

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	AFM and NMR imaging of squid Tropomyosin Tod p1 subjected to high
2	hydrostatic pressure: evidence for relationships among topography,
3	characteristic domain and allergenicity
4	
5	Yifeng Zhang ^a , Bona Dai ^b , Yun Deng ^{a*} , Yanyun Zhao ^c
6	^a Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, SJTU-Bor S.
7	Luh Food Safety Center, Department of Food Science and Technology, Shanghai Jiao
8	Tong University, 800 Dongchuang Road, Shanghai 200240, China
9	^b Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road,
10	200240 Shanghai, China
11	^c Department of Food Science & Technology, Oregon State University, Corvallis, OR
12	97331, USA
13	
14	*Corresponding author:
15	Mailing Address:
16	Dr. Yun Deng
17	Shanghai Jiao Tong University, 800 Dongchuang Road, Shanghai 200240, China
18	Tel: +86-21-34205755, Fax: +86-21-34205755
19	E-mail: foodsjtu@sjtu.edu.cn

E-mail: foodsjtu@sjtu.edu.cn

20 Abstract

21	The surface topography, characteristic domain and allergenicity of squid
22	Tropomyosin Tod p1 (TMTp1) treated by single- and two-cycle high hydrostatic
23	pressure (HHP) were analyzed. Atomic force microscopy (AFM) showed that HHP
24	treatment led to a rougher surface of squid TMTp1; the two-cycle 600 MPa HHP
25	treatment produced the largest effect, with a mean roughness, maximum height,
26	skewness and kurtosis of 6.56 nm, 94.83 nm, 3.05 and 23.13, respectively. HHP
27	treatment caused lower IgE and IgG-binding capacities, indicating significant
28	reduction of the allergenicity ($p < 0.05$) due to variations in the AFM surface
29	topography. The peaks of the main allergenic characteristics affected were 0.99, 1.16,
30	1.21, 1.79, 1.82, 2.84, 2.88 and 3.37 ppm (in initial ¹ H nuclear magnetic resonance
31	(NMR) spectra). HHP treatment changed the AFM surface topography and caused the
32	migration or disappearance of related ¹ H NMR peaks; these changes were
33	significantly correlated ($p < 0.05$) with the reductions in allergenicity observed.
34	<i>Keywords:</i> seafood allergen; high hydrostatic pressure; Tropomyosin Tod p1; nuclear

35 *magnetic resonance; atomic force microscopy.*

36	1.	Intr	odu	ction

37	Seafood allergy is one of the most common, severe, and long lasting food
38	allergies, and receives extensive attention from people with a predisposition to
39	allergies ¹ . Tropomyosin Tod p1 (TMTp1), a water soluble 38 kDa protein, is a major
40	allergen which occurs extensively in crustacean and mollusc species ² . Many attempts
41	have been made to reduce the presence of allergens in various foods during
42	processing ³⁻⁵ . High hydrostatic pressure (HHP), a valuable non-thermal food
43	processing technology ⁶ , can significantly reduce the activity of many allergens ⁷ , such
44	as β -lactoglobulin ⁸ , and those found in soybean seeds ⁹ and almond milk ¹⁰ . In our
45	previous study ¹¹ , single-cycle HHP treatments at 200, 400 or 600 MPa for 20 min
46	decreased the allergenicity of squid TMTp1; the 400 and 600 MPa treatments were
47	more effective than the 200 MPa treatment, according to indirect enzyme linked
48	immune sorbent assays (ELISAs).
49	HHP affects the structure of proteins, shown by characterizing protein structures
50	with circular dichroism spectral as well as by analyzing the free sulfhydryl content

with circular dichroism spectra, as well as by analyzing the free sulfhydryl content and surface hydrophobicity index^{8, 9, 11}. However, the precise nature of the internal motions within protein macromolecules remains a mystery and is not easy to describe accurately¹². Highly sensitive and reliable methods to analyse squid TMTp1 are required to enable assessments of their allergenic properties.

Different proteins have different conformational properties which are important for the modification of their functional properties¹³. Many studies have been done in recent years for exploring the relationship between physical properties and biology functions, such as the research on Pre-T-cell receptor structure and interactions¹⁴, the physical properties of supramolecular peptides¹⁵, and antibacterial and/or antifouling property to the surface of peptides¹⁶. Atomic force microscopy (AFM) is the principal

61	way that complex chemical or biochemical changes and reactions can be clarified
62	directly in many systems ¹⁷ . Surfaces with varying AFM surface topography indices
63	have different functional properties ¹⁸ . For example, surface roughness, which directly
64	corresponds to the sizes of proteins, could play an important role in defining different
65	proteins' characteristics ¹⁹ . Altering the surface roughness influences the chemical
66	reactivity of proteins ²⁰ , which affects properties like the sensitization response, <i>in</i>
67	<i>vitro</i> osteoblast differentiation, and local factor production ^{21, 22} . HHP is likely to
68	produce powerful percussive effects ²³⁻²⁵ that might have an impact on the morphology
69	of the squid TMTp1 molecules in solution, and upon their adsorption onto the surface.
70	Hence, AFM surface topography could be used to assess the effect of HHP treatments
71	on squid TMTp1 and its associated allergenic properties.
72	Nuclear magnetic resonance (NMR) spectroscopy has become one of the most
73	accepted methods for determining the structural properties of native and processed
74	proteins ²⁶ . NMR data, especially ¹ H NMR spectra, provide information about the
75	structure and dynamic properties of proteins, such as information on the positions,
76	bonds and movements of specific atoms ²⁷ . This information could be used to describe
77	the changes of a processed protein in terms of its structural, chemical and dynamic
78	properties. Previous research ²⁷ illustrated that ¹ H NMR spectra can be used to
79	generate a fingerprint, give insights into the molecular folding of allergen proteins,
80	and offers an independent method for assessing the structural properties of proteins.
81	Clearly, NMR could be used to analyse changes in the characteristic regions of squid
82	TMTp1 when it is HHP treated, as well as the positions, bonds and movements of
83	characteristic peaks, which are related to the allergenic properties.
84	Compared with single-cycle HHP, multiple-cycle HHP may cause more
85	significant structural damage to biomacromolecules ²⁸ , and could be more effective in

4

86	inactivating microorganisms, improving the food quality, and would lower the cost in
87	comparison to a single-cycle of the same dwell time ^{29, 30} . Previously we found that
88	two-cycle HHP treatments were more effective in controlling microbial growth and
89	reducing the deterioration of squid ²³ . However, there is limited information available
90	to compare single- and two-cycle HHP treatments in respect of the nutritional,
91	functional or other properties of seafood. Therefore, it is worthwhile to study the
92	changes in allergenicity resulting from treating squid TMTp1 with both one- and
93	two-cycle HHP.
94	The objectives of this study were to investigate the effect of one- and two-cycle
95	HHP treatment on the allergenicity of squid TMTp1. To do this, the allergenic
96	characteristic regions and peaks of ¹ H NMR spectra of HHP treated squid TMTp1
97	were analyzed. AFM was then used to evaluate the changes of the surface topography
98	of the HHP treated squid TMTp1. Finally, the relationships among the allergenic
99	properties, AFM surface topography and NMR characteristic regions in the HHP
100	treated squid TMTp1 samples were explored.

