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We study the magnetic response of two-dimensional buckled honeycomb-lattice materials. The
buckling breaks the sublattice symmetry, enhances the spin-orbit coupling, and allows the tuning
of a topological quantum phase transition. As a result, there are two doubly degenerate spin-valley
coupled massive Dirac bands, which exhibit an unconventional Hall plateau sequence under strong
magnetic fields. We show how to externally control the splitting of anomalous zeroth Landau levels,
the prominent Landau level crossing effects, and the polarizations of spin, valley, and sublattice de-
grees of freedom. In particular, we reveal that in a p-n junction, spin-resolved fractionally quantized
conductance appears in a two-terminal measurement with a spin-polarized current propagating along
the interface. In the zero- or low-field regime where the Landau quantization is not applicable, we
provide a semiclassical description for the anomalous Hall transport. We comment briefly on the ef-
fects of electron-electron interactions and Zeeman couplings to electron spins and to atomic orbitals.
Our predictions can be examined in the magneto-transport and/or magneto-optic experiments.

I. INTRODUCTION

Two-dimensional (2D) atom-thin materials have been
attracting significant attention in the past decades.
Starting with the successful isolation of graphene
sheets,1,2 several other 2D materials have been success-
fully synthesized or isolated, such as hexagonal boron
nitride,3 monolayer transition metal dichalcogenides,4

silicene,5–8 black phosphorus9–11 etc., and more such ma-
terials are theoretically predicted and await to be demon-
strated experimentally. With reduced dimensionality,
these atom-thin materials exhibit distinct physical prop-
erties from three-dimensional materials and conventional
2D quantum well systems, and have triggered extensive
studies aiming to utilize them for various applications.

Among these 2D materials, a class of materi-
als have honeycomb-lattice geometries as their sta-
ble structures. For example, graphene, silicene,12

the predicted germanene,12 X-hydride/halide (X=N-Bi)
monolayers,13,14 and stanene15 all have such a kind of
structure. As a result, they shared several common in-
teresting properties in their electronic band structure.
First, the low energy spectrum usually has two inequiva-
lent valleys located at the hexagonal Brillouin zone cor-
ners known as K and K ′ points. (Note that the last three
materials have an extra valley at Γ point, which we will
comment in the Discussion section). This valley degree
of freedom has been proposed as a novel means to encode
information, and how to control and manipulate it have
led to the concept of valleytronics.16 Second, the hon-
eycomb structure has two triangular sublattices, usually
labeled as A and B, which leads to a pseudospin struc-
ture of the electron wave function. When the sublattice
(chiral) symmetry is broken, a band gap can be opened
at K and K’ points. This symmetry breaking could arise
simply because two sites are occupied by different atoms,
or as we are more interested in, because the lattice has
buckling such that A and B sites have a relative shift
along the direction perpendicular to the 2D plane.

In the presence of buckling, the inversion symme-
try can be broken by a perpendicular electric field and
the induced gap size can be tuned by controlling the
field strength. In addition, the crystal symmetry allows
the presence of an intrinsic spin-orbit coupling (SOC).17

This SOC is the key ingredient in the Kane-Mele quan-
tum spin Hall (QSH) insulator originally proposed in
graphene.17,18 Of course, the SOC strength is negligibly
small in graphene.19,20 Later, it was found that the SOC
could be enhanced by the buckling due to the direct hy-
bridization between π and σ orbitals, as being predicted
for the case of silicene and germanene.21,22 Recently, sev-
eral QSH insulators with large SOC gaps are proposed.
In particular, theoretical analysis have revealed that for
X-hydride/halide (X=N-Bi) monolayers,13 huge intrin-
sic SOC up to 1 eV could arise because the low energy
bands have px and py instead of pz orbital character
(like graphene and silicene).13,14,23 These distinct fea-
tures lead to rich transport properties of these materials.
Especially, the switch between the QSH and trivial insu-
lating phases, tunable through an electric field,24 may be
utilized for designing energy efficient spintronic devices.

In this paper, we will study the transport proper-
ties of buckled honeycomb-lattice materials in response
to an applied magnetic (orbital) field, in a consistent
and comprehensive manner. Previously, the Landau
level (LL) structures of this class of materials have been
studied.25–29 In this paper, we contribute to this topic in
four different aspects: (i) the quantum Hall transport in a
PN junction geometry, (ii) the anomalous Hall transport
in the absence of LLs, (iii) the valley splitting due to the
lattice effect and the Zeeman coupling to electron spins
and atomic orbitals, and (iv) the estimation of interac-
tion effects in the quantum Hall regime. As discussed
above, the intrinsic buckling breaks the sublattice sym-
metry, enhances the spin-orbit coupling, and allows the
tuning of inversion asymmetry. The resulting low energy
spectrum thus splits into two sets of doubly degenerate
spin-valley coupled massive Dirac fermions with differ-
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ent masses. Importantly, the electric field is able to tune
the mass difference and the quantum phase transition
between the QSH and trivial insulating phases. Under
strong magnetic fields, the interplay between the SOC
and the inversion asymmetry leads to an unconventional
Hall plateau sequence. Due to the mass difference, the
LL spectrum shows prominent crossing effects. Because
the pseudospin chirality switches between the two val-
leys, the energies of the zeroth LLs are valley-dependent.
We will explicitly show that it is possible to control the
valley polarization of carriers by tuning doping level as
well as external electrical and magnetic fields. This val-
ley polarization is a pure lattice effect, and we will also
estimate how this effect is corrected by the Coulomb in-
teractions and the Zeeman couplings to electron spins
and atomic orbitals. Moreover, the quantum Hall trans-
port in a PN junction geometry is a characteristic feature
of any multi-band 2D material. As ideal candidates for
bipolar nanoelectronics, buckled honeycomb lattices ex-
hibit intriguing fractionally quantized conductance in a
two-terminal measurement, with a spin-polarized current
propagating along the interface. Remarkably, we find
that this effect can be tuned by an electric field, which is
inaccessible in graphene30–34 and in MoS2.35 In the low-
field or strong-disorder regime, the Landau quantization
is not applicable and LLs become absent. For a buckled
honeycomb lattice, however, the energy band gap, the
spin-orbit coupling, and the tunable inversion asymme-
try can still lead to appealing anomalous Hall effects. We
will use a standard semiclassical treatment to examine
the anomalous Hall transport in the absence of LLs.

