RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/coxxooooox

www.rsc.org/xxxxx

ARTICLE TYPE

PBr₃-Mediated [5+1]Annulation of α-Alkenoyl-α-Carbamoyl Ketene-S,S-acetals: Access to Substituted Pyridine-2,6(*1H*,3*H*)-diones[†]

Liping Shi," Qian Zhang," Fengjiao Gan," Rui Zhang," Yuanli Ding," Chun Liu," and Dewen Dong"

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

R¹: aryl, alkyl; R²: alkyl; 13 examples; 75-87% yield

Facile and efficient synthesis of substituted pyridine-2,6(1H,3H)-diones *via* an intramolecular [5+1] annulation of readily available α -alkenoyl- α -carbamoyl ketene-S, S-acetals mediated by phosphorus bromide under very mild is developed.

10

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxx

PBr₃-Mediated [5+1]Annulation of α -Alkenoyl- α -Carbamoyl Ketene-S,S-acetals: Access to Substituted Pyridine-2,6(1H,3H)-diones*

Liping Shi,^a Qian Zhang,^b Fengjiao Gan,^b Rui Zhang,^{*b} Yuanli Ding,^b Chun Liu,^a and Dewen Dong^{*b}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A facile and efficient synthesis of substituted pyridine-2,6(1H,3H)-diones via an intramolecular [5+1] annulation of readily available α -alkenoyl- α -carbamoyl ketene-S,S-acetals mediated by phosphorus bromide (PBr₃) under very mild conditions is described.

Introduction

- 10 Cyclic imide and its derivatives have attracted considerable research interest since they are distributed in numerous natural products along with diverse useful bioactivities.¹⁻³ For example, acetiketal (RK-441S) was isolated from Streptomyces pulveraceus as a new antibiotic,⁴ and AG-1 is an agent widely
- 15 used for the treatment of breast cancer for postmenopausal patients (Figure 1).⁵ In addition, the functionalized cyclic imides have been utilized as versatile intermediates in the synthesis of a wide variety of six-membered aza-heterocycles, and applied as disperse dyes in dyestuff industry as well.⁶ To date, a variety of
- ²⁰ synthetic approaches have been well established to access to such cyclic imides and their analogues. The notable approaches involve the cyclization of dinitriles,⁷ cyclization of monoamides with acids,8 condensation of diacids with amines,9 or [3+3]cycloaddition of α,β - unsaturated esters with acetamides.¹⁰ 25 Nevertheless, the development of efficient and convenient
- synthetic methods for such aza-heterocycles under milder conditions is still desirable.

Figure 1

During the course of our studies on the chemistry of α -oxo ketene-S,S-acetals, we successfully developed novel strategies for ³⁰ the synthesis of highly valuable six-membered carbocycles¹¹ and heterocycles,¹² relying upon the utilization of α -alkenoyl ketene-S,S-acetals as a five carbon 1,5-dielectrophilic species in the formal [5+1] annulation with various nucleophiles. Also, we achieved facile and efficient synthesis of substituted pyridine-35 2,4(1H,3H)-diones via an intramolecular [5+1] annulations of α aminopropenoyl ketene-S,S-acetals (Scheme 1).¹³ In connection with our previous work and our continuing interest in the

synthesis of functionalized heterocycles, we synthesized a series

This journal is © The Royal Society of Chemistry [year]

of α -dimethyl aminopropenoyl- α -carbamoyl ketene-S,S-acetals

40 and examined their reaction behaviours under different conditions. As a result, we developed a facile one-pot synthesis of substituted pyridine-2,6(1H,3H)-diones from readily available α -alkenoyl- α carbamoyl ketene-S,S-acetals mediated by phosphorus tribromide (PBr₃) in dichloromethane (DCM). Herein, we wish to report our 45 results and proposed a mechanism involved in the reactions.

Scheme 1 Synthesis of Substituted Pyridine-2,4(1H,3H)-diones.¹³

Results and discussion

The substrates, α -aminopropenovl- α -carbamovl ketene-S.S. acetals 1 were prepared from α -acyl- α -carbamoyl ketene-S,Sacetals with N,N-dimethyl formamide dimethylacetal (DMFDMA) ⁵⁰ in high yields according to our published procedure.¹³ Recently, we investigated the reaction behaviors of 2-arylamino-3-acetyl-5,6-dihydro-4H-pyrans and 1-carbamyl-1-oximyl cyclopropanes toward Vilsmeier reagent, e.g. POCl₃/DMF, and POCl₃ in DCM, respectively.¹⁴ These obtained results suggested that POCl₃ 55 showed different reaction behaviour when employed with or without DMF. Thus, in the present work, the reaction of 2-[bis(methylthio)methylene]-5-(dimethylamino)-3-oxo-N-phenyl pent-4-enamide 1a and POCl3 (1.0 equiv.) was first attempted in DCM at room temperature. The reaction could proceed as 60 indicated by TLC result, and furnished a product after workup and purification by silica column chromatography, which was characterized as 3-[bis(methylthio)methylene]-1-phenylpyridin 2,6(1H,3H)-dione **2a** on the basis of its spectral and analytical data (Table 1, entry 1). It was observed that the variation (