101 2. Materials and methods

102 2.1 Materials and sample preparation

Squid (*Todarodes pacificus*; 310 ± 25 g per whole squid) were obtained from the Chinese Academy of Fishery Sciences (Shanghai, China) and stored at -80° C until processing. The extraction, purification and identification of squid TMTp1 and the rabbit anti-squid TMTp1 polyclonal antibodies was carried out according to our previous methods¹¹. All procedures concerning animals were performed in accordance with the recommendations of the Guide for the Care and Use of Laboratory Animals of Shanghai Jiao Tong University. The protocol was approved by the National Natural

RSC Advances Accepted Manuscript

110 Science Foundation Commission of China (Permit Number: 31271955) and the 111 Committee on the Ethics of Animal Experiments of School of Agriculture and 112 Biology, Shanghai Jiao Tong University. Individual human serum samples were collected from five patients (Xinhua Hospital, Shanghai, China) who were determined 113 114 to have squid allergy based on the history and the objective manifestations after 115 ingestion of squid. The pooled sera of two non-allergic individuals from the same 116 hospital were used as a negative control. Also, written informed consent was obtained 117 from each human before the human serum was collected. 118 The squid TMTp1 solution was diluted with 20mM Tris-HCl (pH 7.5) to create a 119 final concentration of 1 mg/mL. Then, 20 ml samples of the diluted squid TMTp1 120 solution were individually packaged in polyamide/chlorinated polypropylene complex 121 film bags (17×23 cm), the oxygen and water vapor permeabilities of which were 5.383×10^{-15} cm³•cm/cm²•s•Pa and 1.383×10^{-12} g•cm/cm²•s•Pa, respectively. The 122 123 bags were sealed for the HHP treatments.

124

125 2.2 High hydrostatic pressure (HHP) treatments

The experimental design comprised of a control, three single-cycle treatments and 126 127 three two-cycle treatments, with three replicates of each treatment performed. For the control, the Squid TMTp1 samples were held at ambient pressure (0.1 MPa and 128 129 \sim 25°C), with no HHP treatment. The three single-cycle treatments were carried out at 130 200, 400 or 600 MPa for 20 min, named as S-200, S-400 and S-600, respectively. For 131 the three two-cycle treatments, two 10 min cycles at 200, 400 or 600 MPa were 132 performed, named as T-200, T-400 and T-600, respectively. The treatments used in this study were based on our previous study 23 . 133

134 The HHP treatments were carried out using an HHP device (HHP-750, Kefa High

6

135	Pressure Food Processing Inc., Baotou, China), for a total holding time of 20 min.
136	Water was used as the pressure transmitting medium, and the temperature was
137	maintained at $25 \pm 1^{\circ}$ C by a circulating water system. The pressure vessel (90 mm
138	diameter \times 320 mm height) had a volume of 2.5 L and a pressure range of 0–700
139	MPa. The rate for the treatments to come-up to the top pressure was set at
140	approximately 200 MPa/min and the decompression time after the treatment was
141	immediate (<4 s), in order to minimize adiabatic heating ²⁹ . After HHP treatments, all
142	the samples were freeze dried in a Freezone 2.5 L Triad system (Labconco Inc.,
143	Missouri, USA), and stored at -80°C until further analysis.
144	2.5 AFM analysis
145	The squid TMTp1 morphology was characterized using AFM (Vecco Metrology
146	Group, Digital Instruments, Santa Barbara, CA, USA). A 2 μ L droplet of the squid
147	TMTp1 (25 μ g/mL) was spread onto a freshly cleaved mica disk, which was adhered
148	to a stainless plate using double-sided tape. The sample was air-dried for 60 min at
149	ambient temperature. The sample surface topography was then measured using
150	Multimode Nanoscope AFM. Imaging was performed in the tapping mode, with a
151	cantilever resonant frequency of around 330 kHz and scan rate of 2.441 Hz. Three
152	subsamples of every treatment sample were scanned three times each, under ambient
153	atmospheric conditions. The original data was levelled, to remove tilt, by applying a
154	numerical second-order correction, and the mean values of surface roughness (Ra),
155	maximum height (R_{max}), skewness and kurtosis were determined using NanoRule
156	software (Pacific Nanotechnology, Santa Barbara, CA, USA).

157 2.4 NMR analysis

158

¹H NMR analyses of the squid TMTp1 samples were carried out on an Avance

RSC Advances Accepted Manuscript

159	Bruker III HD 600 MHz NMR spectrometer (Bruker Biospin, Rheinstetten,
160	Germany), equipped with a 5 mm TCl CryoProbe and maintained at 25°C. The
161	solvent used was D_2O and a final sample concentration of 10 mg/mL and 500 μl
162	solution was used for each analysis. Solvent pre-saturation was employed to suppress
163	the water peak. The standard Carr-Purcell-Meiboom-Gill pulse sequence was used to
164	record the spectra; the Carr-Purcell-Meiboom-Gill pre-saturation pulse sequence
165	worked in the form of RD-90°-(t-180°-t) _n -ACQ, where RD is the relaxation delay of 2
166	s, 90° and 180° represent the RF pulses that trip the magnetization vector, t is the
167	spin-echo delay of 400 ms, n represents the number of loops (80 in this experiment),
168	and ACQ is the data acquisition period of 1.36 s. In this experiment, the data points
169	were acquired with 128 transients and the time delay was 5 s. The NMR spectrum was
170	imported into Chenomx NMR Suite 7.7 software (Chenomx, Inc., Alberta, Canada).
171	Subsequently, the spectra were imported to AMIX (Bruker Biospin, Rheinstetten,
172	Germany) and were all reduced to fixed integral regions (0.04 ppm) for further
173	analysis. The normalization method was performed according to previous study ³¹ ,
174	based on the general equation:
	$S_{i}(i)$

$$S_{new}(i) = \frac{S_{old}(i)}{\sum_{j} \left\{ \int_{j_{j}^{l}}^{j_{j}^{u}} (S(x))^{n} dx \right\}^{1/n}} \times 100\%$$

where $S_{old}(i)$ and $S_{new}(i)$ are the intensities of the variable i (spectral feature) before and after normalization, respectively; *j* is an index of the spectral regions used for normalization; and j_j^l and j_j^u are the lower and upper borders of the spectral region *j*, for which the power *n* of the intensities S(x) is integrated.