Our paper is organized as follows. In Sec. II, we intro-
duce the low energy effective model describing this class
of buckled honeycomb-lattice materials, with emphases
on the roles of the sublattice symmetry and the intrin-
sic buckling. In Sec. III.A, we derive the LL structures
for the QSH and the trivial insulating phases, followed
by discussions on the SU(4) symmetry breaking of the
anomalous zeroth LLs. We then analyze the LL crossing
effects and the unconventional Hall plateau sequences for
both phases in Sec. III.B. We note that the LL structures
have been studied before, but we reproduce them here to
make our following studies more grounded and to make
our analysis consistent and comprehensive. In Sec. III.C,
we further study the two-terminal conductances in unipo-
lar and bipolar regimes and find some extra integer and
fractionally quantized plateaus. In Sec. III.D, we reveal
the possible electric-field control of the spin, valley, and
sublattice polarizations. We also provide a semiclassical
theory in Sec. III.E for the anomalous Hall transport in
the low-field regime where the Landau quantization is not
applicable. Finally, in Sec. IV we discuss the complexity
added by the states at the Γ point, some speculations
on the role of electron-electron interactions, and an es-
timation of the Zeeman couplings to electron spins and
atomic orbitals.

II. MODEL

Materials with 2D honeycomb lattice structures such
as graphene, silicene, germanene, and X-hydride/halide
(X=N-Bi) monolayers have their low energy bands
around two valleys at K and K’ points of the hexagonal
Brillouin zone. Without spin-orbit coupling, the energy
gap of the two linearly dispersed bands closes at the Dirac
points, i.e., K and K’ points. Near each Dirac point the
low energy Hamiltonian can be written as

H0 = ~v(τzkxσx + kyσy), (1)

where v is a material-specific Fermi velocity, τz = ±1
labels the two valleys K and K’, σ’s are Pauli matri-
ces representing the AB sublattice degrees of freedom.
It should be noted that for different materials, the low
energy physics could be associated with different types
of orbitals. For example, for graphene, silicene, and
germanene, it is of pz orbital type,2,21 whereas for X-
hydride/halide (X=N-Bi) (X=N-Bi), it is of px and py
orbital types.13,14,23

The gapless nature of Eq. (1) is protected by the fol-
lowing sublattice (or chiral) symmetry

{H0, σz} = 0 (2)

and the topological winding number ±1 of the constant
energy contour of the positive or negative energy band
at each valley. Thus, the Dirac fermions described by
Eq. (1) acquire an energy gap in the presence of sub-
lattice symmetry breaking that violates Eq. (2) or when
the two valleys couple and annihilate with each other.
At least three possible sources of sublattice symmetry
breaking can arise in these Dirac materials. First, strong
electron-electron interactions may lead to an antiferro-
magnetic order yielding a quasiparticle gap at the Dirac
point. However, this mechanism is not likely for any ma-
terial we discuss here as v is not sufficiently small.36

An energy difference between the two sublattices
breaks inversion and sublattice symmetries producing a
trivial band gap at the Dirac point, which can be mod-
eled by

Hg = λσz. (3)

Traditionally, this staggered sublattice potential λ can
hardly be induced in graphene. Recently, λ can be even
larger than 1 eV when the two sublattices are formed by
different atoms in hexagonal boron nitride and by differ-
ent d orbitals in MoS2.35,37 Of particular interest here,
buckling of the two sublattices in opposite out-of-plane
directions allows an easy way to control λ via an external
electric field perpendicular to the 2D plane (see Fig. 1),
although the buckling respects the inversion symmetry
and does not lead to a nonzero λ. It has been found that
such buckling of the honeycomb lattice is intrinsic for
many monolayer materials including silicene, germanene,
and X-hydride/halide (X=N-Bi).
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FIG. 1. (color online) (a) Top view and (b) side view of the
unit cell of a 2D buckled honeycomb lattice structure. The
atomic sites of the two sublattices A and B are marked in
different colors. The two sublattice planes have a relative
shift along the perpendicular direction.

Another essential ingredient in the low energy physics
of these materials is the following intrinsic SOC that is
allowed by the lattice symmetry,

Hso = λsoτzσzsz . (4)

Here sz denotes the z-component of electron spin and λso
is the coupling strength. Evidently, this term breaks the
spin SU(2) rotational symmetry and violates the sub-
lattice symmetry (2), opening a band gap in Hamilto-
nian (1). Interestingly, this term drives the system into
a QSH insulator state protected by the time-reversal
symmetry and/or the mirror symmetry.38 The pristine
graphene is comprised of light carbon atoms forming a
planar structure and λso is negligibly small (∼ 10−3

meV).19,20 For silicene and germanene, buckling helps en-
hance the intrinsic SOC because of the hybridization be-
tween π and σ orbitals. Calculations based on a density
functional theory have predicted that the SOC induced
gap can reach ∼ 1.5 meV for silicene and ∼ 23.9 meV for
germanene.21 Recently, a new class of bulked honeycomb-
lattice materials X-hydride/halide (X=N-Bi) monolay-
ers has been predicted.13 The low energy bands of these
materials are of px and py orbital characters leading to
an on-site SOC.13,14,23 This fact, together with the buck-
ling and the heavy X atoms, substantially enhances the
SOC gap to as large as 1 eV (e.g., for BiH monolayer).