[journal], [year], [vol], 00-00 |

Lable L bereening of reaction conditions

$Me_{2}N \xrightarrow{O O O} NHPh \xrightarrow{Conditions} MeS \xrightarrow{MeS O} N$ $MeS SMe O Ph$								
	1a			2a				
Entry	Reagent (equiv.)	Solvent	Temp. (°C)	Time (h)	Yield ^b (%)			
1	POCl ₃ (1.0)	DCM	r t	9.0	48			
2	POCl ₃ (1.2)	DCM	r t	7.0	52			
3	POCl ₃ (2.0)	DCM	r t	5.0	53			
4	PBr ₃ (1.2)	DCM	r t	6.0	75			
5	PBr ₃ (1.2)	DCM	0	6.0	nr ^c			
6	PBr ₃ (1.2)	DCM	45	3.5	67			
7	PBr ₃ (1.2)	toluene	r t	6.0	mixture			
8	PBr ₃ (1.2)	DMF	r t	6.0	nr			
 ^a Reagents and conditions: 1a (1.0 mmol), solvent (15 mL); ^b Isolated yield; ^c No reaction. 								

addition amount of POCl₃ had significant influence on the reaction time and yield of **2a** (Table 1, entries 2 and 3). When the reaction of **1a** was performed with PBr₃ (1.2 equiv) in DCM, **2a** could be obtained in 75% yield. The results suggested that PBr₃ ⁵ was more effective than the previously investigated POCl₃ for the transformation of **1a** to **2a** (Table 1, entry 4). However, no reaction occurred when the reaction temperature was decreased to 0 °C (Table 1, entry 5). By increasing the reaction temperature to 45 °C, the reaction could be complete within 3.5 h as indicated by ¹⁰ TLC along with 67 % yield of **2a** (Table 1, entry 6). Subjecting

- **1a** and PBr₃ (1.2 equiv) to toluene at room temperature, a complex mixture was formed, in which no main product could be isolated (Table 1, entry 7). It is should be mentioned that no reaction was observed when **1a** was treated with PBr₃ (1.2 equiv)
- ¹⁵ in DMF at room temperature (Table 1, entry 8), whereas 4bromo-pyridin-2(1*H*)-ones were obtained in Chen's work by subjecting α -acyl ketene-*S*,*S*-acetals to Vilsmeier conditions at 100 °C (Scheme 2a).¹⁵ It should also be noted that 4-halo-pyridin-2(1*H*)-ones could be obtained by the reaction of 1-²⁰ aminopropenoyl-1-carbamoyl cyclopropanes with POCl₃ or PBr₃ at room temperature (Scheme 2b).¹⁶

Scheme 2 Synthesis of 4-Halo-pyridin-2(1H)-ones.^{15, 16}

Under the conditions as for 2a in entry 4, Table 1, a series of reactions of α -alkenoyl ketene-S,S-acetals 1 were carried out, and some of the results are listed in Table 2. It was found that the α -25 aminopropenoyl- α -carbamoyl ketene-S,S-acetals **1b-f** bearing varied aryl groups or benzyl group R¹ could proceed efficiently to afford the corresponding pyridine-2,6(1H,3H)-diones 2b-f in good to high yields (Table 2, entries 2-6). The versatility of this pyridine-2,6(1H,3H)-dione synthesis was further evaluated by ³⁰ performing **1g-l** bearing varied aryl groups or alkyl group R¹ and ethyl or benzyl groups R^2 under the identical conditions (entries 7-13). The structure of **2i** was further confirmed by X-ray single crystal analysis and its spectral and analytical data (Figure 2). The results shown above demonstrate the efficiency and synthetic 35 value of the cyclization reaction of a variety of α -alkenoyl ketene-S,S-acetals 1. It should be noted that the richness of the functionality of substituted pyridine-2,6(1H,3H)-diones 2 may render them versatile as synthons in further synthetic transformations, e.g. selective reduction of C-C double bond or 40 carbonyl groups,¹⁷ Michael addition,¹⁸ and nucleophilic vinylic

Table 2 Synthesis of substituted pyridine-2,6(1H,3H)-diones 2^{*a*}.

