
www.rsc.org/advances

RSC Advances

This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. This Accepted Manuscript will be replaced by the edited, 
formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 



 

 1

 

 

Metabolomics of Alcoholic Liver Disease: A Clinical Discovery Study  

 

Qun Liang*, Cong Wang, Binbing Li, Ai-hua Zhang 

First Affiliated Hospital, School of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road 24, 

Xiangfang District, Harbin 150040, China  

 

 

 

 

 

 

 

 

 

 

 

 

*Correspondence 

Prof. Qun Liang and Ai-hua Zhang 

First Affiliated Hospital,  

School of Pharmacy 

Heilongjiang University of Chinese Medicine 

Heping Road 24,  

Xiangfang District,  

Harbin 150040, China  

Tel. & Fax +86-451-86053141 

Email: qunliang1970@163.com 

 

 

 

Page 1 of 15 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 2

Abstract:  

Alcoholic liver disease (ALD) is associated with poor health and disease dysfunction in worldwide. Unfortunately, 

current biomarkers including PCIII, IV-C, LN, HA levels, are expensive and lack sensitivity in ALD detection. 

Because they are either invasive, time-consuming or expensive, and ALD is usually diagnosed at late stages, for 

which there are no effective therapies. Thus, biomarkers for early detection of ALD are urgently needed. Thankfully, 

metabolomics is a powerful technology that allows the assessment of global low-molecular-weight metabolites in a 

biological system and which shows great potential in biomarker discovery. Analysis of the key metabolites in body 

fluids has become an important part of improving the diagnosis, prognosis, and therapy of diseases. Urine biomarkers 

may be a more attractive option, but none can currently detect ALD disease with the required accuracy. Herein, we 

describe our metabolomics approach to detecting ALD disease in a group of 206 patients. A total of 6 urinary 

differential metabolites were identified and contributed to ALD progress, and more important, we discovered 3 of 

them with over 95% accuracy. The biomarker panel may be sensitive to early diagnosis, prognosis and therapy of 

ALD disease.  
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Introduction  

Alcohol misuse is a major public health problem in the worldwide and accounts for elevated social and economic 

costs [1]. Alcoholic liver disease (ALD), which is a liver disease because of alcohol consumption, is a common 

complication of alcohol misuse. By 2050, an estimated 165 million individuals worldwide will have ALD, consuming 

an estimated $120 trillion in health care costs per year [2]. Unfortunately, current biomarkers (including PCIII, IV-C, 

LN, HA) for early disease are expensive and lack sensitivity in ALD detection [3-6]. The high cost associated with 

these technologies is a significant barrier to widespread use in clinical practice. They have only been shown to be 

effective in confirming the diagnosing of the diseases after the ALD symptoms have surfaced [7]. The challenge is 

there currently exists no way to identify which people are at risk of developing ALD. Thus, it is important to develop 

more effective methods for noninvasive early diagnosis of this disease process, also there is an urgent need for 

biomarkers to diagnose ALD. Fortunately, metabolomics technology has been used to explore the particular 

metabolites, potentially diagnostic biomarkers for deep understanding the essence of diseases [8-10]. 

At the end of the 20th century, genomics wrote out the ‘script of life’; proteomics decoded the script; and 

metabolomics came into bloom [11]. Metabolomics is the endpoints of genotype functions and biochemical 

phenotype in body, are linked closely to functions alteration, and incorporates a ‘top-down’ strategy to reflect the 

terminal symptoms of a whole system and facilitates biomarker discovery [12]. Urine is an ideal bio-medium for 

disease study because it is readily available, easily obtained and less complex than other body fluids [13,14]. Ease of 

collection allows for serial sampling to monitor disease and therapeutic response. Numerous researchers have 

revealed the potential role of plasma metabolomics in searching for biomarkers predictive of therapeutic responses 

[15]. Despite this expansion, there is no report of integrative study on urine metabolomics of ALD. In an attempt to 

address this issue, we used urine metabolomics approach analyzed detecting ALD disease in a group of 206. This 

study was performed by high-throughput UPLC/ESI-Q/TOF-MS metabolomics combined with pattern recognition 

analysis multiplatform which were used to select the marker metabolites.   

 

2. Materials and Methods  

2.1 Reagents  

Acetonitrile and methanol were purchased from Fisher Scientific Corporation (New Jersey, USA). High purity formic 

acid (99%) was purchased from Honeywell Company (Morristown, New Jersey, USA). water was produced by a 

Milli-Q Ultra-pure water system (Millipore, Billerica, USA); leucine enkephalin was purchased from Sigma-Aldrich. 

All other reagents were HPLC grade. 