In the following, we shall focus on the generic model

H = H0 +Hg +Hso, (5)

describing a class of 2D materials with buckled honey-
comb lattices at least including silicene, germanene, and
X-hydride/halide (X=N-Bi) monolayers. Other types of
SOC terms, such as the Rashba-type SOC resulting from
structural inversion symmetry breaking, may also exist,
but their strengths are typically much smaller than the
terms above hence are neglected in our treatment.22,24

In this model, sz = ±1 is a good quantum number,
because the buckling in the considered materials is small
and the mirror-plane symmetry breaking is weak. The
model can thus be written as

H = ~v(τzkxσx + kyσy) + ∆τzszσz, (6)
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FIG. 2. (color online) The energy dispersion for each spin-
valley. Spin up (down) is marked with red (blue) color. The
gap is 2(λ + λso) for the upper bands and 2|λ − λso| for the
lower bands. Assume both λ and λso are positive, the band
gap is inverted when λso > λ. We have chosen the parameter
values v = 0.5× 106 m/s, λ = 0.1 eV, and λso = 0.05 eV.

with a combined gap parameter

∆τzsz ≡ λ+ λsoτzsz, (7)

which depends on the product of valley and spin indices
τzsz = ±1. Thus the Hamiltonian (6) reduces to two sets
of massive Dirac fermions with flavor dependent mass
terms ∆τzsz=±1. In this paper, we will assume that both
λ and λso are positive, and that the strength of λ is con-
trolled by an external electric field whereas that of λso is
intrinsic. When λ = 0, at each valley the band is two-
fold spin degenerate. As λ increases from zero, the spin
degeneracy is lifted, as shown in Fig. 2. For λ < λso, the
SOC gap dominates in the combined gap and the system
is in a QSH insulator state. In the opposite case, when
λ > λso the system becomes topologically trivial. Evi-
dently, the topological quantum phase transition occurs
at the critical point λ = λso where the gap ∆− vanishes
whereas ∆+ is enhanced.

Each flavor of τzsz (1 or −1) at different valleys corre-
sponds to opposite spins, i.e., a spin-valley locking. More-
over, the chirality (relaxed due to the energy gap) for the
same flavor also differs between the two valleys. This can
be easily observed by tracking how the pseudospin’s in-
plane component rotates around a constant energy sur-
face at each valley. These properties opposite at the two
valleys will be of importance for the interesting physics
discussed below.

III. RESULTS

A. Landau Level Structure

In the presence of a uniform perpendicular magnetic
field B, the two-dimensional kinetic momentum ~k in
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Eq. (6) is replaced by π = ~k+eA/c, based on the stan-
dard Peierls substitution. In the Landau gauge the vector
potential A takes the form of A = (0, Bx). Then we can

define the bosonic ladder operators as b† = (`B/
√

2~)π+

and b = (`B/
√

2~)π−, where π± = πx±iπy and the mag-

netic length `B =
√
~/(eB) = 25.6/

√
B[T ] nm. This

model and all the following results are approximately
valid when ~v/`B is smaller than the bandwidth of the
effective Dirac model. The ladder operators satisfy the
relations [b, b†] = 1, b|n〉 =

√
n|n−1〉, and b|0〉 = 0, where

|n〉 is the nth LL eigenstate of a conventional 2D electron
gas. Written in terms of the ladder operators and in the
basis of |n〉, Hamiltonian (6) can be easily diagonalized
and the resulting spectrum reads

En,± = −τz∆τzszδn,0 ±
√

∆2
τzsz + n~2ω2

c (1− δn,0) , (8)

where ωc =
√

2v/`B is the cyclotron frequency, δ is the
Kronecker delta function, and n is a non-negative inte-
ger denoting the LL orbitals. This spin-valley resolved
LL structure is schematically shown in Fig. 3. In the ab-
sence of the mass terms, e.g., in the case of graphene, the
LLs are fourfold degenerate at each energy. For the case
∆τzsz 6= 0 the SU(4) symmetry of the zeroth (or n = 0)
LLs are completely broken at the single-particle level,
whereas all other LLs are broken into two groups with
τzsz = ±1 and are doubly degenerate at each energy.

In particular, the n = 0 LL energies −λτz − λsosz are
independent of the magnetic field strength B. Evidently,
the SU(4) symmetry in the zero-mass case is broken be-
tween the two valleys as well as between the two spins.
On one hand, when λso > λ > 0, the two n = 0 LLs of
spin up are at the valence band top whereas the two of
spin down are at the conduction band bottom, indepen-
dent of their valley indices. In this scenario, the ν = 0
state has a quantized spin Hall conductivity that sur-
vives at B = 0, reflecting the QSH state nature in the
presence of an approximate mirror-plane symmetry.38 On
the other hand, when λ > λso > 0, the two n = 0 LLs
of valley K are at the valence band top whereas the two
of valley K’ are at the conduction band bottom, inde-
pendent of their spins. This scenario is consistent with
the fact that the half filled ν = 0 state is adiabatically
connected to the trivial insulating state at B = 0, in
which both the charge and spin Hall conductivities are
zero. The transition between the two scenarios occurs
when λ = λso, companied by a gap closure at two of the
four spin-valleys with τzsz = −1. The wavefunctions of
n = 0 LLs at valley K and K’ are (0, |0〉)T and (|0〉, 0)T ,
respectively. Thus, for the n = 0 LLs the valley and
sublattice degrees of freedom coincide. This feature al-
lows to tune the n = 0 LL energies via the buckling of
the two sublattices and the perpendicular electric field,
namely, λso and λ. Note that we have neglected the roles
of electron-electron interactions and Zeeman couplings to
the electron spins and the atomic orbitals, and we will
comment on these effects in Sec. VIII.

We mention by passing that the asymmetric LL struc-

ture is a generic feature of massive Dirac fermions and
is related to the opposite chirality of the two valleys and
to the spin-valley dependent mass terms.35 One intuitive
picture, as noted above, is to make a connection between
the charge, spin, and valley Hall conductivities of the
ν = 0 quantum Hall state and the classification of the
B = 0 states.39 A more intuitive picture can be pro-
vided by the semiclassical theory of electron dynamics
at low fields.40 Due to the pseudospin-orbit coupling, a
wave packet near a valley center has a self-rotation, which
produces an intrinsic orbital magnetic moment39,41

m(k) = −τz
v2me∆τzsz

(∆2
τzsz + ~2v2k2)

µB ẑ , (9)

where me is the electron mass and µB = e~/2me is the
Bohr magneton. Note that the orbital moment is the
same for the conduction and valence bands. In Eq. (9)
the factor τz results from the opposite chirality of the two
valleys whereas the factor ∆τzsz reflects the role of the
spin-valley dependent mass terms. The orbital moment
couples with the perpendicular magnetic field B, shifts
the LLs in an asymmetric way that is determined by the
factor τz∆τzsz , and leads to the spin-valley resolved LL
structure sketched in Fig. 3.