substitution (S_NV) reactions.¹⁹

	Me₂N ∕∽∕ R ^ź	$ \begin{array}{c} 0 & 0 \\ & & \\ & & \\ ^{2}S & SR^{2} \\ \end{array} $	PBr ₃ ► CH ₂ Cl ₂ , r.t.	R ² S R ² S	~ 0 N_R^1				
Entry	1	1 R ¹	R ²	2	2 Yield(%) ^b				
1	1 a	Ph	Me	2a	75				
2	1b	4-MeC ₆ H ₄	Me	2b	83				
3	1c	$4-ClC_6H_4$	Me	2c	80				
4	1d	4-MeOC ₆ H ₄	Me	2d	87				
5	1e	2-MeOC ₆ H ₄	Me	2e	76				
6	1f	Bn	Me	2f	82				
7	1g	Ph	Et	2g	86				
8	1h	4-MeC ₆ H ₄	Et	2h	85				
9	1i	$4-ClC_6H_4$	Et	2i	79				
10	1j	4-MeOC ₆ H ₄	Et	2j	76				
11	1k	Ph	Bn	2k	78				
12	11	4-MeC ₆ H ₄	Bn	21	84				
13	1m	Me	Et	2m	77				
^a Reagents and conditions: 1a (1.0 mmol), PBr ₃ (1.2 equiv.),									
CH_2Cl_2 (15 mL), rt, 5.0-7.0 h; ^b Isolated yield.									

Figure 2 ORTEP drawing of 2i.

2 | *Journal Name*, [year], **[vol]**, 00–00

This journal is © The Royal Society of Chemistry [year]

Scheme 3 Plausible mechanism for the reaction of α -alkenoyl- α -carbamoyl ketene-*S*,*S*-acetal **1** with PBr₃.

On the basis of the above experimental results together with some literatures, a mechanism for the synthesis of pyridine-2,6(1*H*,3*H*)-dione **2** is proposed as depicted in Scheme 3. In the presence of PBr₃, α -aminopropenoyl- α -carbamoyl ketene-*S*,*S*- α acetal **1** is transformed into iminium ion intermediate **A**, which undergoes an intramolecular cyclization to afford intermediate **B** and its tautomer **B**'.^{20,21} The protonation of the *C*-*C* double bond of **B**' gives carbocation **C**,¹⁵ followed by elimination of HOPBr₂ to form carbocation **D** and its tautomer iminium ion **D**'. The latter 10 is hydrolyzed to the final product pyridine-2,6(1*H*,3*H*)-dione **2**

during the workup process under acidic conditions.^{14b, 21}

Conclusions

In summary, an efficient synthesis of substituted pyridine-2,6(1*H*,3*H*)-diones *via* an intramolecular [5+1] annulation of 15 readily available α -alkenoyl- α -carbamoyl ketene-*S*,*S*-acetals **1** mediated by phosphorus bromide (PBr₃) is developed. This protocol is associated with readily available starting materials, mild conditions, high yields, a wide range of substrate scope, and rich functionalities and important synthetic potential of the 20 products.

Experimental

General

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. The products ²⁵ were purified by column chromatography over silica gel. ¹H NMR spectra and ¹³C NMR spectra were obtained at 25 °C at 300 MHz (or 400 MHz) and 100 MHz, respectively, on a Bruker AV300 (or AV 400) spectrometer using CDCl₃ (otherwise indicated) as solvent and TMS as internal standard. Mass spectra ³⁰ were recorded on a Bruker autoflex III(smartbeam MALDI-TOF)

mass spectrometer. IR spectra (KBr) were recorded on a

This journal is © The Royal Society of Chemistry [year]

Shimadzu FTIR-8400S spectrophotometer in the range of 400-4000 cm^{-1} .

Typical procedure for the synthesis of 2 (2a as an examples)

To a solution of **1a** (336 mg, 1.0 mmol) in CH₂Cl₂ (15 mL) was added PBr₃ (325 mg, 1.2 mmol) at 0 °C. Then the reaction mixture was allowed to warm to room temperature and stirred for 6.0 h. After the reaction was completed, the resulting mixture was poured into saturated aqueous NaCl (100 mL), which was

⁴⁰ extracted with dichloromethane ($3 \times 30 \text{ mL}$). The organic extracts were washed with water, dried over MgSO₄, filtered and concentrated in vacuo. Purification was carried out by flash silica gel chromatography using petroleum ether: ethyl acetate (9:1, v/v) as eluent to give product **2a** (218 mg, 75%).

