

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Use multi-particle delivery system to increase the bioavailability of tangeretin.

1	Improving nutraceutical bioavailability using mixed colloidal delivery		
2	systems: Lipid nanoparticles increase tangeretin bioaccessibility and		
3	absorption from tangeretin-loaded zein nanoparticles		
4	Jingjing Chen ¹ , Jinkai Zheng ^{1,2} , Eric A. Decker ¹ , David Julian McClements ^{1,3+} ,		
5	Hang Xiao ¹⁺ *		
6	¹ Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA		
7	² Institute of Agro-Products Processing Science and Technology, Chinese Academy of		
8	Agricultural Sciences, Beijing, China		
9	³ Department of Biochemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203,		
10	Jeddah 21589, Saudi Arabia		
11			
12			
13			
14			
15			
16			
17			
18	* Contact Details: Department of Food Science, University of Massachusetts, Amherst, MA		
19	01003, USA; email: hangxiao@foodsci.umass.edu; Tel: 413 545 1023		
20	+ These authors contributed equally to this manuscript.		
21			
22			

23 Abstract

24 The objective of this study was to evaluate the influence of dietary lipids on the gastrointestinal fate of tangeretin-loaded zein nanoparticles. The zein delivery systems were 25 mixed with different amounts of oil-in-water emulsions to represent varying levels of digestible 26 27 fat in the diet, and then passed through a simulated gastrointestinal tract model. Tangeretin 28 bioaccessibility increased with increasing fat content due to enhanced solubilization within the 29 mixed micelles formed by lipid digestion products (fatty acids and monoacylglycerols) in the 30 intestinal fluids. Indeed, the tangeretin concentration in the micelle phase was about twelve times 31 higher in the presence of fat droplets than in their absence. The intestinal epithelium absorption 32 study indicated that tangeretin permeability across the model epithelium cells also increased with 33 increasing fat content. This study suggests that utilizing mixed colloidal systems consisting of 34 both lipid nanoparticles and protein nanoparticles may promote the bioavailability of 35 hydrophobic bioactive agents. 36 37 Keywords: nutraceuticals; tangeretin; delivery systems; nanoparticles; Caco-2 cells; permeability 38 39 40 41 42 43 44

RSC Advances Accepted Manuscript

45 **1. Introduction**

Tangeretin represents a class of polymethoxy flavonoids (PMFs) found almost exclusively
in citrus fruits, and particularly the peels of sweet and mandarin oranges ¹. PMFs have been
shown to exhibit a variety of potential benefits for human health, such as enhancing biochemical
events in mammalian cells ², reducing serum triacylglycerol, very low-density lipoprotein
(VLDL), and low-density lipoprotein (LDL) levels ³. PMFs can also inhibit the proliferation of
certain types of cancer cells, such as lung, colon and breast cancer cells ⁴. PMFs have also been
demonstrated to modulate the liver and heart function of hypercholesterolemic of rats ⁵.

53 However the oral bioavailability of tangeretin is currently limited due to its poor water 54 solubility, which is related to the presence of numerous methoxyl groups on the flavone backbone⁶. We have previously shown that zein nanoparticles and microparticles offer a suitable 55 means of encapsulating and delivering tangeretin⁷. Colloidal particles can be formed from zein 56 57 using antisolvent precipitation due to its high solubility in alcohol solutions but low solubility in water⁸. The zein and active component are dissolved in an alcohol solution, which is then 58 59 injected into water, resulting in the spontaneous formation of zein particles containing the active 60 component. This method has been successfully used to encapsulate lipids, such as fish oil, flax oil, and essential oils⁹. 61

62 The purpose of the current study was to examine the impact of lipid nanoparticles on the 63 potential gastrointestinal fate of tangeretin-loaded zein nanoparticles. It is well known that coingestion of digestible lipids can increase the oral bioavailability of lipophilic nutraceuticals and 64 65 pharmaceuticals by altering their bioaccessibility, absorption, or transformation within the gastrointestinal tract ¹⁰. Lipids may enhance the bioavailability of lipophilic molecules through a 66 67 variety of mechanisms, including stimulating the secretion of digestive juices, increasing 68 gastrointestinal transit times, enhancing their solubility within intestinal fluids through mixed 69 micelle formation, increasing the permeability of the epithelium monolayer, controlling chemical 70 or biochemical transformation, or altering the absorption route (portal vein versus lymphatic 71 system). Recent study showed that the bioefficacy of tangeretin against cancer cells were significantly improved when they were administered in emulsion¹¹. Both in vitro and in vivo 72 73 studies indicated the bioavailability of tanteretin was increased when incorporated in to lipid nanoemulsion¹². We therefore hypothesized that mixing tangeretin-loaded zein nanoparticles 74

with digestible lipid nanoparticles would enhance the bioavailability of the lipophilic tangeretin
 molecules. The influence of lipids on the potential biological fate of the tangeretin was studied

vising a simulated gastrointestinal model that included mouth, stomach, and small intestine

78 phases, combined with a Caco-2 cell model to study permeability 6 .

An important aim of this study was to highlight the potential advantages of using
combination delivery systems containing a mixture of different types of colloidal particles (in
this case zein and lipid nanoparticles) rather than using single types of colloidal particle. This
information may be useful in the rational design of oral delivery systems for food and
pharmaceutical applications.