B. Landau Level Crossing Effect

In the buckled honeycomb lattice, we can denote the
group of LLs corresponding to flavor τzsz = 1 (−1)
as group I (II). At high fields, for large LL orbitals,
and with small band gaps, nB � ∆2

±/(2e~v2), the

LL energies goes linearly with
√
B as for the case of

massless Dirac fermions. On the opposite limit, at low
fields, for small LL orbitals, and with large band gaps,
nB � ∆2

±/(2e~v2), the LL energies goes linearly with
B as for the case in conventional quantum wells. In the
latter case, we can expand Eq. (8) and write LL energies
of group I as

EnI,± ' ±∆+

(
1 +

e~v2nIB
∆2

+

)
, (10)

where nI = 0, 1, 2, · · · labels the LLs of group I. By re-
placing ∆+ by ∆− and nI by nII above, we obtain the
corresponding expression for group II.

In general, when there is more than one channel of
2D conduction electrons, their differences in velocity and
in mass give rise to the LL crossing effect. Such effects
occur in the conventional quantum wells as a result of
the Zeeman splitting between the spin up and spin down
carriers,42 on the (111) surface of SnTe due to the pres-
ence of the symmetry-unrelated Γ̄ and M̄ Dirac surface
states,43 in ABA trilayer graphene because of the chi-
ral decomposition of the monolayer-like and bilayer-like
subbands,44–47 and in monolayer MoS2 owing to the pe-
culiar SOC of d-electrons in the valence bands.35
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FIG. 3. (color online) The first few LLs of each spin-valley
resolved band for (a) the QSH insulator phase (λso > λ > 0)
and for (b) the trivial insulator phase (λ > λso > 0). The
red (blue) color represents the spin up (down), and the n = 0
LLs are marked with thicker lines with an asymmetric feature.
Note that the positions of the n = 0 LLs for the two lower
bands (τzsz = −1) differ between the two phases. We have
used the same parameter values as in Fig. 2.

For the case of buckled honeycomb lattice, the LL
crossing effect must occur, since the two groups of LLs
have different masses. By equating the LL energies of the
two groups in Eq. (8), we find that the crossing point for
two LLs with index nI and nII occurs at

Bc =
2λλso

e~v2(nII − nI)
. (11)

This result applies to both the conduction and the va-
lence bands, since they are symmetric with respect to
the zero energy, as shown in Fig. 4. Note that in those
cases for nII, nI > 0 the crossing points are all fourfold
degenerate, whereas in those cases for nI = 0 and nII > 0
the crossing points are all threefold degenerate. This is
because both nI = 0 LLs are non degenerate whereas
all n 6= 0 LLs are doubly degenerate. The scenarios for
both the QSH phase and the trivial phase are sketched
in Fig. 4. Notably, the two scenarios only qualitatively
differ in the ν = 0 cases. In Fig. 4, we label each gapped
state by its spin up, spin down, and total filling factors.
Take the (1, 0, 1) state for example, the two spin up n = 0
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FIG. 4. (color online) Schematic plot of the LL crossing pat-
tern of the first few LLs for (a) the QSH insulator phase
and for (b) the trivial insulator phase. The n = 0 LLs are
spin-filtered while other levels are spin-degenerate. The red
(blue) color represents spin up (down). In each gapped region,
(ν↑, ν↓, ν) labels the filling factors of spin-up, spin-down, and
total LLs.

LLs (red) are filled and thus ν↑ must be 1; only one of
the two spin down n = 0 LLs (blue) is filled and thus ν↓
must be 0, leading to a total filling factor ν = 1 + 0 = 1.
Consider the (0,−1,−1) state, it is simply a time-reversal
and particle-hole partner of the (1, 0, 1) state. We note
that even the simple LL structures, shown in Fig. 4, are
richer than those in monolayer transition metal dichalco-
genides,35 where the fourfold degeneracy of the n = 0
LLs is not fully lifted.

When the electron-electron interactions are not sub-
stantial, as assumed in this paper, the LL crossing effect
further leads to the enhancement of longitudinal mag-
netoresistance in transport. When the interactions be-
come substantial in the presence of strong magnetic fields
and weak disorders, small gaps may open at the cross-
ing points and the magnetoresistance peaks split. More
interestingly, the LL crossing effect disappears at λ = 0,
which can be tuned by an external electric field. Thus,

Page 5 of 12 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



6

the magnetoresistance in buckled honeycomb lattice can
also be controlled by the electric field.

Even in the absence of interactions, the Hall plateaus
follow an unconventional sequence: ν = · · · ,−2M −
4,−2M−2,−2M,−2M+1, · · · ,−3,−1, 0, 1, 3, · · · , 2M−
1, 2M, 2M + 2, 2M + 4, · · · Here the nI = 0 LL lies be-
tween the LLs with nII = M − 1 and nII = M , with M
given by

M =

⌊
2λλso
e~v2B

⌋
+ 1 , (12)

where b· · · c is the floor function. The step of two in
the sequence is a consequence of the τzsz = ±1 classifi-
cation and the double degeneracy in each group of LLs
with n 6= 0, a hallmark of the intrinsic SOC. A step-one
jump reflects the filling or emptying of a spin-filtered and
valley-resolved n = 0 LL. This is a direct result of broken
SU(4) spin-valley symmetry among the anomalous n = 0
LLs, given by the masses ∆± of the Dirac fermions.