45 Analytical data of 2

3-[Bis(methylthio)methylene]-1-phenylpyridine-2,6(1*H***,3***H***)dione (2a)**

Yellow solid; mp 149-150 °C. ¹H NMR (300 MHz, CDCl₃): σ 2.54 (s, 3 H), 2.67 (s, 3H), 6.24 (d, J = 10.0 Hz, 1 H), 7.18-7.2 ⁵⁰ (m, 2 H), 7.47-7.49 (m, 3 H), 8.07 (d, J = 10.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 164.6, 162.9, 138.6, 135.2 129.2, 128.6, 128.4, 123.2, 116.3, 21.6, 19.8. IR (KBr, cm⁻¹) 3446, 2918, 1677, 1639, 1592, 1491, 1452, 1411, 1178, 782. Anal. Calcd for C₁₄H₁₃NO₂S₂: C, 57.71; H, 4.50; N, 4.81. Found: C, ⁵⁵ 57.48; H, 4.43; N, 4.87

3-[Bis(methylthio)methylene]-1*-p***-tolylpyridine-2**,6(1*H*,3*H*)-dione (2b)

Yellow solid; mp 142-143 °C. ¹H NMR (300 MHz, CDCl₃): δ ⁶⁰ 2.39 (s, 3 H), 2.52 (s, 3H), 2.66 (s, 3H), 6.24 (d, *J* = 10.0 Hz, 1 H), 7.06 (d, *J* = 8.0 Hz,, 2 H), 7.28 (d, *J* = 8.0 Hz, 2 H), 8.05 (d, *J* = 10.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 174.0, 164.7, 163.0, 138.5, 138.3, 132.4, 130.0, 128.2, 123.1, 116.3, 21.6, 21.2, 19.8. IR (KBr, cm⁻¹) 3446, 2919, 1686, 1637, 1513, 1449, 1408, ⁶⁵ 1187, 841. Calcd for C₁₅H₁₅NO₂S₂: C, 58.99; H, 4.95; N, 4.59.

Found: C, 58.68; H, 5.06; N, 4.50.

3-[Bis(methylthio)methylene]-1-(4-chlorophenyl)pyridine-2,6(1*H*,3*H*)-dione (2c)

- ⁷⁰ Yellow solid; mp 137-139 °C. ¹H NMR (300 MHz, CDCl₃): δ 2.54 (s, 3 H), 2.68 (s, 3 H), 6.22 (d, J = 10.2 Hz, 1 H), 7.12-7.15 (m, 2 H), 7.43-7.53 (m, 2 H), 8.06 (d, J = 10.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 175.0, 164.5, 162.7, 138.9, 134.4, 133.7, 130.0, 129.5, 122.8, 116.0, 21.7, 19.9. IR (KBr, cm⁻¹) 3421,
- $_{75}$ 2956, 1685, 1645, 1603, 1505, 1469, 1453, 1186, 839. Anal. Calcd for $C_{14}H_{12}CINO_2S_2$: C, 51.61; H, 3.71; N, 4.30. Found: C, 51.81; H, 3.79; N, 4.18.

3-[Bis(methylthio)methylene]-1-(4-methoxyphenyl)pyridine-80 2,6(1*H*,3*H*)-dione (2d)

Yellow solid; mp 166-168°C. ¹H NMR (300 MHz, CDCl₃): δ 2.53 (s, 3 H), 2.67 (s, 3 H), 3.83 (s, 3H), 6.23 (d, J = 10.2 Hz, 1 H), 7.00 (d, J = 8.7, 2 H), 7.11 (d, J = 8.7, 2 H), 8.05 (d, J = 10.2Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 174.0, 164.8, 163.1, 85 159.3, 138.5, 129.4, 127.6, 123.2, 116.3, 114.6, 55.4, 21.6, 19.8 Anal. Calcd for C₁₅H₁₅NO₃S₂: C, 56.05; H, 4.70; N, 4.36. Found: C, 56.33; H, 4.82; N, 4.45.

3-[Bis(methylthio)methylene]-1-(2-methoxyphenyl)pyridine-⁹⁰ 2,6(1*H*,3*H*)-dione (2e)

Yellow solid; mp 142-143°C. 'H NMR (300 MHz, CDCl₃): δ 2.5° (s, 3 H), 2.65 (s, 3 H), 3.76 (s, 3 H), 6.22 (d, J = 10.2 Hz, 1 H

Journal Name, [year], [vol], 00–00

7.01-7.07 (m, 2 H), 7.12-7.15 (m, 1 H), 7.37-7.42 (m, 1 H), 8.06 (d, J = 10.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 173.3, 164.3, 162.5, 154.9, 138.6, 130.0, 129.9, 124.0, 123.3, 120.9, 116.4, 111.9, 55.7, 21.5, 19.8. IR (KBr, cm⁻¹) 3446, 1683, 1642, 5 1600, 1500, 1451, 1410, 1192, 759. Anal. Calcd for C₁₅H₁₅NO₃S₂: C, 56.05; H, 4.70; N, 4.36. Found: C, 56.31; H, 4.56; N, 4.29.

