

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Flower-like Bi ₂ S ₃ /Bi ₂ MoO ₆ heterojunction superstructures with
2	enhanced visible-light-driven photocatalytic activity
3	Junlei Zhang, ^a Lisha Zhang, ^{*a} Nuo Yu, ^b Kaibing Xu, ^b Shijie Li, ^a Huanli Wang, ^a and Jianshe
4	Liu ^{*a}
5	^a State Environmental Protection Engineering Center for Pollution Treatment and Control in
6	Textile Industry, College of Environmental Science and Engineering, Donghua University,
7	Shanghai 201620, China
8	^b State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College
9	of Materials Science and Engineering, Donghua University, Shanghai 201620, China
10	
11	Abstract: A prerequisite for the development of photocatalytic technology is to obtain
12	efficient visible-light-driven photocatalysts. Herein, we have reported flower-like
13	Bi_2S_3/Bi_2MoO_6 heterojunction as a novel and efficient visible-light-driven photocatalyst.
14	Bi_2S_3/Bi_2MoO_6 heterojunction has been prepared by a solvothermal method. It consists of
15	flower-like superstructures with diameters ranging from 1 to 3 μ m, which are built from
16	Bi_2MoO_6 nanosheets with a thickness of about 15 nm decorated with Bi_2S_3 nanoparticles with
17	diameter of ~3.5 nm. Furthermore, the photocatalytic activity of Bi_2S_3/Bi_2MoO_6
18	heterojunction has been evaluated through the degradation of rhodamine B (RhB) dye and
19	colorless parachlorophenol (4-CP) under visible-light irradiation ($\lambda > 400$ nm). The results
20	demonstrate that Bi_2S_3/Bi_2MoO_6 heterojunction exhibits higher photocatalytic activity in
21	degrading RhB and 4-CP than single Bi ₂ S ₃ or Bi ₂ MoO ₆ . More importantly, the photocatalytic

^{*} Corresponding authors. Tel.: +86-21-67792548; Fax: +86-21-67792522.

E-mail address: <u>lszhang@dhu.edu.cn</u> (L.S. Zhang); <u>liujianshe@dhu.edu.cn</u> (J.S. Liu).

RSC Advances Accepted Manuscript

activity of Bi_2S_3/Bi_2MoO_6 heterojunction is superior to the sum of the activities of two individual photocatalysts (Bi_2MoO_6 and Bi_2S_3). The recycling experiment confirms that Bi_2S_3/Bi_2MoO_6 heterojunction is essentially stable during the photocatalytic process. Therefore, Bi_2S_3/Bi_2MoO_6 heterojunction can be used as an efficient and stable visible-light-driven photocatalyst for the purification of the environments.

27

- 28 Keywords: Bi₂S₃/Bi₂MoO₆; superstructures; visible-light-driven; photocatalysis
- 29

30 **1. Introduction**

Over the past few years, environmental problems, especially associated with harmful 31 32 organic pollutants in water, are posing severe threats to human health. Among the widespread methods for the purification of the environments, semiconductor photocatalysis, as a "green" 33 34 and energy saving technology for completely eliminating organic pollutants, has drawn worldwide attention.¹⁻⁴ A prerequisite for the development of photocatalytic technology is to 35 obtain efficient photocatalysts.¹⁻⁴ Up to now, TiO₂ is undoubtedly one of the most excellent 36 and widely used photocatalysts due to its abundance, chemical stability, low cost, and 37 nontoxicity.^{5, 6} But a major drawback of TiO₂ is its large bandgap (~3.2 eV), and thus only UV 38 light (typically $\lambda < 400$ nm; a small fraction of the solar spectrum, ~5%) can be absorbed, 39 which significantly limits the utilization of solar light in the visible region (400 < λ < 700 40 nm).^{5, 6} To utilize solar energy more effectively, the development of efficient 41 visible-light-driven (VLD) photocatalysts has drown worldwide attention. 42