C. Fractionally Quantized Conductances in PN
Junctions

The unique band structure of buckled honeycomb-
lattice materials allows reconfigurable electric-field con-
trol of carrier type and density, making them ideal can-
didates for bipolar nanoelectronics. A p-p, n-n, or p-n
junction can be realized by using electrostatic gating to
independently control the local carrier types and densi-
ties in two adjacent regions.30,31 In such a device made
of a buckled honeycomb-lattice material, transport mea-
surements in the quantum Hall regime can reveal new
plateaus with integer and fractionally quantized two-
terminal conductances across the junction. This effect
arises from the redistribution of quantum Hall currents
among edge channels propagating along and across the
junction, due to the presence of residue disorder.32–35

In the presence of magnetic disorders or strong mirror
symmetry breaking, sz is not conserved. Because of the
redistribution of the chiral quantum Hall edge currents at
the junction, the net conductance in units of e2/h across
the junction is quantized as32–35

Gpp,nn = min{|ν1|, |ν2|} , (13)

Gpn =
|ν1||ν2|
|ν1|+ |ν2|

, (14)

in the unipolar and bipolar regimes, respectively. Here
ν1 and ν2 are the filling factors of the two sides of the
junction. This limit is similar to the case of graphene
where all possible filling factors are even. Consider the
special case with ν1 = 0 and ν2 = 2n, it follows that
G = 0. We note that in this case the conductance is
insensitive to whether the B = 0 phase is topological or
trivial.

When the residue disorder is nonmagnetic and the mir-
ror symmetry is approximately preserved, sz can be con-
sidered as a good quantum number and the n = 0 LLs
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(2/3, 1/2) (1/2, 0) (0, 1) (1, 1) (1, 1)

(0, 3/2) (0, 1) (0, 2) (0, 1) (0, 3/2)

(1,1) (1, 1) (0, 1) (1/2, 0) (2/3, 1/2)

(2, 2) (1, 1) (0, 3/2) (2/3, 1/2) (1, 1)
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2
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(2/3, 1/2) (1/2, 0) (0, 0) (1, 1) (1, 1)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(1,1) (1, 1) (0, 0) (1/2, 0) (2/3, 1/2)

(2, 2) (1, 1) (0, 0) (2/3, 1/2) (1, 1)
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2
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n-np-n

n-pp-p

n-np-n
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FIG. 5. (color online) Map of the conductance in units of e2/h
across the p-p, n-n, and p-n junctions, as a function of ν1 and
ν2 (|ν1|, |ν2| ≤ 2). (a) is for the QSH phase and (b) is for the
trivial phase. In each entry (Gα, Gβ), Gα is the conductance
with spin mixing whereas Gβ is the conductance without spin
mixing.

are spin filtered. We note that this limit is more appeal-
ing and directly relevant to honeycomb lattices with low
buckling. It follows that the full equilibrium must be
achieved within each sz subspace independently. Conse-
quently, the net conductance across the junction is

G =
∑
sz=↑,↓

[
min{|ν1sz |, |ν2sz |}Θ(ν1szν2sz )

+
|ν1sz ||ν2sz |
|ν1sz |+ |ν2sz |

Θ(−ν1szν2sz )

]
, (15)

where Θ is the Heaviside step function, the first and the
second terms are the spin-resolved conductances in the
unipolar and the bipolar regimes, respectively. The total
filling factors are implied by ν1 = ν1↑+ν1↓ and ν2 = ν2↑+
ν2↓. As we will see shortly, in the QSH phase the two spin
species are not necessarily in the same bipolar or unipolar
regime, whereas in the trivial phase both spin species
are always in the same regime. Such inconsistency is
quite counterintuitive, reflecting the topological quantum
phase transition at λ = λso for the B = 0 case.

Only when ν↑ 6= ν↓ on at least one side of the junction,
the conductance in Eq. (15) is essentially different with
the simple case (with magnetic disorders) in which only
the total filling factors ν1 and ν2 matter. In the absence
of an electric field, i.e., λ = 0, consider a junction with
ν1 = 0 and ν2 = 4n−2 for some integer n, This indicates
that ν1↑ = −ν1↓ = 1 and ν2↑ = ν2↓ = 2n − 1. From
Eq. (15) we find that G = (4n − 1)/(2n) for n > 0 and
that G = (3− 4n)/(2− 2n) for n ≤ 0.
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We then consider the scenario of λso > λ > 0, in the
presence of a small perpendicular electric field. The con-
ductance is unchanged for the above case with ν1 = 0
and ν2 = 4n − 2. Now imagine while fixing ν1 = 0
we tune the gate in region two such that ν2 = 2m − 1
for some integer m. The latter filling indicates that
ν2↑ = ν2↓ + 1 = m. Thus, G = (2m − 1)/m for m > 0
and G = (1− 2m)/(1−m) for m ≤ 0.

When the electric field is sufficiently large to invert the
band gap such that λ > λso > 0, in this scenario, ν1 = 0
would indicate that ν1↑ = ν1↓ = 0. Thus, G = 0 as
long as one region of the junction is half filled, in sharp
contrast to the QSH phase.

Although we have focused on the case with ν1 = 0 to
illustrate the essence of the physics, we exhaustively show
the full map of conductance in Fig. 5 for |ν1|, |ν2| ≤ 2.
The two numbers in a parenthesis are the net con-
ductances with and without spin mixing respectively.
Fig. 5(a) is for the QSH phase whereas Fig. 5(b) is for
the trivial phase. One observes that the difference be-
tween the two phases is exhibited for the cases with ei-
ther ν1 = 0 or ν2 = 0, as we discussed before. One may
also consider the cases in which the two sides of the junc-
tion are in different phases. The analysis is straightfor-
ward and our results Eqs. (13), (14) and (15) still apply.
These above mentioned interesting features are indeed
richer than those in graphene30–34 and monolayer tran-
sition metal dichalcogenides.35 Thus, the conductance
across the junction, distinct in the two phases, can serve
as a useful diagnosis for the phase of buckled honeycomb-
lattice material under an electric field.

In addition to the unconventional transport properties,
STM probes at the interface can also detect a special fin-
gerprint of the spin-filtered n = 0 LLs. This is the case
as long as the Fermi energies of the two regions lie in
different energy windows that are divided by the n = 0
LLs (see Fig. 3). In particular, spin-filtered edge states,
whose number is given by |ν1sz − ν2sz |, will propagate
along the interface. The interface current can be con-
trolled in the following senses. (i) Switching the magnetic
field direction flips the spin polarization of the current.
(ii) Interchanging ν1 and ν2 switches the current direc-
tion while tuning ν1 and ν2 adjusts the current ampli-
tude. (iii) Tuning one Fermi energy to a different energy
window while fixing the other one may change the carrier
type, besides the effects in (i) and (ii). (iv) Most impor-
tantly, as we have analyzed above, the electric field can
tune the integer or fractionally quantized conductance in
an unprecedented way, and even diagnose the topological
nature of the phase of the material.