1-Benzyl-3-[bis(methylthio)methylene]pyridine-2,6(1*H*,3*H*)-dione (2f)

- ¹⁰ Yellow solid: mp 98-100 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.53 (s, 3 H), 2.72 (s, 3 H), 5.21(s, 2 H), 6.21 (d, J = 10.4 Hz, 1 H), 7.28-7.30 (m, 1 H), 7.32-7.36 (m, 2 H),7.52 (d, J = 7.6 Hz, 2 H), 8.01 (d, J = 10.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 172.2, 163.6, 161.6, 137.0, 136.3, 127.9, 127.2, 126.2, 122.3, 115.2,
- $_{15}$ 41.9, 20.6, 18.7; Anal. Calcd for $C_{15}H_{15}NO_2S_2$: C, 58.99; H, 4.95; N, 4.59; Found: C, 58.76; H, 4.99; N, 4.72. MS (MALDI): calcd for $C_{15}H_{16}NO_2S_2 \left[M+H\right]^+$ 306.1, found 306.1

3-[Bis(ethylthio)methylene]-1-phenylpyridine-2,6(1*H***,3***H***)dione (2g)**

- ²⁰ Yellow solid; mp 119-120 °C.¹H NMR (300 MHz, CDCl₃): δ 1.32-1.39 (m, 6 H), 2.96-3.03 (m, 2 H), 3.18-3.26 (m, 2 H), 6.23 (d, J = 10.2 Hz, 1 H), 7.18-7.21 (m, 1 H), 7.38-7.51 (m, 4 H), 8.09 (d, J = 10.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 171.8, 164.6, 163.0, 138.8, 135.2, 129.2, 128.6, 126.3, 123.9, 116.3,
- $_{25}$ 34.1, 30.8, 14.8, 13.9. IR (KBr, cm $^{-1})$ 3442, 2924, 1686, 1641, 1593, 1493, 1453, 1413, 1190, 698. Anal. Calcd for $C_{16}H_{17}NO_2S_2$: C, 60.16; H, 5.36; N, 4.38. Found: C, 60.35; H, 5.28; N, 4.50.

3-[Bis(ethylthio)methylene]-1-*p*-tolylpyridine-2,6(1*H*,3*H*)-³⁰ dione (2h)

- Yellow solid; mp 115-117 °C.¹H NMR (300 MHz, CDCl₃): δ 1.27-1.37 (m, 6 H), 2.39 (s, 3H), 2.96-2.99 (m, 2 H), 3.19-3.22 (m, 2 H), 6.22 (d, J = 10.0 Hz, 1 H), 7.06-7.08 (m, 2 H), 7.26-7.29 (m, 2H), 8.08 (d, J = 10.0 Hz, 1 H). ¹³C NMR (100 MHz,
- $_{35}$ CDCl₃): δ 171.7, 164.7, 163.0, 138.7, 138.2, 132.4, 129.9, 128.2, 123.8, 116.2, 34.0, 30.7, 21.2, 14.7, 13.8. Anal. Calcd for C₁₇H₁₉NO₂S₂: C, 61.23; H, 5.74; N, 4.20. Found: C, 61.48; H, 5.88; N, 4.31.

⁴⁰ **3-[Bis(ethylthio)methylene]-1-(4-chlorophenyl)pyridine- 2,6(1H,3H)-dione (2i)**

- Yellow solid; mp 122-123 °C. 'H NMR (300 MHz, CDCl₃): δ 1.32-1.39 (m, 6 H), 2.96-3.04 (m, 2 H), 3.19-3.24 (m, 2 H), 6.21 (d, J = 10.2 Hz, 1 H), 7.13 (d, J = 8.4 Hz, 2 H), 7.43 (J = 8.4 Hz, 8 Hz
- ⁴⁵ 2 H), 8.09 (d, J = 10.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 172.7, 164.4, 162.8, 139.0, 134.3, 133.7, 130.1, 129.4, 123.5, 115.9, 34.1, 30.9, 14.8, 13.9. IR (KBr, cm⁻¹) 3443, 1679, 1647, 1598, 1493, 1454, 1407, 1190, 783, 695. Anal. Calcd for C₁₆H₁₆ClNO₂S₂: C, 54.30; H, 4.56; N, 3.96. Found: C, 53.94; H, ⁵⁰ 4.45; N, 4.09.
- Crystal data for **2i**: $C_{16}H_{16}CINO_2S_2$, colourless crystal, M = 352.9, Monoclinic, P2(1)/n, a = 12.739(5) Å, b = 5.382(2) Å, c = 24.848(10) Å, $\alpha = 90.00$ °, $\beta = 103.362(6)$ °, $\gamma = 90.00$ °, V = 1657.3(11) Å3, Z = 4, T = 273(2), F000 = 736.0, R1 = 0.0636,
- ⁵⁵ wR2 = 0.1423. CCDC deposition number: 1058034. These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/</u> conts/retrieving.html (or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