179 2.5 Indirect ELISAs

180 An indirect ELISA was performed to analyse the allergenic properties of the

8

181	squid TMTp1 samples by measuring their hydrolysates after <i>in vitro</i> digestion,
182	according to our previous methods ¹¹ . An indirect ELISA with human sera of five
183	allergic patients (P^1-P^5) was performed. In addition indirect ELISAs with rabbit
184	anti-squid TMTp1 polyclonal antibodies (R), with rabbit anti-squid TMTp1
185	polyclonal antibodies for hydrolysates after Simulated Gastric Fluid (SGF) digestion
186	(R-SGF) and with rabbit anti-squid TMTp1 polyclonal antibodies for hydrolysates
187	after Simulated Intestinal Fluid (SIF) digestion (R-SIF) were performed. An
188	automated ELISA plate reader (Thermo Co., USA) was used to monitor the
189	absorbance at 450 nm. Three replicate measurements were carried out.
190	2.6 Statistical analysis
191	Results are reported as mean \pm standard deviation (SD). The statistical differences
192	between treatments were assessed using analysis of variance (ANOVA), followed by
193	Tukey's HSD post hoc test ($p < 0.05$) using SAS 9.2 software (SAS Institute Inc.,
194	Cary, NC, USA).

195 **3. Results and discussion**

196 *3.1 AFM surface topography of HHP treated squid TMTp1*

197 The AFM topographic images revealed the structural differences among the 198 squid TMTp1 samples subjected to different HHP treatments. In the AFM image of the control squid TMTp1 samples (Fig. 1A), the particles were distributed relatively 199 evenly. The initial AFM image of the control squid TMTp1 samples presented similar 200 characteristics to human cardiac α -tropomyosin^{32, 33}. The S-200 treatment caused 201 significant changes of the surface topography in the squid TMTp1 samples (Fig. 1B), 202 203 in which the appearance of the surface roughness was darkened. The S-400 treatment caused a further increase in the maximum height and there was no uniformity between 204

205 the surface topographies of the treated and control samples (Fig. 1C); the surface 206 became even more rough and wrinkled when the pressure was increased to 600 MPa, 207 and the AFM images produced from the S-600 treatment were entirely different to the control (Fig. 1D). This indicates that the higher pressures caused more changes to the 208 209 surface topographical properties of the squid TMTp1 during the single-cycle 210 treatments. Much more significant changes of the surface topography of the squid 211 TMTp1 were observed with the two-cycle HHP treatments (Fig. 1E-G). All of the 212 two-cycle HHP treatments led a much more rough and wrinkled surface topography in 213 comparison to S-600. 214 To consider the AFM outputs further, the surface topography indices of R_a, R_{max}, 215 skewness and kurtosis, of the different HHP treated squid TMTp1 samples were considered. The R_a and R_{max} are the most commonly used descriptors of surface 216 roughness³⁴. Skewness is a measure of symmetry of the statistical distribution, and 217 218 when it is 0 there is an even distribution of peaks and troughs, of specific heights; a surface with larger peaks than troughs has a positive skewness, and vice versa¹⁸. 219 220 Kurtosis is a measure of the spikiness of the statistical distribution and a normal 221 distribution has a kurtosis equal to 3. If the kurtosis is < 3, it corresponds to a 222 statistical distribution that is flatter than the normal distribution, and the opposite is true for distributions with a kurtosis $> 3^{18}$. Surfaces with varying R_a, R_{max}, skewness 223 224 or kurtosis values have different functional properties²⁰. 225 In this study, the control had an R_a of 0.37 nm, R_{max} of 15.20 nm, skewness of 226 7.10 and kurtosis of 91.51. In general, the HHP treated squid TMTp1 samples had

significantly higher R_{max} values (28.74–94.83 nm; p < 0.05), higher R_a values (except

for S-200; 0.84–6.56 nm; p < 0.05) and different values of skewness and kurtosis. It is

229 interesting that the single-cycle HHP treatments gave rise to higher skewness values,

RSC Advances Accepted Manuscript

while the two-cycle HHP treatments led to lower values compared with the control. Similar results were obtained for the kurtosis values (apart from S-200, which was slightly lower). The T-600 treatment produced the biggest difference in the indices from the control, with a R_a of 6.56 nm, R_{max} of 94.83, skewness of 3.05 and kurtosis of 23.13. There were significant differences between the indices of the of the squid TMTp1 samples produced by the single- and two-cycle HHP treatments at the same pressure level.

237 Biopolymers like proteins show transformation of their native structure after HHP³⁵. However, there is limited information available about the chemistry behind 238 239 the effect of HHP on the changes of surface properties of proteins. HHP might impact 240 the hydrogen bonds, ionic or hydrophobic interactions with the modification of functional characteristics, thus changing the protein structures^{29, 35, 36}. When HHP was 241 applied, the water molecules might been squeezed into the free spaces between the 242 243 semi-crystalline and amorphous lamellae, with greater forces produced by the higher pressure treatments³⁵, indicating that the higher pressures caused more changes to 244 245 these intermolecular changes (hydrogen bonds, ionic and hydrophobic interactions) of 246 the squid TMTp1 during the single-cycle treatments. Much more significant 247 intermolecular changes of the squid TMTp1 were observed with the two-cycle HHP 248 treatments (Fig. 1E-G). Compared with the control, T-600 treatment produced the 249 biggest intermolecular changes.