84 **2. Materials and Methods**

85 2.1. Materials

86 Tangeretin powder with a purity of 98.4% was obtained from Bepharm Ltd. (Shanghai, 87 China). β-lactoglobulin (with a purity of 92.5%) was obtained from Daviso Foods International 88 (lot JE 002-8-415, Le Sueur, MN). Corn oil was obtained from a local supermarket. Zein (purity 89 92%, w/w), bile extract (porcine, B8613), porcine pancreas (Type II, triacylglycerol hydrolase 90 E.C. 3.1.1.1, PPL), Hank's balance salts (cat. no. H1387) and uranyl acetate were purchased from 91 Sigma-Aldrich (St Louis, MO). Pepsin (CAS: 9001-75-6), sodium chloride (NaCl), sodium 92 hydroxide (NaOH), calcium chloride (CaCl₂), hydrochloric acid (HCl), HPLC grade methanol, 93 tetrahydrofuran (THF), trifluoroacetic acid (TFA), acetonitrile (ACN) were obtained from Fisher 94 Scientific (Fairlawn, NJ, USA). Ammonium acetate was obtained from EMD Chemicals Inc. 95 (Gibbstwon, NJ, USA). Double distilled water was made from a water purification system 96 (Model D14031, Barnstead Nanopure water system, Dubuque, Iowa, USA). DMEM (Dulbecco's 97 Modification of Eagle's Medium) and non-essential amino acid was purchased from Mediatech 98 Inc., (Manassas, VA). HEPES was purchased from Acros Organics (Geel, Belgium).

99 2.2. Preparation of tangeretin-loaded zein nanoparticles

100 The tangeretin-loaded zein nanoparticles were made using an antisolvent precipitation 101 method described previously ¹³, with some slight modifications. The particles were prepared by 102 injecting an organic phase into an aqueous phase. The organic phase consisted of zein and

tangeretin (25:1, w/w) dissolved in 90% ethanol solution, while the aqueous phase consisted of

104 β-lactoglobulin (3%, w/v) dissolved in PBS (10 mM, pH 7). The zein nanoparticles were formed

spontaneously when the organic phase was injected into the aqueous phase (1:3, v/v) dropwise

106 under constant stirring at 1000 rpm (Corning Stirrer PC-420, Corning Inc., USA). The ethanol in

107 the mixture was then evaporated with using a vacuum rotary evaporator (Rotavapor R110, Buchi

108 Crop., Switzerland). Then the sample was freeze dried (VirTis Genesis Lyophilizer, Virtis

109 genesis company inc., USA) and kept in a refrigerator prior to further use.

110 **2.3. Preparation of lipid nanoparticles**

β-lactoglobulin was dissolved in 10 mM phosphate buffer (3%, w/w) and stirred for at least
2 hours to ensure full hydration. A coarse emulsion was prepared by mixing 20% corn oil with
aqueous solution using a hand blender (M133/1280, Biospec Products, Inc., ESGC, Switzerland)

114 for 2 min. This coarse emulsion was then passed through a high pressure homogenizer

115 (Microfluidics M-110Y, Newton, MA) at 12,000 psi for 3 times.

116 **2.4. Particle size and ζ-potential measurement**

117 The particle size and ζ -potential of the nanoparticles were determined using a commercial 118 dynamic light scattering and micro-electrophoresis device (Nano-ZS, Malvern Instruments, 119 Worcestershire, UK). The samples were diluted 10 times in PBS buffer solutions (pH 7) at the 120 same pH as the samples being analyzed at room temperature before measurement. The particle 121 size is reported as the intensity-weighted ('Z-average') mean particle diameter, while the particle 122 charge is reported as the ζ -potential.

123 **2.5. Microstructure & visual observations**

The microstructure of the colloidal delivery systems was observed using an optical
microscope (Nikon Eclipse E400, Nikon Corp., Japan), and the resulting images were acquired
using digital image processing software (Micro Video Instruments Inc., Avon, MA). Selected
samples were also analyzed using transmission electron microscopy (JEOL JEM-2000FX, JEOL
USA, Inc., MA, USA). The general appearance of the colloidal systems and digesta after
different gastrointestinal stages were recorded by taking images using a digital camera
(Powershot SD1300IS, Canon).

Page 7 of 30

RSC Advances

RSC Advances Accepted Manuscript

131 **2.6.** Potential gastrointestinal fate of tangeretin-loaded zein nanoparticles

An *in vitro* digestion model was used to study the potential behavior of the delivery systems under simulated gastrointestinal tract ¹⁴ conditions. Experiments were carried out at different lipid contents by mixing the tangeretin-loaded zein nanoparticles with lipid nanoparticles to simulate different diet compositions (*i.e.* high *versus* low fat diets).

Different delivery systems were prepared by mixing the freshly prepared tangeretin-loaded zein nanoparticles and different amounts of stock nanoemulsion and phosphate buffer solution so that they differed only in oil content (0%, 2%, and 4%). The samples were then passed through a simulated GIT similar to that described earlier ¹⁵, but with some slight modifications.

Mouth phase: Oral conditions were mimicked by mixing the delivery systems with a
 simulated saliva fluid (SSF), which was prepared from various salts and mucin as described
 previously ¹⁶. Delivery systems were mixed with SSF at a 1:1 volume ratio, and then the
 resulting mixture was adjusted to pH 6.8 and shaken continuously at 100 rev/min in an incubator
 at 37 °C for 10 min (Innova Incubator Shaker, Model 4080, New Brunswick Scientific, New
 Jersey, USA).

146 Stomach phase: Simulated gastric fluid was prepared by mixing 2 g of NaCl and 7 ml of 147 concentrated HCl and then making the volume up to 1 L using distilled water ¹⁶. Pepsin was then 148 dissolved in this mixture (0.32 %, w/v), the pH was adjusted to 1.2, and the sample from the 149 mouth phase was mixed with it at a 1:1 volume ration. The resulting mixture was then adjusted 150 to pH 2.5 and incubated at 100 rev/min and 37 °C for 2 hr.