⁶⁰ 3-[Bis(ethylthio)methylene]-1-(4-methoxyphenyl)pyridine-2,6(1*H*,3*H*)-dione (2j)

Yellow solid; mp 118-120 °C.¹H NMR (300 MHz, CDCl₃): δ 1.31-1.38 (m, 6 H), 2.95-3.02 (m, 2 H), 3.18-3.25 (m, 2 H),

4 | *Journal Name*, [year], **[vol]**, 00–00

3.83(s, 3 H), 6.22 (d, J = 10.2 Hz, 1 H), 6.98 (d, J = 9.0 Hz, 2 H), ⁶⁵ 7.09 (d, J = 9.0 Hz, 2 H), 8.07 (d, J = 10.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 164.9, 163.2, 159.3, 138.7, 129.5, 127.7, 123.9, 116.3, 114.6, 55.4, 34.0, 30.7, 14.8, 13.9. IR (KBr, cm⁻¹) 3441, 1693, 1647, 1454, 1412, 1190, 674. Anal. Calcd for C₁₇H₁₉NO₃S₂: C, 58.43; H, 5.48; N, 4.01. Found: C, 58.77; H, ⁷⁰ 5.57; N, 4.10.

3-[Bis(benzylthio)methylene)-1-phenylpyridine-2,6(1*H*,3*H*)dione (2k)

- Yellow solid; mp 165-166 °C.¹H NMR (300 MHz, CDCl₃): δ 75 4.05 (s, 2 H), 4.29 (s, 2 H), 6.09 (d, J = 10.2 Hz, 1 H), 7.15-7.49 (m, 15 H), 7.81 (d, J = 10.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 169.0, 164.4, 163.0, 138.5, 135.6, 135.1, 135.0, 129.4, 129.2, 128.9, 128.8, 128.7, 128.6, 128.5, 128.3, 127.7, 124.6, 116.6, 43.9, 41.4. IR (KBr, cm⁻¹): 3445, 2923, 2853, 1658, 1557,
- $_{80}$ 1540, 1487, 1350, 1260, 748. Anal. Calcd for $C_{26}H_{21}NO_2S_2$: C, 70.40; H, 4.77; N, 3.16. Found: C, 70.69; H, 4.70; N, 3.07.

3-[Bis(benzylthio)methylene]-1-(*p*-tolyl)pyridine-2,6(1*H*,3*H*)-dione (2l)

- ⁸⁵ Yellow solid; mp 166-168 °C.¹H NMR (300 MHz, CDCl₃): δ 2.37 (s, 3 H), 4.04 (s, 2 H), 4.29 (s, 2 H), 6.09 (d, J = 10.2 Hz, 1 H), 7.03 (d, J = 7.8 Hz, 2 H), 7.22-7.32 (m, 12 H), 7.79 (d, J = 10.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 168.9, 164.5, 163.1, 138.4, 135.7, 135.2, 132.3, 130.0, 129.4, 128.9, 128.8, ⁹⁰ 128.7, 128.3, 128.2, 127.7, 124.6, 116.6, 43.9, 41.1, 21.2. IR
- $^{\rm m}$ 128.7, 128.3, 128.2, 127.7, 124.6, 116.6, 43.9, 41.1, 21.2. IR (KBr, cm $^{-1}$) 3446, 2935, 1692, 1644, 1600, 1511, 1493, 1454, 1191, 820. Anal. Calcd for $C_{27}H_{23}NO_2S_2$: C, 70.87; H, 5.07; N, 3.06. Found: C, 70.66; H, 5.13; N, 2.98.

3-[Bis(ethylthio)methylene]-1-methylpyridine-2,6(1*H*,3*H*)-⁹⁵ dione (2m)

Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 1.31 (t, J = 7.5 Hz, 3 H), 1.37 (t, J = 7.5 Hz, 3 H), 2.93 (q, J = 7.5 Hz, 2 H), 3.22 (q, J = 7.5 Hz, 2 H), 3.33 (s, 3H), 6.12 (d, J = 10.2 Hz, 1 H), 7.97 (d, J = 10.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 14.6, 26.2, ¹⁰⁰ 30.6, 33.9, 116.0, 124.0, 137.8, 163.1, 164.8, 170.5; Anal. Calcd for CuHucNOS2; C 51.33; H 5.87; N 5.44 Found: C 51.60; H

for $C_{11}H_{15}NO_2S_2$: C, 51.33; H, 5.87; N, 5.44. Found: C, 51.60; H, 5.72; N, 5.37. MS (MALDI): calcd for $C_{11}H_{16}NO_2S_2$ [M+H]⁺ 258.1, found 258.1.