Surfaces with varying AFM surface topography indices have different functional properties¹⁸. Altering the surface roughness influenced the chemical reactivity of proteins²⁰, which affected protein properties. The hydrogen bonds, ionic and hydrophobic interactions of protein closely associated with allergenic properties, for example, hydrogen bonds help stabilization of allergenicity characteristics³⁷. Hence,

RSC Advances Accepted Manuscript

these intermolecular and protein structure changes could potentially affect theallergenicity characteristics in squid TMTp1 samples.

257 3.2 NMR analysis of HHP treated squid TMTp1

258	The ¹ H NMR spectra of the control and HHP treated squid TMTp1 show
259	characteristic water resonance regions (4.70-5.02 ppm; Fig. 2), which are not
260	analysed in this study. The sharp peak observed at 3.70 ppm in the ¹ H NMR spectra of
261	the squid TMTp1 samples is due to residual Tris buffer ³⁸ . All of the squid TMTp1
262	samples showed multiple signals at approximately 0.85, 1.28, 1.88, 2.16, 2.68, 2.88,
263	3.27, and 3.51 ppm, amongst other chemical shifts (Fig. 2 and Table 2); the changes
264	of the positions of the peaks within the 0.75–3.51 ppm range of the ¹ H NMR spectra
265	for the different HHP treated squid TMTp1 could be attributed to the protons of the
266	protein's amino groups. The changes in the peaks between the different samples were
267	attributed to the effect of the single- and two-cycle HHP treatments.
268	The NMR spectra (0.71–3.51 ppm) were allocated to 0.04 ppm integral regions
269	and subjected to normalization analysis. The relative percentage of each integral
270	region after normalization of ¹ H NMR spectra for the squid TMTp1 after each HHP
271	treatment is shown in Fig. 3; the regions of 1, 2, 58 and 59 represented 0.71–0.75,
272	0.75–0.80, 3.43–3.47 and 3.47–3.51 ppm in the 1 H NMR spectra, respectively
273	(Supplementary Table 1). The HHP treatments clearly increased $P_{0.75-0.80}$ and $P_{0.80-0.84}$,
274	but decreased $P_{2.95-3.00}$, compared with the control. $P_{0.75-0.80}$ increased from 0.0058%
275	(control) to 0.0215% (T-600), but $P_{2.95-3.00}$ decreased significantly, from 0.0261%
276	(control) to 0.0014% (T-600) (Fig. 3). The single- and two-cycle HHP treatments
277	conducted at the same pressure level also produced significantly different results (Fig.
278	3).

279 These results indicated that HHP treatments modified the structure of the squid

12

280	TMTp1 by impacting some characteristic groups and controlling the allergenic
281	properties, which was consistent with previously published studies ^{39, 40} . In general, the
282	NMR spectroscopic analysis of the squid TMTp1 demonstrated that the HHP
283	treatments changed some related NMR characteristic regions and resulted in
284	variations of the protein's allergenic properties. The changes of protein residues,
285	which were related to the allergenic properties, could be found by NMR data through
286	information on the positions, bonds, movements of specific atoms and the
287	normalization method ^{39, 40} . These residues, which were found in many allergens by
288	NMR ^{39, 40} , play an important role in IgE/G binding and allergenicity of these allergens
289	by reacting with epitopes ⁴² . The epitopes of allergens are essential for an allergen and
290	development of specific allergen immunotherapy ^{39, 40} . This demonstrated that the
291	higher pressures and two-cycle caused more changes to these residues of squid
292	TMTp1 during the HHP treatments. From NMR date (Supplementary Table 1 and Fig.
293	3), there were the biggest changes to these residues in T-600 treated squid TMTp1
294	sample. However, the exact mechanisms causing the changes in the samples should be
295	further studied.

296 3.3 Allergenic properties

Indirect ELISAs were performed to study the allergenic properties of squid 297 298 TMTp1 using the human sera of five allergic patients (IgE-binding capacity; IgE) or rabbit anti-squid TMTp1 polyclonal antibodies (IgG-binding capacity; IgG). Overall, 299 300 the HHP treatments resulted in lower IgE and IgG values, representing a decrease in 301 allergenicity, and the two-cycle HHP treatments (Table 3) caused significant 302 decreases. Significant differences (p < 0.05) in the IgE values were observed between 303 the control and two-cycle HHP treated samples; the higher the pressure of the HHP 304 treatment the lower the IgE values. As such, the T-600 samples had the lowest IgE

305	values, of 0.87, 0.24, 0.25, 0.22 and 0.25 for the five human sera, respectively. The
306	IgG (R) of the control squid TMTp1 samples was 1.66 which was in good agreement
307	with our previous report ¹¹ . The IgG (R) values clearly show that the two-cycle HHP
308	treatments resulted in significantly lower binding capacities, compared with the
309	control treatment (Table 3). The changes of the IgG of hydrolysates after in vitro
310	digestibility (R-SGF and R-SIF) were subject to the variations of the control and HHP
311	treated samples, and the control samples had the highest IgG (R-SIF) value (0.67).
312	Previously, we reported the IgE and IgG of squid TMTp1 treated with HHP at 200,
313	400 or 600 MPa for 20 min ¹¹ . The two-cycle HHP treatments showed significantly
314	lower IgE and IgG values of the squid TMTp1 samples, compared to our previous
315	study ¹¹ . For example, the IgG (R) value of squid TMTp1 treated with a single-cycle of
316	HHP at 200 MPa was 1.34, while the two-cycle treatment at the same pressure
317	resulted in a significantly lower binding of 1.15.
318	Recent research has shown that the activity of phytoferritin (i.e., the iron release
319	activity) is dramatically enhanced after HHP treatment ⁴¹ , and the immunoreactivity of
320	soybean seeds is reduced by HHP treatment at 300 MPa for 15 min, maintained at
321	$40^{\circ}C^{9}$. Also, HHP has been shown to induce structural unfolding, protein
322	denaturation, and even dissociation of some proteins into subunits to change their
323	functional properties ^{36, 42} . Meanwhile, multiple cycles of HHP have been shown to
324	produce a more powerful percussive action and shear effect, resulting in a significant
325	enhancement of the HHP effectiveness ^{23, 43, 44} .
326	In this study, two-cycle HHP caused a more pronounced alteration of the protein
327	structure of squid TMTp1, than single-cycle HHP (Fig. 1, 2 and 3) and these changes

caused lower IgE and IgG values. These results indicate that HHP could decrease theallergenic properties of squid TMTp1, and that increasing the pressure level as well as

330	performing two-cycles of HHP creates more significant effects on controlling the
221	allangania manantiag

allergenic properties.