151 Small intestine: Small intestine conditions were simulated using a pH-stat automatic titration unit (Metrohm, USA Inc.). The sample collected from the stomach phase was placed in a 152 153 container placed in a 37 °C water bath. The pH was adjusted to pH 7.0. Bile salt (187.5 mg in 4 ml pH 7 PBS buffer solution) was then added, and the pH was adjusted back to 7.0. Calcium 154 155 chloride solution (110 mg dissolved in 1 ml double distilled water) was then added and again the 156 pH was adjusted to 7.0. Finally, freshly prepared pancreatin lipase (60 mg lipase in 2.5 ml pH 7.0 157 PBS) was added to the solution. At the same time, the automatic titration of pH-stat was started. The free fatty acid released during digestion was calculated using the following equation ¹⁷: 158

159 FFA% =100 ×
$$\left(\frac{V_{\text{NaOH}} \times m_{\text{NaOH}} \times M_{\text{lipid}}}{w_{\text{lipid}} \times 2}\right)$$
 (1)

160 Here, V_{NaOH} is the volume of sodium hydroxide solution required to neutralize the free fatty

- 161 acids (and other sources of H^+) released during digestion; m_{NaOH} is the molar concentration of
- sodium hydroxide solution, which is 0.25 M in this study; M_{lipid} is the molecular weight of corn
- 163 oil, which is 800 g/mol; w_{lipid} is the amount of oil in the reaction system.

164 **2.7. Bioaccessibility determination**

165 The samples obtained after *in vitro* digestion were collected and centrifuged (Centrifuge 166 5417R, Eppendorf co., Hamburg, Germany) (20200 g, 14000 rpm) at 4 °C for 40 min. The clear 167 micelle phase on the top layer of the samples was filtered through a 220 nm syringe filter (EMD 168 Millipore, Billerica, MA) and analyzed for the tangeretin content using the HPLC method 169 described before ¹⁸. The bioaccessibility was then calculated using the following equation:

170
$$Bioaccessibility(\%) = \frac{C_{Micelle}}{C_{RawDigesta}} \times 100\%$$
 (2)

Here, C_{Micelle} is the concentration of tangeretin in the filtered micelle phase, and C_{Raw Digesta} is the
 concentration of tangeretin in the raw digesta.

173 **2.8.** Cytotoxicity measurement of micelle phase

174 Caco-2 cells were seeded in 96-well plates at a density of 20,000 cells/well in 200 µL complete DMEM media (10% FBS, 1% antibiotic, 1% non-essential amino acid). After 24 h, 175 176 cells were treated with different concentrations of micelle phase diluted with serum complete 177 media. Tangeretin dissolved in DMSO was used as a control group and the final DMSO 178 concentration in the medium was less than 1%. After incubation for 24 h, cells were analyzed 179 using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Media in 180 each well was replaced by 100 µL freshly prepared MTT solution (0.5 mg/mL dissolved in 181 DMEM media). After 2 h incubation at 37 °C, MTT solution was dumped and the reduced 182 formazan dye was solubilized by adding 100 µL of DMSO to each well. After gentle mixing, the 183 absorbance was monitored at 570 nm using a plate reader (TECAN, Phenix Research Products, Candler, NC, USA)¹⁹. 184

RSC Advances Accepted Manuscript

(3)

185 2.9. Tangeretin permeability determination using Caco-2 monolayers

186 Caco-2 cell monolayer maintenance and permeability determination was conducted as described before ²⁰. Caco-2 cells were seeded on transwell permeable supports containing 0.4 µm 187 polycarbonate membranes (Corning Incorporated, Corning, NY) at a seeding density of 2.6×10^5 188 cells $/ \text{ cm}^2$. The medium was changed 16 h after seeding. The media in the apical and basolateral 189 190 compartments were changed every other day. This process was maintained for about 21 days 191 until the transendothelial electrical resistance of the filter was about 260 Ω cm².

192 The micelle phases were collected after in vitro digestion and filtered through a 220 nm 193 membrane. They were then diluted with Hank's Balanced Salt (HBSS, pH 7.4) to obtain 194 tangeretin concentrations suitable for permeability determinations. Tangeretin dissolved in 195 DMSO was used as a control group. All the solutions used in this experiment were pre-warmed 196 in a 37 °C water bath. The Caco-2 monolayer transwell was incubated with HBSS for 30 min 197 before the experiment. Then both the apical and basolateral compartments were rinsed twice with 198 HBSS). An aliquot (1.5 ml) of each sample was added to the apical compartment and 2.5 ml pre-199 warmed HBSS was added to the basolateral compartment. Then, this plate was placed in an 200 incubator. Every 30 min, 200 µL of solution was withdrawn from the apical compartment 201 without adding new sample and 100 μ L of sample was taken from the basolateral compartment 202 and replaced by same amount of pre-warmed HBSS. The whole experiment duration was 2 hours. 203 The transendothelial electrical resistance were monitored every time before and after the 204 experiment and before each sampling time. The concentration of tangeretin in each sample were analyzed using HPLC method. The apparent permeability coefficient (cm s⁻¹) was calculated 205 206 with the following equation:

207
$$P_{app} = (dQ/dt)(1/(AC_0))$$

209

dQ/dt is the steady-state flux (umol s⁻¹). A is the surface of the filter (4.67 cm²), C_0 is the 208 concentration of tangeretin added to apical compartment of each well (µM).

210 2.10. Data analysis

211 All data in this study are expressed as mean \pm SD. Student's t-test was used to determine the 212 significance of difference between two groups. One way ANOVA was used to analyze the 213 significance of difference for more than three groups. 5% significance level was used for all tests.