43 Recently, bismuth(iii)-based semiconductor photocatalysts have been demonstrated to 44 exhibit superior photocatalytic activities under visible-light irradiation ($\lambda > 400$ nm), since Bi

6s and O 2p levels can form a preferable hybridized conduction band (VB) to show strong 45 oxidative ability for degrading organic pollutants.⁷⁻¹⁹ Thus, a series of single-component 46 bismuth(iii)-based photocatalysts have been developed, such as CaBi₂O₄,⁷ Bi₂O₃,⁸ BiVO₄,⁹ 47 Bi_2WO_6 ,^{10, 11} BiOX (X=Cl, Br, I)¹² and Bi_2MoO_6 ¹³⁻¹⁹. Among these bismuth(iii)-based 48 photocatalysts, bismuth molybdate (Bi2MoO6, band gap ~2.7 eV) possesses excellent 49 photocatalytic performance for water splitting and organic pollutant degradation.¹³⁻¹⁹ For 50 51 instance, Kudo et al. have reported that Bi_2MoO_6 shows high photocatalytic activity for O_2 evolution under visible-light irradiation;¹⁵ and several groups have confirmed that Bi₂MoO₆ 52 exhibits excellent photocatalytic activity for the degradation of rhodamine B dye.¹⁶⁻¹⁹ 53 However, there are still some drawbacks hindering their practical application, such as the 54 unsatisfactory photo-response range and short photogenerated electron-hole pair lifetime.¹³⁻¹⁹ 55

It is well known that the construction of semiconductor heterojunctions is an efficient 56 method for the improvement of photocatalytic performances, as summarized in our recent 57 review.³ To improve the photocatalytic activity of Bi₂MoO₆, several kinds of Bi₂MoO₆-based 58 heterojunctions have been developed, including Bi₂MoO₆-oxide (oxide: TiO₂,²⁰ ζ-Bi₂O₃,²¹ 59 CuPc,²² BiOCl,²³ ZnTiO₃,²⁴ and Bi₂O₂CO₃²⁵), Bi₂MoO₆-metal (metal: Ag²⁶ and W²⁷), 60 Bi₂MoO₆-carbon (carbon: graphene²⁸ and carbon nanofibers²⁹), multicomponent (such as 61 Ag-AgBr-Bi₂MoO₆³⁰ and Ag-AgCl-Bi₂MoO₆³¹). Compared with pure Bi₂MoO₆, these 62 63 Bi_2MoO_6 -based heterojunctions exhibit higher photocatalytic activity for the degradation of organic pollutants, hydrogen generation, and/or photocatalytic disinfection.²⁰⁻³² However, to 64 the best of our knowledge, there is little work that reports on the development of 65 Bi2MoO₆-sulfide heterojunction photocatalysts, except for MoS₂/Bi2MoO₆.³² 66

RSC Advances Accepted Manuscript

As a lamellar binary semiconductor, bismuth sulfide (Bi_2S_3) has significant applications **RSC Advances Accepted Manuscript**

68 in photovoltaics and photocatalysis. Several kinds of Bi₂S₃ heterojunctions have been demonstrated to exhibit excellent photocatalytic activity, such as $Bi_2S_3/Bi_2WO_6^{33}$ and 69 $Bi_2S_3/BiOX$ (X=Cl, Br, I)³⁴⁻³⁶. Moreover, the size quantization enables Bi_2S_3 nanoparticles 70 71 (1.3 eV for bulk) to show tunable photosensitization and considerable photoactivity in the visible region.³⁷ Herein, to improve the photocatalytic activity of Bi₂MoO₆, we designed and 72 73 constructed Bi₂S₃/Bi₂MoO₆ heterojunction as a novel photocatalyst. Bi₂S₃/Bi₂MoO₆ heterojunction was prepared via a solvothermal method, and it consisted of flower-like 74 superstructures with diameters ranging from 1 to 3 µm, which were built from Bi₂MoO₆ 75 nanosheets decorated with Bi₂S₃ nanoparticles (~3.5 nm). Importantly, under visible-light 76 irradiation, Bi₂S₃/Bi₂MoO₆ heterojunction exhibited higher photocatalytic activity in 77 degrading rhodamine B (RhB) dye and colorless parachlorophenol (4-CP) than single Bi₂S₃ or 78 79 Bi₂MoO₆.