105 Acknowledgements

Financial support of this research by the National Natural Science Foundation of China (21172211) and Jilin Provincial Science and Technology Development (201205027) is greatly 110 acknowledged.

Notes and references

- ^{*a*} College of Chemistry and Biology, Beihua University, Jilin, 132013, China.
- ^bKey Laboratory of Synthetic Rubber, Changchun Institute of Applied ¹¹⁵ Chemistry, Chinese Academy of Sciences, Changchun 130022,

China. E-mail: ariel@ciac.ac.cn; dwdong@ciac.ac.cn

† Electronic Supplementary Information (ESI) available: crystallographic 120 data in CIF for **2i**, and copies of NMR spectra for compounds **2**. See DOI: 10.1039/b000000x/

This journal is © The Royal Society of Chemistry [year]

75

100

115

- A. L. Moreia, L. G. Corral, W. Ye, B. A. Johnson, D. Stirling, G. W. Muller, V. H. Freedman, and G. Kaplan, *AIDS Res. Hum. Retoviruses* 1997, 13, 857.
- N. Dawson, W. D. Figg, O. W. Brawley, R. Bergan, M. R. Cooper, A. Senderowicz, D. Headlee, S. M. Steinberg, M. Sutherland, N. Patronas, E. Sausville, W. M. Linehan, E. Reed, and O. Sartor, *Chin. Cancer Res.* 1998, 4, 37.
- (a) M. Waelbroeck, S. Lazareno, O. Plaff, T. Friebe, M. Tastoi, E. Mutschler, and G. Lambert, *Br. J. Pharmacol* 1996, *119*, 1319. (b)
- M. Park, J. Lee, J. Choi, *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1297.
 (a) H. Kiyota, Y. Shimizu and T. Oritani, *Tetrahedron Lett.* **2000**, *41*, 5887. (b) T. Sonoda, H. Osada, J. Uzawa, K. Isono, *J. Antibiot.* **1991**, *44*, 160.
- 5. (a) A. E. Boucher, A. Manni, H. Rosan, S. A. Wells, *Breast Cancer*
- Res. Treat. 1982, 2, 375. (b) R. W. Hartmann, C. Batzl, T. M. Pongratz, A. Mannschreck, J. Med. Chem. 1992, 35, 2210 and references cited therein. (c) H. A. Harvey, A. Lipton, R. Santin, J. Cancer Res. (suppl.) 1982, 42, 3261. (d) G. Fogliato, G. Fronza, C. Fuganti, P. Grasselli, S. Servi, J. Org. Chem. 1995, 60, 5693.
- (a) W. Huang, *Dyes Pigments* 2008, 79, 69. (b) J. Prikryl, L. Burgert, A. Halama, J. Kralovsky, J. Akrman, *Dyes Pigments* 1994, 26,107. (c) E.G. Tsatsaroni, A.H. Kehayoglou, I.C. Eleftheriadis, L.E. Kyriazis, *Dyes Pigments* 1998, 38, 65.
- 7. C. S. Leung, M. G. Rowlands, M. G. Jarman, A. B. Foster, L. J.
- Griggs, and D. V. R. Wilman, *J. Med.Chem.* 1987, *30*, 1550.
 8. (a) M. H. Kim and D. V. Patel, *Tetrahedron Lett.* 1994, *35*, 5603.
 (b) T. Polonski, *J. Chem. Soc. Perkin Trans.* 1, 1988, 639.
- (b) 1. Pointski, J. Chem. Soc. Ferkin Trans. 1, 1986, 059.
 (a) F. Nazar, C. Pham-Huy, and H. Galons, *Tetrahedron Lett.* 1999, 40, 3697. (b) J. Zhu, C. Pham-Huy, P. Lemoine, A. Tomas, and H. Galons, *Heterocycles* 1996, 43, 1923. (c) T. Kometani, T. Fitz, and
- D. S. Watt, *Tetrahedron Lett.* 1986, 27, 919.
 M. -Y. Chang, B. -R. Chang, H.-M. Tai, N.-C. Chang, *Tetrahedron*
- 10. M. -Y. Chang, B. -K. Chang, H.-M. 1ai, N.-C. Chang, *Tetrahedron Lett.* **2000**, *41*, 10273.
- 11. X. Bi, D. Dong, Q. Liu, W. Pan, L. Zhao, B. Li, *J. Am. Chem. Soc.* **2005**, *127*, 4578.