RSC Advances Accepted Manuscript

214 **3. Results and Discussion**

215 **3.1.** Characterization of delivery systems

216 In this study, mixed delivery systems were prepared that contained a combination of 217 tangeretin-loaded zein nanoparticles and digestible lipid nanoparticles. Knowledge of the initial 218 characteristics of these nanoparticles is important to understand their subsequent behavior in the 219 simulated GIT. We therefore measured the size, charge, and morphology of the particles using 220 light scattering, electrophoresis, and microscopy. The mean particle diameters of the freshly 221 prepared nanoemulsions, tangeretin-loaded zein nanoparticles, and their mixture were 197, 248, 222 and 215 nm respectively (Fig.1). The ζ-potentials of the initial lipid nanoparticles (- 29 mV), 223 tangeretin-loaded zein nanoparticles (-25 mV) and mixed system (-52 mV) were all highly 224 negative. The transmission electron microscopy (TEM) measurements suggested that the zein 225 nanoparticles (smooth surfaces) and lipid nanoparticles (crinkly surfaces) existed separately in 226 the mixture (Fig. 1), which can be attributed to the strong electrostatic repulsion between them. 227 We confirmed the nature of the different kinds of nanoparticles in the mixed systems by taking 228 TEM images of samples containing only lipid nanoparticles which had crinkly surfaces and only 229 zein nanoparticles which had smooth surfaces (data not shown). The crinkly appearance of the 230 lipid nanoparticles is probably due to crystallization of the uranyl acetate dye on their surfaces 231 during sample preparation for electron microscopy. Optical microscopy images of the mixed 232 delivery systems confirmed that they had good stability to aggregation, with no evidence of large 233 particles in the system (Fig. 2a). The colloidal delivery systems all had good stability to 234 gravitational separation (creaming or sedimentation), as demonstrated by the fact that no phase 235 separation was observed after 24 hours incubation, which can be attributed to their small initial 236 particle size and stability to aggregation.

237 **3.2.** Gastrointestinal fate of colloidal delivery systems

Colloidal delivery systems encounter a series of physicochemical and physiological environments as they pass through the various stages of the human GIT, such as changes in pH, ionic strength, agitation, enzyme activities, and surface active agents ²¹. We therefore measured changes in the properties of mixed colloidal delivery systems (containing 2% fat) as they passed through the simulated mouth, stomach, and small intestine phases of the GIT model.

243 *Mouth:* The mean diameter of the particles in the system increased from around 215 to 424 244 nm after incubation in the simulated saliva fluids (Fig. 3a), which suggests that some particle 245 aggregation occurred. This observation was supported by the optical microscopy images, which 246 clearly showed evidence of extensive particle aggregation (Fig. 2b). The origin of this effect can 247 be attributed to particle flocculation induced by the presence of mucin in the artificial saliva. 248 Mucin is a large glycoprotein that can promote particle aggregation under oral conditions through both bridging and depletion mechanisms²². The magnitude of the negative charge on 249 250 the particles decreased when they moved from the initial to the mouth phases (Fig. 3b), which 251 can be attributed to electrostatic screening effects by salts in the simulated saliva, as well as to 252 possible adsorption of mucin molecules to the lipid droplet surfaces.

253 Stomach: There was a large increase in the mean particle diameter measured by light 254 scattering (Fig 3a) and evidence of extensive particle aggregation in the optical microscopy 255 images (Fig 2c) when the samples moved from the mouth to the stomach phases. A number of 256 different physicochemical phenomena may contribute to the instability of the nanoparticles 257 within the gastric environment. First, both the zein and lipid nanoparticles used in this study 258 were coated with a globular protein (β -lactoglobulin) that has an isoelectric point around pH 5. 259 Consequently, the nanoparticles will have passed through a point of zero charge when they 260 moved from the simulated mouth (pH 7) to the simulated gastric (pH 2) fluids, which may have 261 promoted irreversible aggregation due to a reduction in electrostatic repulsion. Second, anionic 262 mucin molecules from the saliva may have caused bridging flocculation of the cationic protein-263 coated nanoparticles in the stomach. Third, the relatively high ionic strength of the gastric fluids 264 may have reduced any electrostatic repulsion between the nanoparticles leading to aggregation. 265 Fourth, hydrolysis of the β -lactoglobulin coating around the nanoparticles by digestive enzymes 266 (pepsin) may have reduced their aggregation stability. The electrical charge on the nanoparticles 267 in the stomach was close to zero (Fig. 3b). One might expect nanoparticles coated by β -268 lactoglobulin to be strongly positively charged at pH 2 because this is well below their isoelectric 269 point. The fact that the charge was near zero may have been because anionic mucin adsorbed to 270 the droplet surfaces, thereby neutralizing some of the positive charge from the proteins. In 271 addition, some of the surface proteins may have been digested by the pepsin, which would have 272 altered the surface charge. The droplets in the emulsion were highly unstable to gravitational 273 separation (Fig. 3a) under gastric conditions, which can be attributed to the relatively large

RSC Advances Accepted Manuscript

274 particle size caused by droplet aggregation. Interestingly, we did not observe a sediment layer in 275 these systems suggesting that the zein nanoparticles associated with the lipid nanoparticles and 276 the overall density of the flocs formed was less than that of water.

277 Small Intestine: The mean particle diameter remained relatively large after incubation in the 278 small intestinal fluids (Fig. 3a), but the large aggregates formed within the gastric fluids 279 appeared to have largely dissociated (Fig 2d). In the presence of pancreatin, the triacylglycerol molecules in the lipid droplets will be converted to a monoacylglycerol ²³ and two free fatty 280 281 acids (FFAs) by pancreatic lipase. These MAG and FFAs will combine with phospholipids and 282 bile salts to form mixed micelles (micelles and vesicles) that can solubilize lipophilic compounds, and then carry them through the mucous layer to the small intestine cell surfaces ^{10a}. The 283 284 pancreatic lipase used in this study was a crude extract that also has protease activity. 285 Consequently, the β -lactoglobulin and zein in the protein nanoparticles would have been fully or 286 partially hydrolyzed, thereby releasing the tangeretin in the intestinal fluids. As a result, the 287 digesta is likely to contain a complex mixture of different types of colloidal particles, including 288 undigested lipid particles, undigested protein particles, micelles, vesicles, and insoluble matter. 289 The high negative charge on the particles in these samples can therefore be attributed to the 290 anionic nature of the free fatty acids, bile salts, phospholipids, and proteins at neutral pH 291 conditions (Fig. 3b).