2.2 Human subjects 

The clinical specimens, including 206 human urine samples from ALD patients and corresponding 101 normal urine 

samples, were obtained from the First Affiliated Hospital, Heilongjiang University of Chinese Medicine. The 
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diagnoses of these samples were verified by pathologists. All of the samples were obtained with the informed consent 

of the patients and approved by the Ethics Committee of Heilongjiang University of Chinese Medicine 

(HUCM-2013-3152) and was conducted according to the Declaration of Helsinki. 

2.3 Preparation of urine samples 

Briefly, the urine samples were thawed on ice and vortexed at 10,000 rpm for 10 minutes at 4◦C to remove fine 

particulates. The supernatant was transferred to a glass vial and then filtered through a 0.22 µm syringe filter, 3 µL of 

the supernatant were injected into liquid chromatography-electrospray ionization quadrupole time-of-flight mass 

spectrometry (LC-ESI-QTOF-MS) analysis. 

2.4 LC-ESI-QTOF-MS analysis 

All samples were analysed using an LC system (Waters Corp., Milford, USA), equipped with an ACQUITY BEH C18 

chromatography column (100 mm×2.1mm i.d., 1.7µm, Waters Corporation, Milford, USA). The column temperature 

was maintained at 45◦C, and then gradient mobile phase was composed of phase A (water with 0.1% formic acid) and 

phase B (acetonitrile containing 0.1% formic acid). The gradient for the urine sample was as follows: 0–5 min, 

1–55% B; 5–9.5 min, 55–50% B; 9.5–9.6 min, 50–1% B; 9.6–11 min, 1% B; 11–11.1 min, 1–99% B; 11.1–13 min, 

99% B. The injection volume was 3 µL and the flow rate of the LC system was 0.4 mL/min. After every 10 sample 

injections, a pooled blank (quality control) sample was injected in order to ensure the stability and repeatability of the 

LC-MS system. All samples were maintained at 4 °C during the analysis. 

Mass spectrometry was performed on a quadrupole time-of-flight (Q-TOF) instrument (Waters Corp., Milford, USA) 

operating in either negative (ESI−) or positive (ESI+) electrospray ionization mode with a capillary voltage of 3,200 V 

in positive mode and 2,800 V in negative mode and a sampling cone voltage of 30 V in both modes. The source 

temperature was set at 120 °C. The desolvation temperature was set to 350◦C, desolvation gas flow rate was set to 

500 L/h, and cone gas flow was set at 50 L/h. Accurate mass was maintained by introduction of a lock-spray interface 

of leucine-enkephalin (556.2771 [M+H]+ or 554.2615 [M-H]−) at a concentration of 0.2 ng/mL in a flow rate of 

100µl·min-1. Data were acquired in centroid MS mode from 100 to 1 500 m/z mass range for TOF-MS scanning as 

single injection per sample, and the batch acquisition was repeated to check experimental reproducibility. For the 

metabolomics profiling experiments, pooled quality control samples (generated by taking an equal aliquot of all the 

samples included in the experiment) were run at the beginning of the sample queue for column conditioning and 

every ten injections thereafter to assess inconsistencies that are particularly evident in large batch acquisitions in 

terms of retention time drifts and variation in ion intensity over time. 

2.5 Statistical analyses 

All the LC-MS raw files were converted to EZinfo software (which is included in MarkerLynx Application Manager 

and can be applied directly) for compound statistics (principal component analysis (PCA) and orthogonal partial least 

square discriminant analysis (OPLS-DA)), correlation analysis and compound validation. The combining VIP-plot 
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from the OPLS-DA was carried out to select distinct variables as potential markers. Metabolite identification was 

determined as follows: first, the possible fragment mechanism was searched by MassFragment™ manager (Waters 

Corp., Milford, USA) which was used to facilitate the MS fragment ion analysis process by way of chemically 

intelligent peak-matching algorithms; and then the tandem mass was carried out and structure information of 

metabolites were matched from HMDB and METLIN; finally, the chemical structures of the candidate metabolites 

were confirmed. The classification performance of the selected metabolites was assessed using area under the ROC 

curve (AUC). The ROC can be understood as a plot of the probability of classifying correctly the positive samples 

against the rate of incorrectly classifying true negative samples. The AUC measure of an ROC plot is a measure of 

predictive accuracy. All statistical analyses were performed using the Student’s t-test. Differences with a P-value of 

0.05 or less were considered significant. 

 

3. Results   

3.1 Urine metabolite profiles 

In this study, a total of 206 human urine samples from ALD patients and corresponding 101 normal urine samples 

were collected and analyzed both by LC-ESI-QTOF-MS. Fig. 1 presents the total ion current chromatograms of the 

control subjects and ALD patients in positive mode. BPI exhibited the ideal separation result under the optimized 

gradient procedure. For further analysis of the metabolic differences between the ALD and control group, all of the 

raw data from LC/MS ions were imported into the EZinfo 2.0 package. 