332 *3.4 Correlation among AFM surface topography, NMR characteristic domain and*

allergenicity of HHP treated squid TMTp1

334 Correlation analyses among the pressure level, cycle numbers, IgE, IgG and 335 AFM surface topography of squid TMTp1 samples are presented in Supplementary 336 Table S2. The correlations among the IgE and IgG values (i.e., the allergenic 337 properties) are really high (R \ge 0.79, p < 0.001). The negative correlations between the pressure levels and the IgE values were all significant (p < 0.001), and there was 338 339 also a significant negative correlation between pressure levels and the IgG values (p < p340 (0.01). There were negative correlations between the cycle numbers and both skewness 341 (R = -0.80, p < 0.001) and kurtosis (R = -0.85, p < 0.001), but the cycle numbers was positively correlated with R_a (R = 0.90, p < 0.001) and R_{max} (R = 0.88, p < 0.001). 342 343 These results demonstrated that the pressure level and cycle number had significant 344 correlation with the modification of the allergenic and AFM surface topography 345 measures in squid TMTp1. In accordance with this, changes of the allergenic 346 properties, caused by the HHP treatments, were significantly correlated to the AFM 347 surface topography indices. 348 Correlation analyses between the NMR results, pressure level, cycle numbers, 349 allergenic and AFM surface topography for the squid TMTp1 samples are presented

- in Supplementary Table S1. The relationships between the HHP pressure and NMR
- 351 $P_{0.99-1.03}$, $P_{1.79-1.84}$, $P_{2.85-2.90}$, $P_{3.36-3.39}$ and $P_{3.40-3.43}$ indices were all significant ($p < p_{1.79-1.84}$)
- 0.05); the correlations of these NMR indices with the HHP mode were also significant
- 353 (p < 0.05). This indicates that the HHP pressure and HHP mode significantly
- impacted upon some NMR characteristic regions of the squid TMTp1 samples. The

355	main ranges of the characteristic regions for the allergenic properties were 0.99–1.03,
356	1.19-1.24, 1.44-1.49, 1.79-1.84, 2.85-2.90, 3.36-3.39 and 3.40-3.43 ppm (Fig. 3). For
357	example, there was a peak at 0.99 ppm, in the range of 0.99–1.03 ppm, for the squid
358	TMTp1 sample of the control treatment, however, there was no peak in this range for
359	the HHP treated samples (Table 2). The peak of 0.99 ppm in this study was the
360	trimethylamine signal, a proton of -CH ₃ , and multiple of $(t, 7)^{45}$. This means that HHP
361	changed the -CH ₃ group, which led to the modification of the allergenic properties
362	(IgE and IgG values). The main allergenic characteristic peaks that were affected by
363	HHP were 0.99, 1.16, 1.21, 1.79, 1.82, 2.84, 2.88 and 3.37 ppm, as observed in the
364	control ¹ H NMR spectra (Table 2). It is important to note that the HHP mode (cycle
365	numbers) is highly relevant to the changes of the NMR data, which resulted in the
366	variation of the allergenic properties and AFM surface topographies.
367	There were negative correlations between $P_{0.99-1.03}$ and both the R_a and R_{max} (R \geq
368	0.76, $p < 0.001$), as well as P _{1.49-1.53} and both the R _a and R _{max} (R \ge 0.74, $p < 0.001$);
369	however, $P_{3.32-3.36}$ and $P_{3.36-3.39}$ were positively correlated with R_a and R_{max} ($R \ge 0.84$,
370	p < 0.001). The AFM indices of skewness (S) and kurtosis (K) contradicted the
371	results, compared to the tendencies of variation in R_{a} and $R_{\text{max}}.$ The ranges of the main
372	characteristics for the AFM surface topography were 1.04–1.08, 1.49–1.53, 1.64–
373	1.69, 1.74–1.79, 3.15–3.20, 3.24–3.27, 3.32–3.36 and 3.36–3.39 ppm. Further, the
374	peaks of the main characteristics for the AFM surface topography that were affected
375	by HHP were 1.06, 1.79, 3.23, 3.27 and 3.37 ppm (as identified in the control 1 H
376	NMR spectra (Table 2). For example, there was a peak at 3.37 ppm, in the range of
377	3.32–3.39 ppm, for the control squid TMTp1 samples, however, there were peaks at
378	3.35 ppm in this range for all the HHP treated samples (Table 2). The peak at 3.37
379	ppm in this study was a characteristic signal of dimethyl ether, a proton of -CH ₃ , and

380	multiple of $(s)^{45}$. This means that HHP induced this -CH ₃ group migration and led to
381	changes of the AFM surface topography (R _a , R _{max} , S and K indices).
382	The results of this study reveal that the changes (by migration or disappearance)
383	of related NMR characteristic regions, caused by the HHP treatments, significantly
384	impacted upon the allergenic and AFM surface topography of the squid TMTp1. The
385	HHP mode significantly correlated ($p < 0.05$) with the variation of the NMR indices,
386	which resulted in reducing the allergenicity and changing the structure of the squid
387	TMTp1 samples.

388 4. Conclusion

HHP treatments resulted in the modification (by migration or disappearance) of 389 390 related NMR characteristic regions in squid TMTp1 samples, which in turn caused a 391 reduction in the allergenicity and change of AFM surface topography. The 400 MPa 392 and 600 MPa single-cycle HHP treatments to squid TMTp1 caused significant 393 increases in roughness and maximum height, and the surface topography was no 394 longer uniform in comparison with the control. However, the single-cycle HHP 395 treatments gave rise to higher skewness and kurtosis values, while two-cycle HHP led 396 to lower values. In addition, the two-cycle HHP treatments significantly controlled the 397 allergen (lower R values of 1.15–1.09).