D. Electric-Field Control of Spin, Valley, and
Sublattice Polarizations

In order to use the valley degrees of freedom for infor-
mation processing, it is necessary to have efficient ways
to generate and control the valley polarization of car-

riers. This is similar to the case of spintronics, where
the task of generating spin polarizations has been a
topic of active research in the past decades. While
spin can be easily coupled to Zeeman fields and con-
trolled through spin-orbit couplings, the manipulation
of valley degrees of freedom is much more challeng-
ing. Recently, based on an argument of orbital mag-
netic moment, it has been demonstrated that valley po-
larization could be generated by a circularly polarized
light in monolayer transition metal dichalcogenides.48–50

There are also proposals to generate valley polariza-
tion by designed valley filters.16,51–53 Furthermore, it
has been proposed that a magnetic orbital field can be
used to control the valley polarization in monolayer tran-
sition metal dichalcogenides.40 A similar effect is also
present and even constitute two advantages of the buck-
led honeycomb-lattice materials. First, the band gap
and the topological nature of the phase can be tuned
by an external electric field, providing more freedom in
controlling the valley degrees of freedom. Secondly, for
both electron-doped and hole-doped cases, because the
splitting between τzsz = 1 and −1 bands lead to the
spin-valley locking, the valley polarization amounts to a
spin polarization, allowing to manipulate valley degrees
of freedom by means of spintronics. Here we focus on
the electric-field control of the spin, valley, and sublat-
tice polarizations in the strong magnetic field regime.

We start from the case in which the electric field is
zero, λ = 0. From the LL structure Eq. (8), at a fixed
chemical potential, there is no valley polarization, but
there exists finite spin polarization of the charge carriers.
This is easily understood by noticing that the four n = 0
LLs are valley degenerate but spin split. For example,
the n = 0 LLs at the conduction (valence) band bottom
(top) for the two valleys are both of spin down (up). All
higher LLs are spin and valley degenerate. As a result,
the valley and spin polarizations are respectively given
by

Pv ≡ ν+ − ν− = 0 , (16)

Ps ≡ ν↑ − ν↓ = 2δν,0 , (17)

where ν± and ν↑,↓ are the partial filling factors for valley
K and K’ and spin up and down, respectively. Note that
Pv and Ps are simply the quantized valley and spin Hall
conductivities in units of e2/h. For the present case with
λ = 0, it is the valley degeneracy that dictates Pv to be
zero and ν to take the form of 4(n+1/2), with n being an
arbitrary integer. The spin polarization is maximized at
ν = 0, i.e., when the two n = 0 LLs of spin ↑ (↓) are oc-
cupied (empty), independent of the strength of magnetic
field. The spin polarization disappears when the n = 0
LLs become completely occupied or empty.

When a small electric field is applied such that λso >
λ > 0, the LLs split into two groups with τzsz = ±1.
As shown in Fig. 3(a), all the LLs are doubly degenerate
except the four non-degenerate n = 0 LLs; in ascending
order of energy, these four LLs are indexed by spin up and
valley K, spin up and valley K’, spin down and valley K,
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TABLE I. Spin and valley polarizations (Ps, Pv) as functions
of the filling factor ν for both the QSH phase (λso > λ > 0)
and the trivial phase (λ > λso > 0).

filling factor ν -3 -2 -1 0 1 2 3

QSH (Ps, Pv) (1,1) (0,0) (1,1) (2,0) (1,1) (0,0) (1,1)

Trivial (Ps, Pv) (1,1) (0,0) (1,1) (0,2) (1,1) (0,0) (1,1)

and spin down and valley K’. When one or three n = 0
LLs are filled, the filling factor ν is odd, and both the
spin and the valley polarizations are one. When two of
them are filled, ν becomes zero and the spin polarization
is maximized whereas the valley polarization vanishes.
When all of them are filled or empty, ν is even and both
polarizations are zero. Therefore,

Pv = δν,2n−1 , (18)

Ps = δν,2n−1 + 2δν,0 (19)

where n is an arbitrary integer.

Further increasing the electric field such that λ >
λso > 0, the two middle n = 0 LLs switch their energy
orders, as seen in Fig. 3(b). This follows from the topo-
logical quantum phase transition between the QSH and
quantum valley Hall phases at B = 0. (The latter phase
is also referred as a trivial phase in other sections.) As
an interesting result, spin and valley switch their roles.
Therefore, we can anticipate that

Ps = δν,2n−1 , (20)

Pv = δν,2n−1 + 2δν,0 (21)

where n is an arbitrary integer again.

The above results of spin and valley polarizations for
states with filling factors |ν| ≤ 3 are listed in Table I. One
notes that the coupled valley and spin polarizations are
non-vanishing at odd filling factors. Here, the difference
between the QSH phase and the trivial phase is reflected
in the ν = 0 case: for QSH phase, it is spin polarized but
valley non-polarized, whereas the situation is reversed for
the trivial phase.

The simultaneous polarization of carriers in both valley
and spin permits versatile methods for their detection
and manipulation. Moreover, the polarization reversal
occurs at the transition between the topological phase
and the trivial phase also offers a way to experimentally
differentiate them.

To close this section, we note by passing that for n = 0
LLs the valley pseudospin coincides with the sublattice
pseudospin, as the n = 0 LLs of a particular valley com-
pletely localize on a particular sublattice. Thus, the dis-
cussed valley polarization, induced by the peculiar n = 0
LLs, is equivalent to the sublattice polarization.