292 **3.3. Digestibility of colloidal delivery systems**

293 In this section, we used the pH-stat method to measure the digestion of the various colloidal 294 delivery systems. As mentioned earlier, the crude pancreatic lipase extract used in this study has 295 both lipase and protease activity, and therefore we would expect both the proteins and lipids to 296 be digested. The amount of alkaline solution required to maintain the solution at pH 7.0 297 throughout the digestion period was measured (Fig. 4a), and then this information was used to 298 calculate the percentage of free fatty acids (FFA) released from the samples containing lipid 299 nanoparticles (Fig. 4b). Prior to calculating the FFAs for these samples, the volume of alkaline 300 solution titrated into the lipid-free solutions was subtracted to take into account changes in pH 301 induced by protein digestion.

The volume of alkaline solution titrated into the samples increased rapidly during the first few minutes of digestion, and then increased more gradually at longer digestion times (**Fig. 4a**).

304 The fact that an appreciable increase in volume was observed for the system containing no lipids 305 can be attributed to the hydrolysis of proteins (β -lactoglobulin and/or zein). For both systems 306 containing lipid nanoparticles, there was a rapid initial increase in FFAs released during the first 307 10 minutes, and then a relatively constant value was reached at longer times (Fig. 4b). These 308 results suggest that the lipid phases were fully digested within the small intestine stage, thereby 309 leading to the formation of free fatty acids and monoacylglycerols that could form mixed 310 micelles to solubilize the tangeretin. The fact that the delivery system initially containing 4% oil 311 had twice as much digestible lipid as the one containing 2% oil would be expected to lead to 312 more mixed micelles.

313 **3.4. Tangeretin bioaccessibility**

314 The amount of a lipophilic bioactive component solubilized within the mixed micelle phase is normally taken as a measure of its bioaccessibility ²⁴. We therefore analyzed the amount of 315 316 tangeretin in the mixed micelle phase obtained by centrifuging the digested sample collected at 317 the end of the GIT model. Normally after centrifugation, the digested sample has three layers: a 318 creamy layer at the top containing any undigested lipid; a clear layer at the middle containing the 319 mixed micelles; and a pellet at the bottom containing dense insoluble materials, such as calcium soaps, undigested proteins, and precipitated compounds ^{10a}. In our study, all of the fat in the 320 321 delivery systems was fully digested (Fig. 4b), and so only two layers were observed: the mixed 322 micelle phase and the pellet.

323 The bioaccessibility of the tangeretin increased as the concentration of co-ingested lipid 324 phase increased (Fig. 5), being around 15, 26, and 37 % for delivery systems initially containing 325 0, 2 and 4% oil. As mentioned earlier, this effect can be attributed to the increased level of mixed 326 micelles available to solubilize any lipophilic tangeretin molecules released from the digested zein nanoparticles ²⁵. At the highest fat content used in this study, the tangeretin concentration in 327 328 the micelle phase was determined to be $12.4 \pm 1.8 \mu$ M, while the saturation concentration of 329 tangeretin in pure water is around $0.93 \pm 0.02 \,\mu$ M, which clearly shows that the digested lipids 330 were able to greatly increase tangeretin solubilization in the aqueous intestinal fluids.

Further information about the properties of the mixed micelle phase was obtained by
analyzing the particle size using dynamic light scattering. The mean diameters of the particles in
the micelle phase for delivery systems initially containing 0, 2 or 4% oil were 61.5, 69.1 and

RSC Advances Accepted Manuscript

112.5 nm, respectively. In the absence of fat, these particles may have been micelles formed by 334 335 the bile salts and phospholipids in the simulated small intestinal fluids. In addition, there may 336 have been other forms of particles present in this phase, including protein nanoparticles that were 337 not fully digested. In the presence of fat, the increase in particle size may have been due to the 338 presence of mixed micelles consisting of bile salts, phospholipids, free fatty acids, and 339 monoacylglycerols. The mixed micelle phase resulting from lipid digestion typically contains a combination of small micelles and large vesicle structures ²⁶. These mixed micelles are able to 340 341 transfer the lipophilic bioactive components across the mucous layer so that they can be absorbed by epithelium cells ^{10a, 27}. 342

343 **3.5.** Cytotoxicity of tangeretin on Caco-2 cells

344 When performing cell permeability studies it is important to ensure that the material being 345 tested does not appreciably alter cell viability. An MTT assay was therefore carried out to 346 establish the potential toxicity of the mixed micelle phases collected from the simulated GIT on 347 the Caco-2 cell monolayers. Tangeretin dissolved within DMSO did not significantly decrease 348 cell viability over a relatively wide concentration range (Fig. 6), e.g., at 0.1 µM almost all the 349 cells were alive, and even at 20 µM the cell viability was still around 80%. Prior to analysis the 350 mixed micelle phases were diluted with buffer solution to obtain a range of tangeretin 351 concentrations. Consequently, both the tangeretin and mixed micelle concentrations in these 352 samples varied. Our results suggest that the mixed micelles had an appreciable impact on cell 353 viability, since when compared at the same tangeretin concentrations they caused more decrease 354 in cell viability than the control (Fig. 6). For example, cell viability was close to 100% at 0.1 µM 355 tangeretin (0.1% v/v mixed micelle phase), but only 20% at 20 µM tangeretin (20% v/v mixed 356 micelle phase). This effect may be caused by increased levels of bile salts in the system, since it 357 has previously been reported that these surface active lipids promote cell death by binding to the 358 mitochondrial membrane, which causes loss of cytochrome activity and mitochondrial membrane potential 28 . For this reason, we used a tangeretin concentration of 5 uM in our 359 360 permeability studies to ensure that the mixed micelles did not promote a significant decline in 361 Caco-2 cell viability.

