  same  manner  as 
crystallographers describe the Bravais lattices irrelative of the 
fact,  whether  some positions  are  occupied  by atoms  or  not.  
Such approach allowed us to derive the simplest structures of 
single-component  icosahedral  quasicrystals,  as  well  as  to 
reveal  some  special  features  like  triads  of  co-existing 
characteristic  clusters  and  the  essential  asymmetry  in  cell 
decoration. This seems to have largely escaped the attention of 
researchers. 

Next  problem  is  related  to  the  compatibility  with  the 
canonical  tiling.39 We  have  used  the  inflation  factor  of  3, 
whereas the canonical Danzer tiling has the inflation factor of 
. How to decorate the zonohedral tiling by placing additional 
sites within every zonohedron to obtain the canonical tiling, if  
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possible? We can put forward a hypothesis that, if both tilings 
would be deflated infinitely many times, then they both would  
converge to the common fractal parent. Earlier, we introduced 
the  concept  of  non-Euclidean  parent  structures  with  highest 
possible symmetry that reveals in various daughter structures 
as hidden or incomplete.77 

Icosahedral quasicrystals may be classified into the P, I, and 
F-types  based  on  the  primitive,  body-centered,  and  face-
centered  unit  cells  in  hyperspace,  respectively. 78 How  to 
decorate  the  quasi-unit  cells  in  zonohedral  tiling  to  obtain 
three types of quasilattices, if possible? 

Next  problem  is  the  microscopical  interpretation  of  the 
phason  modes.79 In  the  high-dimensional  picture  of 
quasicrystals, phason modes are considered as a result of the 
invariance of the free energy with respect to the cut space. On 
the  contrary,  we  have  shown  that  ideal  quasicrystalline 
packings  may  be  described  without  any  cut-and-project 
procedure by usual side-by-side stacking of quasi-unit cells in 
the ordinary 3D space.  Every unit  cell  is  obliged  to  occupy 
exactly  the  predetermined  position,  be  in  crystalline  or 
quasicrystalline  idealized  structure.  How  to  imagine  the 
phason  modes  when  the  hyperspace  and  cutting  procedure 
were not used at all? 

The  next  problem is  relating  to  the  possible  reduction  in 
subgroup  procedure  applied  to  the  symmetry  group  of  the 
fractal  parent.  Strictly  speaking,  the  most  inner  tetrahedral 
shell in the Tsai-cluster may cause the symmetry lowering of 
the  entire  structure,  accompanied  by  corresponding 
rearrangements  of  atoms  in  the  outer  cells.  How are  we,  if  
possible,  to  take  into  account  the  possible  symmetry 
breaking80 within the frameworks of fractal approach? 

Now we  would  like  to  discuss  the  most  complicated  and 
disputable  aspects  of  our  work  in  connection  with  the 
fundamental  packing  problem.  Recall  that  the  Hilbert's  18th 
problem – Building up of space from congruent polyhedra  – is 
assumed to be completely resolved.  We have shown that the 
quasi-unit  cells  may  be  stacked  in  three-dimensional  space 
face-to-face  without  any  gaps  between  them  producing  the 
whole infinite icosahedral structure in the same manner as the 
usual periodic crystals may be generated by multiplication of 
their  unit  cells  by  the  symmetry  elements  of  corresponding 
Fedorov  space  groups.  The  only difference  is  that  there  are 
four unit cells instead of one single unit cell for usual periodic  
crystal.  The  formal  difference  disappears,  if  we  refer  to  the 
four  separated  cells  as  a  single  non-simply  connected 
fundamental domain. Do quasicrystals represent a part of the 
18th  problem?  Does  there  exist  an  opportunity  to  look  at 
uniform Delaunay sets81,82 in a new way tacking into account 
the corrected notion of uniformity? 