E. Anomalous Hall Transport

The transverse motion of carriers can be induced
even in the absence of external magnetic field, by the
Berry curvature of the electronic band structure. The
Berry curvature acts like a magnetic field in the recip-
rocal space, which leads to a transverse velocity term in
the semiclassical equation of motion for electron wave
packets.54,55 In the presence of sublattice (chiral) sym-
metry, the Berry curvature is required56 to vanish for a
gapped system, otherwise the system must be gapless.
The massive Dirac fermions in a buckled honeycomb lat-
tice acquire a finite Berry curvature, since the sublattice
symmetry is explicitly broken by the SOC and by the
electric field. For our model (5), the Berry curvature is
given by

Ω(k) = −ατz
~2v2∆τzsz

2(∆2
τzsz + ~2v2k2)3/2

ẑ. (22)

where α = ± denotes the conduction and valence bands.
Similar to the orbital magnetic moment, in Eq. (22) the
factor τz results from the opposite chirality of the two
valleys whereas the factor ∆τzsz reflects the role of the
spin-valley dependent mass terms that break the sublat-
tice symmetry. The integral of Berry curvature over all
the filled states gives the intrinsic contribution to the Hall
conductivity:57,58

σH =
e2

h

∑
n

∫
d2k

(2π)2
fn(k)Ωn(k) , (23)

where fn(k) is the Fermi distribution at state |n,k〉 and
n is a band index.

First, in the absence of external electric fields, λ = 0
and ∆+ = −∆− = λso. When the Fermi level is in the
band gap, the system is a QSH insulator, with

σ↑H = −σ↓H =
e2

h
, σsH =

e2

h
, (24)

where σ
↑(↓)
H is the Hall conductivity for spin up (down),

and σsH = (σ↑H−σ
↓
H)/2 is the spin Hall conductivity. This

quantized spin Hall conductivity is related to the spin
helical edge states for a finite system. Here we empha-
size that the sz conservation follows from the assump-
tion that the mirror symmetry is only weakly broken.
Furthermore, different from the longitudinal transport,
the anomalous Hall transport involves contribution from
all the occupied states, as implied in Eq. (23), and thus
must go beyond the low energy model. However, the Hall
conductivity must be quantized in unit of e2/h when the
Fermi level lies in a gap. Hence the results in Eq. (24)
should be understood as valid up to an integer multiple
of e2/h, and this integer must be even for a Z2 QSH in-
sulator. Nevertheless, the determination of this integer
would require the knowledge of the full band structure.
These two points also apply to the following discussions.
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We are more interested in the case with finite dop-
ing, in which the Hall conductivity is not quantized. We
shall mainly discuss the n-doped case. The results for
p-doped case can be easily obtained by a similar proce-
dure. In the metallic case, the Hall conductivity has ad-
ditional contributions from scattering of carriers around
the Fermi energy.59,60 There is an important side jump
contribution61 that is proportional to the Berry curva-
ture at the Fermi energy. Here we shall take a simple
Gaussian white-noise scattering model62 and disregard
the intervalley scattering which requires a large momen-
tum transfer. For each flavor the Hall conductivity in-
cluding both intrinsic and extrinsic contributions is given
by

σsz,τzH = −sz
e2

2h

[
1− λso

µ
− λso(µ

2 − λ2so)
µ3

]
, (25)

where µ (µ > λso) is the chemical potential. This result
only take into account the contribution from conduction
band carriers. From this, we easily obtain the spin and
valley Hall conductivities

σsH =
e2

h

[
λso
µ

+
λso(µ

2 − λ2so)
µ3

]
, σvH = 0 . (26)

Note that the valley Hall conductivity defined as σvH ≡
(στz=+1
H −στz=−1H )/2 vanishes because for each valley the

contributions from the two spins cancel each other.
When a perpendicular electric field is applied, the

bands for the two flavors τzsz = ±1 split. Consider the
weakly doped case such that only the τzsz = −1 conduc-
tion bands are partially occupied, i.e., |∆−| < µ < ∆+.
For 0 < λ < λso, similar to Eq. (25), we find that

σszH = −sz
e2

2h

[
1− |∆−|

µ
−
|∆−|(µ2 −∆2

−)

µ3

]
, (27)

which leads to the spin and valley Hall conductivities

σsH =
e2

2h

[
|∆−|
µ

+
|∆−|(µ2 −∆2

−)

µ3

]
, σvH = −σsH . (28)

Note that there also exists a finite valley Hall con-
ductivity in this case, owing to the spin-valley locking
τzsz = −1.

When the gap is inverted by further increasing the elec-
tric field, i.e. λ > λso, the Berry curvatures for the two
spin-valleys with τzsz = ±1 switch signs after the gap
closes and reopens. As a result, both the spin Hall con-
ductivity and the valley Hall conductivity in Eq. (28)
change signs. Therefore, the sign change in the spin or
valley Hall conductivity can be used to detect the topo-
logical quantum phase transition, induced by the electric
field.

The above results are derived in the presence of time-
reversal symmetry and the charge Hall conductivity must
be zero. The charge Hall conductivity becomes nonzero
when the time-reversal symmetry is explicitly broken by

an applied magnetic field. In the high-field regime, the
Hall conductivity becomes quantized due to the forma-
tion of LLs and follows an unconventional sequence, as
we discussed in Sec. III and IV. Here, instead, we are
concerned with the low-field regime, in which LLs are
absent but a semiclassical description is applicable. In
this picture, the effect of magnetic field is twofold. First,
it exerts a Lorentz force on the carriers leading to an
ordinary Hall effect. Secondly, it couples with the or-
bital magnetic moment (9) and shifts the band energy as
−m ·B.39,41 Because the moment has opposite signs be-
tween the two valleys, the relative energy shift between
the two valleys gives rise to an anomalous contribution to
the charge Hall effect. The ordinary Hall conductivity is
well known as σord

H ' ρordH /ρ2, where ρordH = −B/(en) is
the ordinary Hall resistivity and ρ is the longitudinal re-
sistivity. In the following, we focus on the weakly doped
case |∆−| < µ < ∆+, where only the τzsz = −1 con-
duction bands are partially occupied. (The inclusion of
τzsz = +1 bands when µ > ∆+ is straightforward and in
fact decreases the anomalous effect.)