80

67

2. Experimental Details 81

2.1 Materials 82

Bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O), sodium molybdate (Na₂MoO₄·2H₂O), 83 thiourea ((NH₂)₂CS), absolute ethanol (CH₃CH₂OH) and ethylene glycol were purchased 84 85 from Sinopharm Chemical Reagent Co., Ltd (P.R. China). Rhodamine B (RhB) was purchased from Sigma (America) and parachlorophenol (4-CP) was purchased from J&K CHEMICAL 86 Ltd. (P.R. China). All chemicals were of analytical grade and were used as received without 87 further purification. 88

2.2. Preparation of photocatalysts 89

90	$B_{12}S_3/B_{12}MoO_6$ heterojunction was prepared via a solvothermal method. In a typical
91	procedure, Bi(NO ₃) ₃ ·5H ₂ O (2.1 mmol) and Na ₂ MoO ₄ ·2H ₂ O (1 mmol) were ultrasonically
92	dissolved in 10 mL ethylene glycol, respectively. Meanwhile, (NH ₂) ₂ CS (0.15 mmol) was
93	ultrasonically dissolved in 60 mL absolute ethanol. Subsequently, Na ₂ MoO ₄ solution and
94	(NH ₂) ₂ CS solution were added in turn to Bi(NO ₃) ₃ solution. The resulting precursor solution
95	was agitated for about 10 min, then transferred to a 100 mL autoclave, sealed, and
96	solvothermally treated at 160 °C for 12 h. The system was cooled to room temperature
97	naturally, and the solid sample was collected by filtration, washed thoroughly with water and
98	ethanol and dried at 60 °C for 24 h. For comparison, pure Bi_2MoO_6 and Bi_2S_3 sample were
99	also respectively prepared by adopting the same method in the absence of (NH ₂) ₂ CS or
100	$Na_2MoO_4 2H_2O_1$

101 **2.3. Characterization of photocatalysts**

102 X-ray diffraction (XRD) measurements were recorded on a D/max-2550 PC X-ray diffractometer using Cu Ka radiation ($\lambda = 0.15418$ nm). The scanning electron microscope 103 (SEM) characterizations were performed on a Hitachi S-4800 field emission scanning 104 electron microscope. The transmission electron microscope (TEM) analyses were performed 105 by a JEOL JEM-2100 high-resolution transmission electron microscope. The optical diffuse 106 reflectance spectrum were conducted on a UV-VIS-NIR scanning spectrophotometer (Lambda 107 35, PerkinElmer) using an integrating sphere accessory. The electronic states of elements in 108 the sample were analyzed by using X-ray photoelectron spectroscopy (PHI-5400, 109 PerkinElmer). The Brunauer-Emmett-Teller (BET) surface area was determined by a 110 multipoint BET method using the adsorption data in the relative pressure (P/P_0) range of 111

0.05-0.3. A desorption isotherm was used to determine the pore size distribution via the 112