3.2 Multivariate statistical analysis of metabolite profiles 

Multivariate data analysis was performed using the score plot of PCA, and there is an obvious separation between the 

clustering of the ALD and control groups (see Fig. 2 A and B), suggests that biochemical perturbation significantly 

happened in ALD group. For further analysis of feature ions, the S-plot combined VIP- plot from the OPLS were to 

select variables as potential markers for distinguishing ALD patients from controls (Fig. 2 C and D). We generated 

VIP plots from the OPLS-DA with a threshold of 1.5 to identify the metabolites that significantly contribute to the 

clustering between groups. Six differentially expressed metabolites from ALD patients were distinguished from those 

of the controls (p < 0.05, VIP>1.5, 2 ions in the positive mode and 4 ions in negative mode). The VIP plot displayed 6 

ions as differentiating metabolites according to their VIP values and considered as potential markers representing the 

metabolic characteristics (Table 1). According to the protocol detailed above, 6 endogenous metabolites were finally 

identified as markers and listed in Table 1. Overall, these metabolites displayed considerable differences between 

control and ALD samples, including sebacic acid, 3-hydroxytetradecanedioic acid, isocitric acid, suberic acid, 

isoamyl salicylate, 6-methylquinoline. These metabolites were unambiguously identified using tandem mass 

spectrometry. It was found that, among them, four compounds were upregulated and two compounds were 

downregulated. 
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3.3 Confirmation of clinical diagnosis for marker metabolites  

We enrolled 206 ALD participants that met criteria (Supplementary Table 1), aged 30 and older and otherwise healthy, 

into this 2-year observational study. The validation samples were obtained from those clinically defined ALD subjects. 

Clinical estimation of markers with ROC analysis was determined in urine samples from ALD patients and 101 

volunteers to evaluate the metabolite profile for diagnosing ALD. We examined the urine samples from the 

participants for untargeted metabolomic analysis. The samples were processed and analyzed using the same 

UPLC-MS technique as in the discovery phase. Metabolomic profiling yielded 6,200 positive-mode features and 

4,700 negative-mode features. A notable finding of this targeted metabolomic analysis was the identification of a set 

of 6 metabolites, comprising sebacic acid, 3-hydroxytetradecanedioic acid, isocitric acid, suberic acid, isoamyl 

salicylate, 6-methylquinoline. Studies have shown decreased urine sebacic acid level and increased 3-hydroxy 

tetradecanedioic acid, isocitric acid metabolites in patients with ALD [16]. To detect the expression of a set of 

metabolites in human ALD urine, the LC-MS assay was performed on urine samples of ALD and normal urine. The 

targeted quantitative analysis of the validation set revealed the levels for the six-metabolite panel (Fig. 3) as were 

observed in the discovery samples. We used receiver operating characteristic (ROC) analysis to assess the 

performance of the classifier models for group classification. The ROC analysis revealed 3-hydroxytetradecanedioic 

acid, isocitric acid, sebacic acid to be potent discriminators of the between control and ALD groups (Fig. 4). For the 

ALD group classification, the initial identified metabolites 3-hydroxytetradecanedioic acid, isocitric acid, sebacic acid 

yielded a robust area under the curve (AUC) of 0.997 (Fig.4A), 0.993 (Fig.4B), 0.978 (Fig.4C) for ALD group 

classification. The predictive value of these biomarkers in preclinical patients is strong, suggesting that these markers 

may be useful for confirmation of clinical diagnosis in the near future. 

 

Discussion 

ALD is a major cause of alcohol-related morbidity and mortality [17]. Analysis of the key metabolites in body fluids 

has become an important part of improving the diagnosis, prognosis, and therapy of diseases [18]. Firstly, liver 

histology combined with biochemical results, we successfully established liver fibrosis in animal models. A panel of 

biomarkers to characterise disease could be useful for ALD diagnostics. In this paper, LC-MS combined with pattern 

recognition analysis approach were used to simplify and quicken the identification of the metabolites of ALD. LC-MS 

based metabolomics could be an advanced tool to help us find metabolites with regards to its capacity of processing 

large datasets, and classifying of sample groups, as well as its indiscriminative nature of metabolites [19,20]. By 

using our metabolomics platform, PCA revealed a significant separation between the ALD and control samples. 