When 0 < λ < λso, the coupling δE = −m ·B shifts
the τzsz = −1 conduction band at valley K (K’) down
(up), according to Eq. (9). The relative shift between the
band bottoms at two valleys is

δµ = 2mB ' e~v2

|∆−|
B. (29)

From Eq. (27), we observe that the contributions to the
charge Hall conductivity from the two valleys have op-
posite signs. The energy shift δµ breaks the perfect can-
cellation between them and leads to a net charge Hall
contribution from the more populated valley

δσcH '
e2

h

|∆−|
µ2

(
1−

3∆2
−

2µ2

)
δµ, (30)

where we have assumed that δµ � µ for the low-field
case. We note that when λ > λso, both the Berry curva-
ture (22) and the orbital magnetic moment (9) change
signs, hence the anomalous contribution still has the
form as in Eq. (30). Furthermore, this anomalous charge
Hall conductivity is proportional to the magnetic field
strength. Thus, the corresponding Hall current δjH is a
nonlinear response to the external electric field. We also
note that this contribution could have a sign change at
µ =

√
3/2|∆−|, which can be traced back to the different

chemical potential dependence between the intrinsic and
the side jump terms. The ratio between the anomalous
and the ordinary contributions is

δσcH
σord
H

= −
(

1−
∆2
−
µ2

)(
1−

3∆2
−

2µ2

)(
e2

h
ρ

)2

. (31)

Evidently, this ratio depends on the resistivity in unit of
h/e2 and the anomalous part is more important for dirty
samples with a large longitudinal resistivity.
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IV. DISCUSSIONS AND CONCLUSIONS

We have considered how the orbital magnetic mo-
ment, a pure lattice effect related to the Berry curvature,
emerges in the Bloch bands and couples to the orbital
magnetic fields. However, we have neglected the roles of
electron spins and atomic orbitals which naturally couple
to the Zeeman fields. As we will see, this treatment is in-
deed reasonable in those buckled honeycomb-lattice ma-
terials we have mentioned above. Both spin and atomic
orbital (p-orbitals here) related magnetic moments are
about µB ∼ e~/(2me), whereas based on Eq. (9) the or-
bital magnetic moment at k = 0 is

µ∗B =
e~v2

2∆
, (32)

where v is the Fermi velocity, ∆ the Dirac mass is half the
gap size. Evidently, the Zeeman splitting is subdominant
when µ∗B � µB , which requires

mev
2/∆� 1 . (33)

For me = 0.51 × 106 eV/c2 and a typical value v ∼
0.5 × 106 m/s, the condition reduces to ∆ � 1.4 eV. In
general, ∆ � 0.5 eV holds for silicene, germanene, and
most X-hydride/halide (X=N-Bi) monolayers. There-
fore, we conclude that the Zeeman splitting is subdom-
inant in these materials. We note by passing that for
monolayer transition metal dichalcogenides, due to the
large band gaps, the d-orbital Zeeman effects dominate
the spin Zeeman effects and the lattice effect,40 as ob-
served in recent experiments64–67 in the absence of LLs.43

The above discussion is for the small magnetic field
case. In relative larger fields, the Zeeman splitting should
be much smaller than the LL gaps, although it further
break the twofold degeneracy of the obtained LL struc-
ture. However, we do emphasize that the Coulomb ex-
change interaction, with an energy scale

e2

ε`B
=

28

ε

√
B[T ] meV (34)

should completely lift the spin degeneracies of LLs in the
case of very strong magnetic fields and very weak disor-
ders. This many-body interaction induced Zeeman effect
is way larger than the single-particle Zeeman effects due
to spins and atomic orbitals and may even turn over the
energy order of the n = 0 LLs given in the spectrum (8).
Nevertheless, we focus on the single-particle phenomena
in this paper and leave the details of quantum Hall fer-
romagnetism to future works.

We have mentioned that the staggered sublattice po-
tential λ can be tuned by the external electric field. An-
other physical way to tune the model parameters is to
control the buckling strength. As indicated in Ref. 22,
a change of buckling strength would strongly affect the
SOC strength λso (and would also slightly modify other
model parameters such as λ and v), Hence, the buckling

strength, controlled by the substrate and by the applied
strain in experiment, provides an extra knob to tune the
topological phase transitions and the LL spectrum.

Although in transitional metal dichalcogenides the low-
energy states also exhibit copies of spin-valley coupled
Dirac bands,37 there are clear distinctions. For those
materials, the energy gap is dominated by the large in-
version symmetry breaking term (λ � λso), and it is in
fact difficult to achieve the competition between the two
gap terms,35 namely, the topological phase transitions.
Therefore, the interesting effects facilitated by the buck-
ling of honeycomb-lattice materials are generally absent
in monolayer transitional metal dichalcogenides.

Finally, we point out that the buckling in some
honeycomb-lattice materials lead to the emergence of an
electron pocket at the Γ point.13,15 It is true that this
extra valley adds complexity to the band structure and
the corresponding LL spectrum. However, the Γ pocket
behaves like a conventional single-band 2D electron gas
(2DEG) system. Thus, we expect that the main results
would not be changed. For the LL structure that we are
extremely interested in, the anomalous features of the
n = 0 LLs remain the same, although a conventional
LL plateau sequence is superimposed over the unconven-
tional sequence we find in Sec. IV.

In conclusion, we have investigated the quantum and
the anomalous Hall transport phenomena of a class of
buckled honeycomb-lattice materials in response to an
applied magnetic (orbital) field, with emphases on the
tuning effect of an electric field. Furthermore, in a p-n
junction geometry we have explored some additional Hall
plateaus for these materials, as ideal candidates for bipo-
lar nanoelectronics. Lastly, we have argued the roles of
electron-electron interactions, the Zeeman couplings to
electron spins and atomic orbitals, and the extra elec-
tron pocket at Γ point. Our theoretical predictions can
be examined in magneto-transport and/or magneto-optic
experiments. The LL crossing enhances the level de-
generacies and can be detected via pronounced peaks
in the longitudinal resistance.44 The fractionally quan-
tized conductance of a p-n junction can be studied in
the standard two-terminal transport30,31 with left and
right gates to independently control the chemical poten-
tials on both sides of the junction. The spin polariza-
tion can be measured, for example, in Kerr microscopy.63

The valley polarization can be probed by optical circular
dichroism;64–67 there is also an additional anomalous Hall
contribution which can be detected in Hall transport.68

Our study would facilitate the investigations on the 2D
buckled honeycomb-lattice materials and help the design
of novel electronic devices that may combine the charge,
spin, valley, and sublattice degrees of freedom to achieve
better performance and unprecedented functionalities.
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