The HHP treatments affected the squid TMTp1 by modifying some of the related NMR characteristic regions, apparent from the NMR spectroscopic analysis. The cycle numbers (mode) of HHP treatments significantly correlated (p < 0.05) with the NMR indices, which resulted in reductions in the allergenicity and change in the surface topography of the squid TMTp1 samples. The peaks of the main allergenic characteristics affected by HHP were 0.99, 1.16, 1.21, 1.79, 1.82, 2.84, 2.88, and 3.37 ppm (as identified in the control ¹H NMR spectra), and the peaks of the AFM

RSC Advances Accepted Manuscript

RSC Advances

405	characteristics were 1.06, 1.79, 3.23, 3.27, and 3.37 ppm. The NMR spectra
406	demonstrated that HHP treatments affected the structural characteristics of the squid
407	TMTp1 samples by impacting the main characteristic regions; by increasing the
408	pressure level and performing two-cycles (instead of one), the HHP treatment was
409	more effective. This study provided meaningful information for the use of HHP as a
410	non-thermal, minimal processing technology to change some NMR characteristic
411	regions and control seafood allergens.
412	
413	Acknowledgements
414	This research was supported by the National Natural Science Foundation of
415	China (No.31271955). The authors would like to give their thanks to
416	SJTU-Instrumental Analysis Center for expert assistance with the AFM and NMR

417 experiments.

418	Refere	ences
419	1.	S. B. Lehrer, R. Ayuso and G. Reese, Marine biotechnology, 2003, 5,
420		339-348.
421	2.	C. Gamez, M. Zafra, M. Boquete, V. Sanz, C. Mazzeo, M. D. Ibanez, S.
422		Sanchez-Garcia, J. Sastre and V. del Pozo, Molecular nutrition & food
423		research, 2014, 58 , 1915-1925.
424	3.	N. Y. Leung, C. Y. Wai, S. Shu, J. Wang, T. P. Kenny, K. H. Chu and P. S.
425		Leung, Clinical reviews in allergy & immunology, 2014, 46, 180-197.
426	4.	S. Benede, I. L. Exposito, E. Molina and R. L. Fandino, Food & function,
427		2015, 6 , 694-713.
428	5.	E. Zhou, Y. Fu, Z. Wei and Z. Yang, Food & function, 2014, 5, 2106-2112.
429	6.	S. Jung, MS. Lee, Y. Shin, C. T. Kim, IH. Kim, Y. S. Kim and Y. Kim,
430		Journal of functional foods, 2014, 10, 169-177.
431	7.	J. Somkuti and L. Smeller, Biophysical chemistry, 2013, 183, 19-29.
432	8.	R. Chicon, J. Belloque, E. Alonso, P. J. M. Alvarez and R. L. Fandino,
433		Journal of food protection, 2008, 71, 1453-1459.
434	9.	E. Penas, R. Gomez, J. Frias, M. L. Baeza and C. V. Valverde, Food
435		chemistry, 2011, 125 , 423-429.
436	10.	S. Dhakal, C. Liu, Y. Zhang, K. H. Roux, S. K. Sathe and V.
437		Balasubramaniam, Food research international, 2014, 62, 215-222.
438	11.	Y. Jin, Y. Deng, B. Qian, Y. Zhang, Z. Liu and Y. Zhao, Food and chemical
439		toxicology, 2015, 76 , 86-93.
440	12.	A. L. Lee and A. J. Wand, Nature, 2001, 411, 501-504.
441	13.	J. Kinsella, Food proteins, 1982, 1, 51-103.
442	14.	X. Yang and R. A. Mariuzza, Proceedings of the national academy of sciences

RSC Advances Accepted Manuscript

443 *of the united states of america*, 2015, **112**, 8166-8167.

- 444 15. L. A. Abramovich and E. Gazit, *Chemical society reviews*, 2014, 43,
 445 7236-7236.
- 446 16. K. Bazaka, M. Jacob, W. Chrzanowski and K. Ostrikov, *RSC advances*, 2015,
 447 5, 48739-48759.
- 448 17. H. Yang, Y. Wang, S. Lai, H. An, Y. Li and F. Chen, *Journal of food science*,
 449 2007, **72**, R65-R75.
- 450 18. R. Kuisma, E. P. Leinonen, I. Redsven, H. R. Kymalainen, I. Saarikoski, A.

451 M. Sjoberg and M. Hautala, *Surface science*, 2005, **584**, 119-125.

- 452 19. R. A. Gittens, T. McLachlan, R. O. Navarrete, Y. Cai, S. Berner, R.
- Tannenbaum, Z. Schwartz, K. H. Sandhage and B. D. Boyan, *Biomaterials*,
 2011, **32**, 3395-3403.
- 455 20. M. Christensen, J. T. Rasmussen and A. C. Simonsen, *Food hydrocolloids*,
 456 2015, 45, 168-174.
- 457 21. K. Kieswetter, Z. Schwartz, T. Hummert, D. Cochran, J. Simpson, D. Dean
 458 and B. Boyan, *Journal of biomedical materials research*, 1996, **32**, 55-63.
- 459 22. A. L. Raines, R. O. Navarrete, M. Wieland, D. L. Cochran, Z. Schwartz and B.
- 460 D. Boyan, *Biomaterials*, 2010, **31**, 4909-4917.
- 461 23. Y. Zhang, S. Jiao, Z. Lian, Y. Deng and Y. Zhao, *Journal of food science*,
 462 2015, **80**, E1012-E1020.
- 463 24. Y. Zhang, G. Wang, Y. Jin, Y. Deng and Y. Zhao, *Food control*, 2016, **60**,
 464 189-195.
- 465 25. J. Yue, Y. Zhang, Y. Jin, Y. Deng and Y. Zhao, *Food chemistry*, 2016, 194,
 466 12-19.
- 467 26. M. Kainosho, T. Torizawa, Y. Iwashita, T. Terauchi, A. M. Ono and P.