362

RSC Advances

3.6. Permeability of digested tangeretin micelle on Caco-2 cell monolaver

363 Tangeretin concentration used for this study was 5 µM based on our MTT result. As shown 364 in Fig.7a, Caco-2 cell monolayer integrity was well maintained during the two hour treatment. 365 During The permeability of the Caco-2 cells increased with increasing fat content in the mixed 366 colloidal dispersions, as demonstrated by the faster rate of tangeretin loss from the apical side of the cells for the samples initially containing 4% oil (Fig. 7b). In addition, the calculated 367 apparent permeability coefficients (P_{app}) of the tangeretin were (18.1 ± 4.5) × 10^{-6} , (17.1 ± 1.8) × 368 10^{-6} , $(19.3 \pm 2.0) \times 10^{-6}$, and $(26.8 \pm 1.8) \times 10^{-6}$ cm/s for the control group, micelles from 0% oil, 369 micelles from 2% oil, and micelles from 4% oil, respectively (Table 1). It has been reported that 370 a substance has a high permeability when its P_{app} is greater than 10×10^{-6} cm/s⁶, and so all the 371 372 samples analyzed in this study had high permeability. Nevertheless, the permeability of 373 tangeretin did increase with increasing oil content in the initial delivery system, which can be 374 partly attributed to the ability of the mixed micelles formed by lipid digestion products to increase the intestinal solubility of tangeretin^{10a, 10c}. In addition, free fatty acids and emulsifiers 375 are known to enhance intestinal permeability by increasing the dimensions of the tight junctions 376 between epithelium cells²⁹. 377

378 **4. Conclusions**

This study shows that the bioavailability of tangeretin encapsulated within zein nanoparticles can be increased by mixing them with lipid nanoparticles. This result supports the notion that mixed delivery systems containing combinations of different kinds of nanoparticles may have advantages over single-nanoparticle systems. One kind of nanoparticle may be designed to encapsulate and protect the bioactive agent in a product during storage, whereas the other kind of nanoparticle is designed to increase its bioavailability within the gastrointestinal tract.

Light scattering and microscopy measurements showed that mixed colloidal delivery systems could be successfully prepared containing a combination of tangeretin-loaded zein nanoparticles and lipid nanoparticles. These systems appeared to be stable to aggregation and gravitational separation due to their high particle charge and small particle size. When these mixed colloidal delivery systems were passed through a simulated GIT the protein nanoparticles

RSC Advances Accepted Manuscript

391 are digested by proteases thereby releasing the tangeretin molecules, whereas the lipid 392 nanoparticles are digested by pancreatic lipases thereby forming mixed micelles. In the absence 393 of lipid digestion products, some of the tangeretin molecules would have been solubilized in 394 simple micelles formed by bile salts and phospholipids, whereas the rest may have formed 395 crystals that remained in the insoluble matter. Conversely, in the presence of lipid digestion 396 products (free fatty acids and monoacylglycerols) the solubilization capacity of the small 397 intestinal fluids for the tangeretin molecules is increased. The absorption of the tangeretin by 398 Caco-2 monolayers also increased in the presence of lipid nanoparticles, which was attributed to 399 a higher level of tangeretin in the micelle phase, and a possible increase in cell permeability. 400 The results of this study have important implications for the design and fabrication of colloidal 401 delivery systems to increase the bioavailability of hydrophobic nutraceuticals and 402 pharmaceuticals.

403 Acknowledgements

404 This material was partly based upon work supported by the Cooperative State Research,

405 Extension, Education Service, USDA, Massachusetts Agricultural Experiment Station (Project

406 No. 831) and USDA, NRI Grants (2011-03539, 2013-03795, 2011-67021, and 2014-67021) and

- 407 an NSF of China grant (31428017). This project was also partly funded by the Deanship of
- 408 Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant numbers 330-130-
- 409 1435-DSR, 299-130-1435-DSR, 87-130-35-HiCi. The authors, therefore, acknowledge with
- 410 thanks DSR technical and financial support.
- 411

412 **References**

Xiao, H.; Yang, C. S.; Li, S.; Jin, H.; Ho, C.-T.; Patel, T., Monodemethylated polymethoxyflavones from
 sweet orange (Citrus sinensis) peel Inhibit growth of human lung cancer cells by apoptosis. *Molecular Nutrition & Food Research* 2009, *53* (3), 398-406.

Singh, S. P.; Wahajuddin; Tewari, D.; Patel, K.; Jain, G. K., Permeability determination and
 pharmacokinetic study of nobiletin in rat plasma and brain by validated high-performance liquid
 chromatography method. *Fitoterapia* **2011**, *82* (8), 1206-1214.

419 3. Kurowska, E. M.; Manthey, J. A., Hypolipidemic Effects and Absorption of Citrus Polymethoxylated 420 Flavones in Hamsters with Diet-Induced Hypercholesterolemia. *J Agr Food Chem* **2004**, *52* (10), 2879-

421 2886.

422 4. (a) Qiu, P.; Dong, P.; Guan, H.; Li, S.; Ho, C.-T.; Pan, M.-H.; McClements, D. J.; Xiao, H., Inhibitory

423 effects of 5-hydroxy polymethoxyflavones on colon cancer cells. *Molecular Nutrition & Food Research*