- (a) D. Dong, X. Bi, Q. Liu, F. Cong, *Chem. Commun.* 2005, 3580.
 (b) X. Bi, D. Dong, Y. Li, Q. Liu, Q. Zhang, *J. Org. Chem.* 2005, 70, 10886.
- (a) Y. Li, W. Li, R. Zhang, Y. Zhou, D. Dong, Synthesis 2008,
 3411. (b) J. Liu, X. Fu, Y. Zhou, G. Zhou, Y. Liang, D. Dong, Aust. J. Chem. 2010, 63, 1267.
- D. Xiang, P. Huang, K. Wang, G. Zhou, Y. Liang, D. Dong, *Chem. Commun.* **2008**, 6236 (b) D. Xiang, Y. Yang, R. Zhang, Y. Liang, W. Pan, J. Huang, D. Dong, *J. Org. Chem.* **2007**, *72*, 8593. (c)
- Liang, W. Pan, J. Huang, D. Dong, J. Org. Chem. 2007, 72, 8593. (c)
 K. Wang, D. Xiang, J. Liu, W. Pan, D. Dong, Org. Lett. 2008, 10, 1691.
- 15. L. Chen, Y. Zhao, Q. Liu, C. Cheng, C. Piao, J. Org. Chem. 2007, 72, 9259.
- 16. R. Zhang, Y. Zhou, Y. Liang, Z. Jiang, D. Dong, *Synthesis* 2009, *15*, 2497.
- For selective reduction of *C-C* double bond or carbonyl groups, see:
 (a) E. Mincione, *J. Org. Chem.* **1978**, *43*, 1829; (b) F. Voegtle, N. Eisen, S. Franken, P. Buellesbach, H. Puff, *J. Org. Chem.* **1987**, *52*, 5560; (c) C. Hung, H. Wong, *Tetrahedron Lett.* **1987**, *28*, 2393. (d)
- 55 H. Nemoto, H. Kurobe, K. Fukumoto, T. Kametani, J. Org. Chem. 1986, 51, 5311; (e) B. M. Trost, B. P. Coppola, J. Am. Chem. Soc. 1982, 104, 6879.
- 18. For Michael addition reactions, see: (a) E. D. Bergmann, D. Gonsburg, R. Pappo, *Org. React.* **1959**, *10*, 179. (b) P. Perlmutter,
- Conjugate Addition in Organic Synthesis, Pergmon, Oxford, UK, 1992. (c) T. Okino, Y. Hoashi, T. Fukukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119. (d) C. Palomo, S. Vera, A. Mielgo, E. Gómez-Bengoa, Angew. Chem. Int. Ed. 2006, 45, 5984. (e) R. Fan, Y. Ye, W. Li, L. Wang, Adv. Synth. Catal. 2008, 350,
- ⁶⁵ 2488. (f) S. Kanemasa, Y. Oderaotoshi, E. Wada, J. Am. Chem. Soc.
 1999, 121, 8675. (g) D. Enders, K. Luttgen, A. A. Narine, Synthesis
 2007, 959. (h) K. R. Reddy, N. S. Kumar, Synlett **2006**, 2246.
- For nucleophilic vinylic substitution (S_NV) reactions, see: (a) C. F. Bernasconi, *Tetrahedron* 1989, 45, 4017. (b) J. H. Rigby, M. Qabar,
- J. Org. Chem. 1989, 54, 5853. (c) C. F. Bernasconi, D. F. Schuck,
 R. J. Ketner, I. Eventova, Z. Rappoport, J. Am. Chem. Soc. 1995,
 117, 2719. (d) C. F. Bernasconi, R. J. Ketner, X. Chen, Z.
 Rappoport, J. Am. Chem. Soc. 1998, 120, 7461. (e) J. E. Baldwin,

R. M. Adlington, C. Aurelia, I. Nageswara Rao, R. Marquez, G. J. Pritchard, *Org. Lett.* **2002**, *4*, 2125.

- (a) C. M. Marson, *Tetrahedron* **1992**, *48*, 3659. (b) A. D. Thomas,
 C. V. Asokan, *Tetrahedron* **2004**, *60*, 5069. (c) R. Zhang, Y. Liang
 G. Zhou, K. Wang, D. Dong, *J. Org. Chem.* **2008**, *73*, 8089.
- (a) W. Pan, D. Dong, K. Wang, J. Zhang, R. Wu, D. Xiang, Q. Liu, Org. Lett. 2007, 9, 2421. (b) R. Zhang, D. Zhang, Y. Guo, G. Zhou, Z. Jiang, D. Dong, J. Org. Chem. 2008, 73, 9504 (c) R. Zhang, P. Zhang, Y. Liang, G. Zhou, D. Dong, J. Org. Chem. 2011, 76, 2880.

Journal Name, [year], **[vol]**, 00–00

This journal is © The Royal Society of Chemistry [year]