113 Barret-Joyner-Halender (BJH) method, assuming a cylindrical pore model.

2.4. Photocatalytic activity 114

Photocatalytic activities of as-prepared photocatalysts were evaluated by degrading the 115 116 aqueous solution of rhodamine B (RhB) dye or colorless parachlorophenol (4-CP) under visible-light irradiation using a 300 W xenon lamp (Beijing Perfect Light Co. Ltd., Beijing) 117 118 with a cut-off filter ($\lambda > 400$ nm) as light source. In each experiment, 30 mg of photocatalyst was added to 50 mL of RhB (10 mg L^{-1} , pH = 6.27) or 4-CP (1 mg L^{-1} , pH = 6.34) solution. 119 Prior to irradiation, the suspension was mildly magnetically stirred in the dark for 30 min to 120 121 ensure that an adsorption/desorption equilibrium was established between the photocatalysts 122 and the target contaminant (RhB or 4-CP). During visible-light irradiation, 2 mL suspension was collected at given time intervals and then centrifuged to remove the remaining solids for 123 124 analysis. For the photocatalytic test of RhB, the UV-vis absorption spectra of the solutions 125 were recorded on a U-2910 UV-vis spectrophotometer (Hitachi, Japan), and then RhB 126 concentration was calculated by analyzing the photoabsorption intensity at wavelength of 554 nm. For the photocatalytic test of 4-CP, the 4-CP concentrations in the solutions were 127 analyzed by high-performance liquid chromatography (HPLC) using an Dionex Ultimate 128 129 3000 series (USA) equipped with a diode array detector (DAD) with wavelength set at 280 130 nm directly after filtration through a $0.22 \,\mu\text{m}$ hydrofacies syringe filter. The mobile phase was methanol (80%) and water (20%) and the flow rate was 0.5 mL min⁻¹. In the stability and 131 reusability test of the catalyst, four consecutive cycles were tested. The catalysts were washed 132 thoroughly with water and dried after each cycle, and then it was immersed in the same 133 volume (50 mL) of fresh parachlorophenol aqueous solution (1 mg L^{-1}) again. 134

Total organic carbon (TOC) analysis was carried out by adding 300 mg Bi_2S_3/Bi_2MoO_6 into 100 mL RhB aqueous solution (60 mg L⁻¹). Prior to irradiation, the suspension was magnetically stirred for 60 min in the dark to achieve a saturated RhB absorption onto the photocatalyst surface. During visible-light irradiation, 10 mL suspension was collected at given time intervals and filtered by the membrane pore size of 0.45 µm to remove the photocatalyst, and then was detected by a Shimadzu TOC-VCPH total organic carbon analyzer.

142

143 **3. Results and discussion**

3.1 Preparation and characterization of catalysts

Bi₂S₃/Bi₂MoO₆ heterojunction was prepared by a one-step solvothermal method. Bi₂MoO₆ was produced by the reaction of Bi(NO₃)₃ (2 mmol) and Na₂MoO₄ (1 mmol) and then crystallized during the solvothermal process. The redundant Bi(NO₃)₃ (0.1 mmol) molecules were adsorbed on the surface of Bi₂MoO₆. Sulfur ions were slowly released from (NH₂)₂CS in the solvothermal process, resulting in the in situ growth of Bi₂S₃ nanoparticles on Bi₂MoO₆ superstructures to form Bi₂S₃/Bi₂MoO₆ heterojunction (theoretical molar ratio of Bi₂S₃:Bi₂MoO₆ was 1:20).

The phase of the as-prepared Bi_2S_3/Bi_2MoO_6 heterojunction was investigated by XRD pattern (Fig. 1). For comparison, the XRD patterns of pure Bi_2MoO_6 and Bi_2S_3 were also recorded. All diffraction peaks from pure Bi_2MoO_6 can be readily indexed to orthorhombic Bi_2MoO_6 (JCPDS No. 21-0102), and the diffraction peaks for pure Bi_2S_3 can be assigned to orthorhombic Bi_2S_3 (JCPDS No. 17-0320). Bi_2S_3/Bi_2MoO_6 sample exhibits a XRD pattern which is similar to that of pure Bi_2MoO_6 ; four strong diffraction peaks at 28.3°, 32.6°, 46.7°

- and 55.6° can be assigned to (131), (002), (202) and (133) planes of orthorhombic Bi_2MoO_6 .
- 159 In addition, no characteristic peaks peculiar to Bi_2S_3 are observed, which may be attributed to
- 160 the fact that the content of Bi_2S_3 in Bi_2S_3/Bi_2MoO_6 was too low to be efficiently detected.