- 424 **2010,** *54* (S2), S244-S252; (b) Pan, M.-H.; Lai, Y.-S.; Lai, C.-S.; Wang, Y.-J.; Li, S.; Lo, C.-Y.; Dushenkov, S.;
- Ho, C.-T., 5-Hydroxy-3,6,7,8,3',4'-hexamethoxyflavone Induces Apoptosis through Reactive Oxygen
 Species Production, Growth Arrest and DNA Damage-Inducible Gene 153 Expression, and Caspase
- 426 Species Production, Growth Arrest and DNA Damage-Inducible Gene 153 Expression, and Caspase
 427 Activation in Human Leukemia Cells. J Agr Food Chem 2007, 55 (13), 5081-5091; (c) Sergeev, I. N.; Li, S.;
- 428 Colby, J.; Ho, C.-T.; Dushenkov, S., Polymethoxylated flavones induce Ca2+-mediated apoptosis in breast
 420 Activation in Human Leukenna Cens. J Agr Poly Chem 2007, 33 (13), 5081-5091, (c) Sergeev, I. N.; Li, S.;
 428 Colby, J.; Ho, C.-T.; Dushenkov, S., Polymethoxylated flavones induce Ca2+-mediated apoptosis in breast
- 429 cancer cells. *Life Sciences* **2006**, *80* (3), 245-253.
- Green, C. O.; Wheatley, A. O.; McGrowder, D. A.; Dilworth, L. L.; Asemota, H. N., Citrus peel
 polymethoxylated flavones extract modulates liver and heart function parameters in diet induced
 hypercholesterolemic rats. *Food and Chemical Toxicology* **2013**, *51* (0), 306-309.
- 433 6. Li, S.; Pan, M.-H.; Lo, C.-Y.; Tan, D.; Wang, Y.; Shahidi, F.; Ho, C.-T., Chemistry and health effects of 434 polymethoxyflavones and hydroxylated polymethoxyflavones. *Journal of Functional Foods* **2009**, *1* (1), 2-435 12.
- 436 7. Chen, J.; Zheng, J.; McClements, D. J.; Xiao, H., Tangeretin-loaded protein nanoparticles fabricated
 437 from zein/β-lactoglobulin: Preparation, characterization, and functional performance. *Food Chemistry*438 2014, 158 (0), 466-472.
- 4398. Joye, I. J.; McClements, D. J., Production of nanoparticles by anti-solvent precipitation for use in440food systems. Trends in Food Science & Technology 2013, 34 (2), 109-123.
- (a) Quispe-Condori, S.; Saldaña, M. D. A.; Temelli, F., Microencapsulation of flax oil with zein using
 spray and freeze drying. *LWT Food Science and Technology* 2011, 44 (9), 1880-1887; (b) Wu, Y.; Luo, Y.;
 Wang, Q., Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles
 prepared by liquid–liquid dispersion method. *LWT Food Science and Technology* 2012, 48 (2), 283-290;
 (c) Zhong, Q.; Jin, M., Zein nanoparticles produced by liquid–liquid dispersion. *Food Hydrocolloids* 2009,
- 446 23 (8), 2380-2387.
- 447 10. (a) Porter, C. J.; Trevaskis, N. L.; Charman, W. N., Lipids and lipid-based formulations: optimizing the
- 448 oral delivery of lipophilic drugs. *Nat Rev Drug Discov* **2007**, *6* (3), 231-48; (b) McClements, D. J.; Xiao, H.,

449 Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and

450 nutraceuticals. *Food & Function* **2014**, *5* (7), 1320-1333; (c) McClements, D. J., Utilizing food effects to

- 451 overcome challenges in delivery of lipophilic bioactives: structural design of medical and functional
 452 foods. *Expert Opinion on Drug Delivery* **2013**, *10* (12), 1621-1632.
- Ting, Y.; Chiou, Y.-S.; Pan, M.-H.; Ho, C.-T.; Huang, Q., In vitro and in vivo anti-cancer activity of
 tangeretin against colorectal cancer was enhanced by emulsion-based delivery system. *Journal of Functional Foods* 2015, *15*, 264-273.
- Ting, Y.; Jiang, Y.; Lan, Y.; Xia, C.; Lin, Z.; Rogers, M. A.; Huang, Q., Viscoelastic Emulsion Improved
 the Bioaccessibility and Oral Bioavailability of Crystalline Compound: A Mechanistic Study Using in Vitro
- 458 and in Vivo Models. *Molecular Pharmaceutics* **2015**, *12* (7), 2229-2236.
- 459 13. Parris, N.; Cooke Peter, H.; Moreau Robert, A.; Hicks Kevin, B., Encapsulation of Essential Oils in Zein
- 460 Nanospherical Particles. In *New Delivery Systems for Controlled Drug Release from Naturally Occurring*
- 461 *Materials*, American Chemical Society: 2008; Vol. 992, pp 175-192.