Further,  when the spatial  distribution  of  atoms within  the 
unit  cell  of the conventional  periodic  crystal  is of particular 
interest,  the  opposite  sides  of  the  unit  parallelepiped  are 
usually  considered  to  be  equal.  Three  cyclic  boundary 
conditions  should  be  set  –  for  every pair  of  opposite  faces.  
When considering the Socolar-Steinhardt tiling, another three 
boundary conditions should be set  for another three types of 
faces  – F1,  F2,  and  F3.  The valid  golden  rhombohedron  that 
could be  used as  a  unit  cell  for  some conventional  periodic 

crystal  must  have  equivalent  opposite  faces  to  comply with 
translations. In contradistinction, the rhombohedron that could 
serve  as  a  quasi-unit  cell  for  some  aperiodic  crystal 
necessarily must have inequivalent opposite faces. We would 
like to attract the reader's attention to the discussion between 
Hargittai  and  Pauling,  who  said83 that  “you  can  always  fit 
something if  you pick a large enough lattice parameter.” We 
therefore raise the question whether or not the spatial atomic 
distribution obtained under cyclic boundary conditions may be 
immediately  transferred  onto  the  aperiodic  case?  If  the 
difference  in  boundary  conditions  is  essential,  so  that 
fundamentally  new  packings  may  appear,  then  the  next 
question arises: What is the densest icosahedral packing? 

Pauling  adhered  to  the  opinion  that  quasicrystals  are 
conventional  twins  of  cubic  crystals  with  very  large  unit  
cells.84 We held the opinion that, in contrast, the quasicrystals 
may  give  some  new  insight  into  the  problem  of 
lattice/quasilattice  interfaces.  Indeed,  compare  the  five-fold 
and  two-fold  layers  (Figs.  7  and  9).  Both  have  coinciding 
vertical chains of polyhedra that correspond to the intersection 
line between two projection planes (compare with the Fig. 7 in 
the paper by Steurer7). Combine the left part of the five-fold 
layer with the right part of the two-fold layer into one.  This 
corresponds  to  the  cross-section  of  the  entire  three-
dimensional structure by a kinked surface. Now leave a three-
dimensional imagination behind for a while and consider the 
tilings  as  simple  plane  decorations  with  multicolored  carpet 
tiles. What do we see? We see a plane tiling combined from 
two  different  parts  with  apparently  incompatible  symmetry, 
built  of  units  from  a  common  set  of  tiles,  with  no  clear  
boundaries  between  “five-fold”  and  “two-fold”  regions. 
Surely,  these  are  not  the  conventional  twins.  Earlier, 
Shevchenko  discussed  the  new  kind  of  interfaces  in 
nanoparticles,  which  description  is  beyond  the  classical 
crystallographic  concepts  of  twinning  and  syntactic 
intergrowth.85,86 He  used  the  figurative  association  with  a 
сentaur  –  a  half-human  and  half-horse  composition  without 
clearly  seen  boundaries  between  incompatible  parts  and 
gradual transition from one part to another. 

Another question relating to the flat  interpretation – Does 
there  exist  another  five-fold  plane tiling besides  the famous 
Penrose tiling? Recall that we have used the inflation factor of 
3 to derive our colored five-fold carpet. 

We  would  like  to  quote  the  work  of  Senechal: 82 “In  the 
second  stage  of  the  quasicrystal  revolution,  tilings  are 
receding  to  the  background  and  clusters  moving  to  the 
foreground. We will still need polyhedra: not to tile space, but 
to hang the clusters on.” So,  we still  need polyhedra: to tile 
space, as well  as to hold clusters inside – in order to derive  
infinite  atomic  structures  with  ideal  icosahedral  order,  to 
obtain  characteristic  clusters  compatible  with  self-similarity, 
to  understand  the  interlinkage  of  clusters  into  the  whole 
structure, and others. 

Our results may stimulate further research toward improved 
understanding  of  the  basic  principles  underlying  the 
diffraction  by  aperiodic  crystals,87 as  well  as  open  new 
perspectives  in  templated  quasicrystalline  ordering,88,89 soft 
matter chemistry,90,91 and optics of photonic quasicrystals.92,93 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  17

Page 17 of 19 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



The  derived  models  may  be  useful  in  designing  the  new 
structures  of  icosahedral  intermetallic  nanoclusters, 
polyhedral  coordination cages,  nanocontainers,  wheel-shaped 
nanoclusters,  metal-organic  frameworks,  new  mesoporous 
materials, and others.94-100 

Conclusions

An accurate tiling approach for the structural description of 
icosahedral  quasicrystals  is  offered.  The  iterative  and 
recursive  inflation/deflation  procedure  with  subsequent 
decoration of quasi-unit cells makes it possible to derive the 
atomic structure of icosahedral quasicrystals. 

The  possibility  is  shown  to  derive  the  ideal  infinite 
structure  of  a  single-component  icosahedral  quasicrystal 
starting with a single atom placed at the origin. 
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