OPLS model was built to find biomarkers of ALD and 6 statistically important variables with VIP>1.5 were defined, 

many are in various stages of progress at the ALD. We used the metabolomic data from the untargeted analysis to 

build separate linear classifier models that would distinguish the control and ALD group.  
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We used ROC analysis to reveal 3-hydroxytetradecanedioic acid, isocitric acid, and sebacic acid to be potent 

discriminators of the between control and ALD groups. We found that these biomarkers were linked with the 

breakdown of citrate cycle (TCA cycle), glyoxylate and dicarboxylate metabolism, and may give rise to subtle and 

early changes. Taking these biomarkers as screening indexes, the biomarker panel was validated in a cohort of normal 

control subjects and subjects with ALD with an AUC of >95%. To our knowledge, this is the first published report of 

a urine-based biomarker panel with very high accuracy for detecting preclinical ALD. Here we present the discovery 

and validation of urine metabolite changes that distinguish normal participants from ALD in the near future. The 

accuracy for detection is high, and urine is easier to obtain and costs less to acquire, making it more useful for 

screening in large-scale clinical trials and for future clinical use. This biomarker panel requires external validation 

using similar rigorous clinical classification before further development for clinical use. 

In this study, a LC/MS urine metabolomics has been successfully established for biomarker studies in ALD. Here, we 

describe our metabolomics approach to detecting ALD disease in a group of 206. In conclusion, a total 6 urinary 

differential metabolites were identified and contributed to ALD progress, and more important, we discovered and 

validated 3 of them from urine with over 95% accuracy. The biomarker panel may be sensitive to early diagnosis of 

ALD disease. This is the first published report of a urine-based biomarker panel with very high accuracy for detecting 

ALD. 

 

Abbreviations:  

ALD, Alcoholic liver disease; OPLS, Orthogonal Projection to Latent Structures; PCA, Unsupervised’ Principal 

Component Analysis; PLS-DA, supervised Partial Least Squares-Discriminant Analysis  
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Fig. 1. Typical total ion current chromatograms of control subjects (up) and ALD patients (down). 
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Fig. 2. Metabolomic profiling of alcoholic liver fibrosis. PCA score plots of urine samples collected from normal 

(green), ALD (red) groups in positive ion mode (A) and negative ion mode (B). Panel C and D show the combination 

of VIP-score plots constructed from the supervised OPLS-DA analysis of urine in positive mode and negative ion 

mode, respectively. 
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Fig. 3 Box plots show UPLC-MS relative signal intensities for metabolites in control and ALD groups. The targeted 

analysis of the six metabolites in the discovery phase and the application of the metabolite panel developed from the 

targeted discovery phase in the independent validation phase. 
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Fig. 4 ROC results for the metabolomics analyses.  

ROC plots represent sensitivity versus 1 – specificity, and the blue line represents the AUC. 
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Table 1.  Putative metabolite markers resulting from ALD in positive and negative mode.  

No 
Compound 

ID 
Adducts Formula 

Mass Error 

(ppm) 
m/z 

Retention time 

(min) 
Compound Trend VIP 

1 HMDB00792 M-H C10H18O4 -0.42482 201.1126 4.947166667 Sebacic acid ↓ 1.7847 

2 HMDB00394 M-H C14H26O5 3.431132 273.1711 7.0795 3-Hydroxytetradecanedioic acid ↑ 1.5822 

3 HMDB00193 M-H C6H8O7 -4.35433 191.0183 0.780166667 Isocitric acid ↑ 1.5375 

4 HMDB00893 M-H C8H14O4 2.088976 173.0817 5.322166667 Suberic acid ↑ 1.5035 

5 HMDB40225 M+H C12H16O3 -1.57926 209.1174 7.189166667 Isoamyl salicylate ↓ 2.2786 

6 HMDB33115 M+H C10H9N -3.11727 144.0809 2.340266667 6-Methylquinoline ↑ 2.1561 

 

Note: The markers were chosen on the basis of significant predictive value as determined by VIP-score plots constructed from the 

supervised OPLS-DA. Arrows indicate upregulation or downregulation in the comparison group as compared to the control participants.  
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Supplementary Table 1. Clinical characteristics of the subjects at baseline 

 
Samples ALD Control 

Sample No. 206 101 

Age 31±3 30±2 

Sex (F/M) 198/318 46/55 

BMI(kg/m2) 26.11±2.54 23.24±2.19 

ALT (U/L) 146.33±68.35 89.17±56.40 

AST (U/L) 166.87±84.43 96.10±67.45 

Total bilirubin (mg/dL) 4.29±2.47 1.91±1.04 

Direct bilirubin(mg/dL) 2.81±1.67 1.34 ± 0.88 

Indirect bilirubin(mg/dL) 1.92±0.46 0.89 ± 0.29 
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