162 Fig. 1. XRD patterns of Bi₂MoO₆, Bi₂S₃, as-prepared Bi₂S₃/Bi₂MoO₆ and the used

- 163 Bi₂S₃/Bi₂MoO₆ after photocatalytic test, and standard XRD patterns of Bi₂MoO₆ (JCPDS
- 164 21-0102) and Bi₂S₃ (JCPDS 17-0320).

- 165 166
- Fig. 2. SEM images of pure Bi_2MoO_6 (a) and pure Bi_2S_3 (b).
- 167

Subsequently, the sizes and morphologies of Bi_2S_3/Bi_2MoO_6 heterojunction as well as pure Bi_2MoO_6 and Bi_2S_3 were further studied by SEM and TEM images (Fig. 2, 3). Obviously, pure Bi_2MoO_6 sample consists of flower-like microspheres with diameters ranging from 1 to 3 μ m (Fig. 2a). The close-up view indicates that Bi_2MoO_6 flower-like superstructure is in fact

built from nanosheets (inset of Fig. 2a). Meanwhile, pure Bi_2S_3 sample presents the irregular 172 173 large-size flake structure (Fig. 2b). In addition, Bi_2S_3/Bi_2MoO_6 sample is also composed of flower-like superstructures with diameters ranging from 1 to 3 µm (Fig. 3a), which is similar 174 to that of pure Bi_2MoO_6 sample. These superstructures are in fact built from two dimensional 175 176 nanosheets with a thickness of about 15 nm and an average length of about 200 nm (Fig. 3b), 177 which can be vividly demonstrated by the part view (Fig. 3c) at higher magnification. More 178 importantly, more hierarchical nanopores and macro-pores superstructures with bigger 179 diameter sizes in nanosheets are obtained by Bi₂S₃/Bi₂MoO₆ heterojunction compared with pure Bi₂S₃ and pure Bi₂MoO₆, and these hierarchical porous superstructures may improve the 180 physicochemical properties or serve as transport paths for small molecules, are found among 181 182 the nanosheets in the spherical superstructures (Fig. 3c).

183

185

184 Fig. 3. SEM (a-c) and TEM (d-f) images of Bi_2S_3/Bi_2MoO_6 heterojunction.

Further information about Bi_2S_3/Bi_2MoO_6 heterojunction is obtained from TEM image (Fig. 3d), and it confirms that the flower-like superstructure is built from nanosheets. The lattice resolved high-resolution TEM image (Fig. 3e) and its corresponding Fourier transform

RSC Advances Accepted Manuscript

(FFT) pattern (inset of Fig. 3e) clearly exhibit the (131) and (111) crystal planes with 0.316 nm and 0.370 nm *d*-spacings and 50° interfacial angle, further indicating the orthorhombic structure of Bi₂MoO₆. Importantly, one can find that there are plenty of small nanoparticles with the size of ~3.5 nm anchored on the surface of nanosheets (Fig. 3d), and these small nanoparticles exhibit lattice fringes with an interplane spacing of 0.225 nm, which is corresponding to the (141) crystal plane of orthorhombic Bi₂S₃ (Fig. 3f). In addition, the EDS (Fig. 4) confirms the presence of Bi, Mo, O and S elements in the Bi₂S₃/Bi₂MoO₆ sample.

196

197 Fig. 4 EDS pattern of Bi_2S_3/Bi_2MoO_6 heterojunction.

198

Furthermore, the elemental composition and chemical status of Bi_2S_3/Bi_2MoO_6 sample was investigated by X-ray photoelectron spectroscopy (XPS). The survey spectrum in Fig. 5a clearly demonstrates that the sample is mainly composed of Bi, Mo, O and S elements. The binding energies (Fig. 5b) of 158.3 eV for Bi 4f_{7/2} and 163.6 eV for Bi 4f_{5/2} indicate a trivalent oxidation state for bismuth.³² Fig. 5c shows that the binding energies of Mo 3d_{3/2} and Mo 3d_{5/2} peaks in sample are respectively located at 234.5 and 231.4 eV, suggesting that Mo⁶⁺ exists in the Bi₂S₃/Bi₂MoO₆ sample.³² Meanwhile, Fig. 5d gives the binding energies of S