20

468		Guntert, Nature, 2006, 440, 52-57.
469	27.	S. Alessandri, A. Sancho, S. Vieths, C. E. Mills, J. M. Wal, P. R. Shewry, N.
470		Rigby and K. H. Sommergruber, PLoS one, 2012, 7, e39785.
471	28.	G. Hu, Y. Zheng, D. Wang, B. Zha, Z. Liu and Y. Deng, High pressure
472		research, 2015, 35 , 330-338.
473	29.	Y. Deng, Y. Jin, Y. Luo, Y. Zhong, J. Yue, X. Song and Y. Zhao, Journal of
474		cereal science, 2014, 60, 302-310.
475	30.	H. Hsu, S. Sheen, J. Sites, J. Cassidy, B. Scullen and C. Sommers, Food
476		microbiology, 2015, 48 , 1-7.
477	31.	P. Giraudeau, I. Tea, G. S. Remaud and S. Akoka, Journal of pharmaceutical
478		and biomedical analysis, 2014, 93, 3-16.
479	32.	C. K. Loong, HX. Zhou and P. B. Chase, <i>PloS one</i> , 2012, 7, e39676.
480	33.	C. K. Loong, H. X. Zhou and P. B. Chase, FEBS letters, 2012, 586,
481		3503-3507.
482	34.	A. Rodriguez, W. R. Autio and L. A. McLandsborough, Journal of food
483		protection, 2008, 71 , 170-175.
484	35.	D. Lampe, U. Strijowski, V. Heinz and U. Bindrich, Journal of cereal science,
485		2013, 57 , 411-417.
486	36.	J. Somkuti and L. Smeller, <i>Biophysical chemistry</i> , 2013, 183, 19-29.
487	37.	S. D. Halleux, E. Stura, L. VanderElst, V. Carlier, M. Jacquemin and J. M. S.
488		Remy, Journal of allergy and clinical immunology, 2006, 117, 571-576.
489	38.	C. De Kruif, R. Tuinier, C. Holt, P. Timmins and H. Rollema, Langmuir,
490		2002, 18 , 4885-4891.
491	39.	S. L. Chan, S. T. Ong, S. Y. Ong, F. T. Chew and Y. K. Mok, The journal of
492		immunology, 2006, 176 , 4852-4860.

- 493 40. D. P. Uceda, O. Palomares, M. Bruix, M. Villalba, R. Rodriguez, M. Rico and
- 494 J. Santoro, *Biochemistry*, 2004, **43**, 16036-16045.
- 495 41. T. Zhang, C. Lv, S. Yun, X. Liao, G. Zhao and X. Leng, Food chemistry,
- 496 2012, **130**, 273-278.
- 497 42. J. L. Silva, Y. Cordeiro and D. Foguel, *Biochimica et biophysica acta-proteins*498 *and proteomics*, 2006, **1764**, 443-451.
- 43. A. L. Curl and E. F. Jansen, *Journal of biological chemistry*, 1950, 185,
 713-723.
- 44. A. L. Curl and E. F. Jansen, *Journal of biological chemistry*, 1950, 184, 45-54.
- 502 45. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B.
- 503 M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29,
- 504 2176-2179.

505	Figure captions
506	Fig. 1. Atomic force microscopy topographic images of squid TMTp1 subjected to
507	different high hydrostatic pressure treatments.
508	A: untreated squid TMTp1; B-D: single-cycle HHP treated at 200, 400 or 600 MPa
509	for 20 min, respectively, and E-G: two 10-min cycles at 200, 400 or 600 MPa,
510	respectively.
511	
512	Fig. 2. ¹ H nuclear magnetic resonance spectra of different high hydrostatic pressure
513	treated squid TMTp1 samples in D ₂ O solution at 25°C.
514	S-200, S-400 or S-600: single-cycle HHP treated at 200, 400 or 600 MPa for 20 min,
515	respectively, and T-200, T-400 or T-600: two 10-min cycles at 200, 400 or 600 MPa,
516	respectively.
517	
518	Fig. 3. The relative percentage of each integral region after normalization of ¹ H NMR
519	spectra for different high hydrostatic pressure treated squid TMTp1 samples.
520	The main allergenicity characteristic domain of the HPP treated squid TMTp1 were:
521	A (number 7: range 0.99–1.03 ppm), B (11: 1.19–1.24 ppm), C (16: 1.44–1.49 ppm),

522 D (23: 1.79–1.84 ppm), E (45: 2.85–2.90 ppm) and F (56, 57: 3.36–3.43 ppm).

- Fig. 1. Atomic force microscopy topographic images of squid TMTp1 subjected to
- different high hydrostatic pressure treatments. 528
- A: untreated squid TMTp1; B-D: single-cycle HHP treated at 200, 400 or 600 MPa 529

- 530 for 20 min, respectively, and E-G: two 10-min cycles at 200, 400 or 600 MPa,
- 531 respectively.

Fig. 2. ¹H nuclear magnetic resonance spectra of different high hydrostatic pressure
treated squid TMTp1 samples in D₂O solution at 25°C.

S-200, S-400 or S-600: single-cycle HHP treated at 200, 400 or 600 MPa for 20 min,
respectively, and T-200, T-400 or T-600: two 10-min cycles at 200, 400 or 600 MPa,
respectively.

- 540 spectra for different HHP treated squid TMTp1.
- 541 The main allergenicity characteristic domain of the HPP treated squid TMTp1 were:
- 542 A (number 7: range 0.99–1.03 ppm), B (11: 1.19–1.24 ppm), C (16: 1.44–1.49 ppm),
- D (23: 1.79–1.84 ppm), E (45: 2.85–2.90 ppm) and F (56, 57: 3.36–3.43 ppm). 543

544 **Table captions**

545 **Table 1**. Atomic force microscopy surface topography indices of the squid TMTp1

546 samples.

- 547 **Table 2**. Changes of the positions of peaks in the ¹H nuclear magnetic resonance
- 548 spectra of the squid TMTp1 samples.
- 549 **Table 3**. Results of the indirect ELISAs performed with the squid TMTp1 samples
- against IgE and IgG.

551 **Table 1**. Atomic force microscopy surface topography indices of the squid TMTp1

552 samples.

553

Treatment	ht	Pressure (MPa)	AFM indices ^{#*}					
group	Mode		Mean roughness (R _a , nm)	Max height (R _{max} , nm)	Skewness	Kurtosis		
Control	-	0.1	$0.37 \pm 0.02^{\rm f}$	$15.20 \pm 0.50^{\text{g}}$	7.10 ± 0.26^{b}	91.51 ± 0.32^{b}		
S-200	Single	200	$0.35\pm0.02^{\rm f}$	$28.74\pm0.40^{\rm f}$	7.33 ± 0.36^{b}	85.58 ± 0.66^c		
S-400	Single	400	0.84 ± 0.04^{e}	33.02 ± 0.26^e	8.58 ± 0.24^a	102.81 ± 0.53^a		
S-600	Single	600	1.66 ± 0.01^{d}	29.31 ± 0.92^d	8.55 ± 0.55^a	100.06 ± 1.62^{a}		
T-200	Two	200	5.60 ± 0.16^{c}	53.98 ± 0.96^c	$2.67\pm0.20^{\rm c}$	22.95 ± 0.49^{d}		
T-400	Two	400	5.10 ± 0.04^{b}	85.29 ± 1.02^{b}	2.73 ± 0.56^{c}	24.31 ± 0.37^d		
T-600	Two	600	6.56 ± 0.06^a	94.83 ± 0.89^a	3.05 ± 0.26^{c}	23.13 ± 0.79^d		
554 [#] Va	lues are	expressed a	as average ± standar	rd deviation (SE	(n = 3).			