- 462 14. Christensen, J. Ø.; Schultz, K.; Mollgaard, B.; Kristensen, H. G.; Mullertz, A., Solubilisation of poorly
- 463 water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. *European Journal*
- 464 of Pharmaceutical Sciences **2004**, *23* (3), 287-296.
- 465 15. Li, Y.; McClements, D. J., Controlling lipid digestion by encapsulation of protein-stabilized lipid 466 droplets within alginate–chitosan complex coacervates. *Food Hydrocolloids* **2011**, *25* (5), 1025-1033.
- 467 16. Sarkar, A.; Goh, K. K. T.; Singh, H., Colloidal stability and interactions of milk-protein-stabilized
 468 emulsions in an artificial saliva. *Food Hydrocolloids* **2009**, *23* (5), 1270-1278.
- 469 17. Li, Y.; McClements, D. J., New Mathematical Model for Interpreting pH-Stat Digestion Profiles:
- 470 Impact of Lipid Droplet Characteristics on in Vitro Digestibility. *J Agr Food Chem* **2010**, *58* (13), 8085-471 8092.
- 472 18. Dong, P.; Qiu, P.; Zhu, Y.; Li, S.; Ho, C.-T.; McClements, D. J.; Xiao, H., Simultaneous determination of
- 473 four 5-hydroxy polymethoxyflavones by reversed-phase high performance liquid chromatography with
- 474 electrochemical detection. *Journal of Chromatography A* **2010**, *1217* (5), 642-647.
- 475 19. Horie, M.; Kato, H.; Fujita, K.; Endoh, S.; Iwahashi, H., In Vitro Evaluation of Cellular Response
 476 Induced by Manufactured Nanoparticles. *Chemical Research in Toxicology* 2011, *25* (3), 605-619.
- 477 20. Ina, H.; Eva, G. E. R.; Per, A., Determination of drug permeability and prediction of drug absorption
 478 in Caco-2 monolayers. *Nature Protocols* 2007, *2* (9), 2111-2119.
- 479 21. McClements, D. J., Crystals and crystallization in oil-in-water emulsions: Implications for emulsion480 based delivery systems. *Advances in Colloid and Interface Science* **2012**, *174*, 1-30.
- Vingerhoeds, M. H.; Blijdenstein, T. B. J.; Zoet, F. D.; van Aken, G. A., Emulsion flocculation induced
 by saliva and mucin. *Food Hydrocolloids* 2005, *19* (5), 915-922.
- 23. Cuyckens, F.; Claeys, M., Mass spectrometry in the structural analysis of flavonoids. *Journal of Mass*Spectrometry 2004, 39 (1), 1-15.
- 485 24. McClements, D. J.; Li, F.; Xiao, H., The Nutraceutical Bioavailability Classification Scheme: Classifying
 486 Nutraceuticals According to Factors Limiting their Oral Bioavailability. *Annual review of food science and*487 *technology* 2015, *6*, 299-327.
- 488 25. Thakkar, S. K.; Maziya-Dixon, B.; Dixon, A. G.; Failla, M. L., Beta-carotene micellarization during in
- vitro digestion and uptake by Caco-2 cells is directly proportional to beta-carotene content in different genotypes of cassava. J Nutr **2007**, 137 (10), 2229-33.
- 491 26. Phan, S.; Salentinig, S.; Gilbert, E.; Darwish, T. A.; Hawley, A.; Nixon-Luke, R.; Bryant, G.; Boyd, B. J.,
- 492 Disposition and crystallization of saturated fatty acid in mixed micelles of relevance to lipid digestion.
- 493 Journal of Colloid and Interface Science **2015**, 449, 160-166.
- 494 27. Lafitte, G.; Thuresson, K.; Soderman, O., Diffusion of nutrients molecules and model drug carriers
 495 through mucin layer investigated by magnetic resonance imaging with chemical shift resolution. *Journal*496 of *Pharmaceutical Sciences* 2007, *96* (2), 258-263.
- 497 28. Schulz, S.; Schmitt, S.; Wimmer, R.; Aichler, M.; Eisenhofer, S.; Lichtmannegger, J.; Eberhagen, C.;
- 498 Artmann, R.; Tookos, F.; Walch, A.; Krappmann, D.; Brenner, C.; Rust, C.; Zischka, H., Progressive stages
- 499 of mitochondrial destruction caused by cell toxic bile salts. Biochimica et Biophysica Acta (BBA) -
- 500 Biomembranes **2013,** 1828 (9), 2121-2133.

- 501 29. Ulluwishewa, D.; Anderson, R. C.; McNabb, W. C.; Moughan, P. J.; Wells, J. M.; Roy, N. C.,
- Regulation of tight junction permeability by intestinal bacteria and dietary components. *J Nutr* **2011**, *141*
- 503 (5), 769-76.
- 504
- 505

Figure 1. Particle size distribution of fat droplets, protein nanoparticles, and the mixed system. The inset shows a transmission electron microscopy image of the mixed system.

Figure 2. Microscopic image of initial delivery system (a) and delivery system after digestion in (b) mouth, (c) stomach, (d) small intestine.

Figure 3a. Mean particle diameters and appearances of mixed systems initially containing protein nanoparticles and lipid nanoparticles (2% oil) after passage through various stages of a simulated gastrointestinal tract (GIT). The inset shows the appearance of the system at different digestion stages (Means with different letters are significantly different, p<0.05).

Figure 3b. Mean particle charges of mixed systems initially containing protein nanoparticles and lipid nanoparticles (2% oil) after passage through various stages of a simulated gastrointestinal tract (GIT). The inset shows the appearance of the system at different digestion stages. (Means with different letters are significantly different, p<0.05).

Figure 4a. pH-Stat titration curves carried out under simulated small intestinal conditions for mixed colloidal delivery systems containing tangeretin-loaded zein nanoparticles and different concentrations of lipid nanoparticles (0 to 4% oil).

Figure 4b. Calculated free fatty acids released under simulated small intestinal conditions for mixed colloidal delivery systems containing tangeretin-loaded zein nanoparticles and different initial concentrations of lipid nanoparticles (2 or 4% oil).

Figure 5. Influence of initial oil content on tangeretin bioaccessibility in mixed colloidal delivery systems containing tangeretin-loaded zein nanoparticles and lipid nanoparticles (Means with different letters are significantly different, p<0.05).

Figure 6. Influence of tangeretin dissolved in DMSO or mixed micelles on Caco-2 cell viability. Cells were seeded at 20,000 cells/well on a 96 well plate 24 hours before treatment. The samples were diluted using serum complete media to obtain a range of tangeretin concentrations (*, p<0.05).

Figure 7a. TEER percentage of each sample at different time.

Figure 7b: Tangeretin concentration in the apical compartment of Caco-2 transwell cells at different times for different delivery systems. *Control*: tangeretin dissolved in HBSS; 0% oil: digested phase from tangeretin nanoparticles with no oil; 2%: digested phase from tangeretin nanoparticles mixed with 2% oil; 4%: digested phase from tangeretin nanoparticles mixed with 4% oil. The oil was delivered as lipid nanoparticles.

Table 1. Caco-2 monolayer permeability of digested phases from delivery systems initially

 containing tangeretin nanoparticles and different oil contents (delivered in the form of lipid

 nanoparticles).
 The control consisted of tangeretin dissolved in DMSO.

Delivery System	P _{app}
	$(\times 10^{-6} \text{ cm/s})$
Control	18.1 ± 4.5^{a}
0% oil	17.1 ± 1.8^{a}
2% oil	19.3 ± 2.0^{a}
4% oil	26.8 ± 1.8^{b}

*Means with different letters are significantly different, p<0.05.