* Means in the same column with different lowercase letters (a–g) are significantly

556 different (p < 0.05).

557 **Table 2**. Changes of the positions of peaks in the ¹H nuclear magnetic resonance

spectra of the squid TMTp1 samples*.

The position of peaks (ppm)							
Co	ontrol S-	-200 S-	-400 S-	-600 T	-200 T	-400 T	-600
1	3.51	3.51	3.51	3.51	3.51	3.51	3.51
2			3.46	3.47		3.46	3.47
3	3.37	3.35	3.35	3.35	3.35	3.35	3.35
4	3.29	3.28	3.28	3.29	3.29	3.28	3.29
5	3.27	3.26	3.25	3.26	3.25	3.25	3.26
6	3.23	3.23	3.21	3.21	3.21	3.21	3.21
7	3.17	3.17	3.17	3.17	3.17	3.17	3.17
8	3.14	3.13	3.13		3.13		
9		3.1	3.1	3.1	3.1	3.1	3.1
10	3.07	3.06					
11	3.00	3					
12	2.88	2.87	2.87	2.87	2.87	2.87	2.87
13	2.84						
14	2.81	2.8	2.8	2.8	2.8	2.8	2.8
15	2.78						
16	2.68	2.69	2.69	2.69	2.69	2.69	2.69
17	2.65	2.64	2.64	2.64	2.64	2.64	2.64
18	2.63	2.63	2.62	2.62	2.62	2.62	2.62
19	2.57	2.53	2.53	2.53	2.52	2.52	
20	2.39						
21	2.16	2.19	2.19	2.19	2.2	2.2	2.18
22	2.13	2.13	2.13	2.13	2.13	2.13	2.13
23	2.10						
24	1.98	1.99	1.99	1.99	1.99	1.99	1.99
25	1.88	1.95	1.95	1.95	1.95	1.95	1.95
26	1.82	1.82	1.82	1.82	1.82	1.82	1.82
27		1.79	1.79	1.79	1.79	1.79	1.79
28	1.70						
29		1.59	1.56	1.59	1.58	1.58	1.58
30	1.43						
31		1.37	1.37	1.37	1.37	1.37	1.37
32	1.34						
33	1.32						
34	1.28	1.29	1.29	1.29	1.29	1.29	1.29
35	1.26	1.27	1.27	1.27	1.27	1.27	1.27
36	1.23	1.23	1.23	1.23	1.23	1.23	1.23
37	1.21	1.22	1.22	1.22	1.22	1.22	1.22
38	1.16	1.18	1.18	1.19	1.19	1.19	1.18
39	1.09	1.1	1.09	1.1	1.1	1.09	1.1
40	1.08	1.08	1.08	1.08	1.08	1.08	1.08
41	1.06	1.07	1.07	1.07	1.07	1.07	1.07
42				1.05	1.05	1.05	1.05

43	0.99						
44	0.85	0.85	0.85	0.85	0.85	0.85	0.85
45	0.83	0.83	0.83	0.83	0.83	0.83	0.83
46	0.82	0.82	0.81	0.82	0.82	0.81	0.82
47		0.78	0.78	0.78	0.78	0.77	0.78

559

⁵⁶⁰ *S-200, S-400 and S-600 were the single-cycle high hydrostatic pressure (HHP)

treatments, maintained at 200, 400 and 600 MPa for 20 min, respectively. T-200,

562 T-400 and T-600 were the two-cycle HHP treatments comprised of two 10 min

563 cycles, at 200, 400 and 600 MPa, respectively.

Advances Accepted Manuscrip RSC

Table 3. Results of the indirect ELISAs performed with the squid TMTp1 samples against IgE and IgG.

565

Treatment			IgE binding*		IgG binding [#]			
group	\mathbf{P}^1	\mathbf{P}^2	P^3	P^4	\mathbf{P}^{5}	R	R-SGF	R-SIF
Control	1.67 ± 0.04^{a}	0.82 ± 0.01^{a}	0.74 ± 0.01^{a}	0.55 ± 0.06^{a}	0.47 ± 0.02^{a}	1.66 ± 0.03^{a}	1.37 ± 0.06^a	0.67 ± 0.03^a
T-200 [■]	1.08 ± 0.07^{b}	0.28 ± 0.01^{b}	0.31 ± 0.02^{b}	0.24 ± 0.03^{b}	0.28 ± 0.01^{b}	1.15 ± 0.02^{bc}	0.90 ± 0.03^{bc}	0.41 ± 0.02^{b}
T-400	0.98 ± 0.05^{c}	0.26 ± 0.02^{bc}	0.28 ± 0.03^{bc}	0.23 ± 0.04^{b}	0.25 ± 0.01^{c}	$1.12\pm0.03^{\text{cd}}$	0.86 ± 0.04^{cd}	0.42 ± 0.03^{b}
T-600	0.87 ± 0.05^{d}	0.24 ± 0.01^{c}	$0.25\pm0.02^{\rm c}$	0.22 ± 0.02^{b}	0.25 ± 0.01^{c}	1.09 ± 0.01^d	0.84 ± 0.02^{d}	$0.37\pm0.02^{\rm c}$

566

⁵⁶⁷ T-200, T-400 and T-600 are the two-cycle HHP treatments, comprised of two 10 min cycles, at 200, 400 and 600 MPa, respectively.

 568 *P¹–P⁵: indirect ELISAs performed with human sera of five allergic patients.

[#]R: indirect ELISA performed with rabbit anti-squid TMTp1 polyclonal antibodies. R-SGF: indirect ELISA performed with rabbit anti-squid

570 TMTp1 polyclonal antibodies for hydrolysates after Simulated Gastric Fluid digestion (SGF) digestion. R-SIF: indirect ELISA performed with

rabbit anti-squid TMTp1 polyclonal antibodies for hydrolysates after Simulated Intestinal Fluid (SIF) digestion.

 $^{a-d}$ Values are expressed as mean \pm standard deviation (SD) (n = 3); means in the same column with different lowercase letters (a–d) are

573 significantly different (p < 0.05).