209

206 $2p_{1/2}$ and S $2p_{3/2}$ peaks in sample, which are respectively located in 158.3 and 163.6 eV, 207 indicating that S²⁻ exists in Bi₂S₃/Bi₂MoO₆ sample.³⁴ These results support the formation of

208 Bi_2S_3 and Bi_2MoO_6 in the sample.

Based on the above XRD, TEM, EDS and XPS results, one can conclude that there are 213 Bi_2S_3 and Bi_2MoO_6 species in the Bi_2S_3/Bi_2MoO_6 sample, and the nanojunction in 214 Bi_2S_3/Bi_2MoO_6 system is well constructed. Subsequently, the nitrogen adsorption/desorption 215 isotherms of Bi_2MoO_6 and Bi_2S_3/Bi_2MoO_6 heterojunction were investigated (Fig. 6a). The 216 Brunauer-Emmett-Teller (BET) surface area of Bi_2MoO_6 is calculated to be 65.7 m² g⁻¹. 217 Interestingly, Bi_2S_3/Bi_2MoO_6 heterojunction exhibits a slight increase of BET surface area 218 (74.9 m² g⁻¹). Usually, an increase of the surface area leads to an improvement of the 219 220 photocatalytic activity. Moreover, the pore size distributions, which are calculated from the desorption branches, reveal the existence of nano-pores in both Bi₂MoO₆ and Bi₂S₃/Bi₂MoO₆ 221

RSC Advances Accepted Manuscript

heterojunction (the inset of Fig. 6a). The nanopores in Bi_2MoO_6 have the diameter of about 15.4 nm, while those in Bi_2S_3/Bi_2MoO_6 heterojunction have the diameter of about 14.4 nm, which agrees with that revealed by the SEM and TEM images (Fig. 2a and Fig. 3a-c). The presence of nanopores may greatly improve the physicochemical properties and/or serve as transport paths for small molecules.

Fig. 6 (a) Nitrogen adsorption-desorption isotherms of pure Bi_2MoO_6 and Bi_2S_3/Bi_2MoO_6 heterojunction; (b) Uv-vis diffuse reflectance spectra of pure Bi_2MoO_6 , bulk Bi_2S_3 and Bi_2S_3/Bi_2MoO_6 heterojunction.

231

227

The optical absorption of Bi_2S_3/Bi_2MoO_6 heterojunction was measured by an UV-vis 232 spectrometer (Fig. 6b). For comparison, the optical absorption spectra of pure Bi₂MoO₆ and 233 bulk Bi_2S_3 were also recorded. Pure Bi_2MoO_6 exhibits strong photoabsorption from the UV to 234 235 visible-light region with an absorption edge around 470 nm (band gap: 2.7 eV). In addition, bulk Bi₂S₃ shows intense absorption over the visible-light range, even extending to the 236 infrared region. The fitted direct band gap of Bi_2S_3 is determined to be 1.30 eV, which is equal 237 to its bulk value. Interestingly, Bi_2S_3/Bi_2MOO_6 heterojunction displays strong photoabsorption 238 from the UV to visible-light region with an absorption edge around 480 nm, which is similar 239 to that of pure Bi_2MoO_6 . Obviously, the presence of Bi_2S_3 nanoparticles (NPs) in 240 Bi_2S_3/Bi_2MoO_6 heterojunction has no obvious effect on its optical absorption, which should 241 result from the small size and is similar to the previous study.³⁷ On the basis of the effective 242

mass approximation model, the blue shift of Bi_2S_3 NPs relative to the bulk is dominated by the confinement of electrons and holes, as described by the following equation:^{37, 38}

245
$$\Delta E_{\mathscr{E}}(R) = \frac{h^2}{8m_0 R^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right)$$

where $\Delta E_g(R)$ is the band gap shift for the crystal radius *R*, *h* is the Planck's constant, m_0 is the electron mass, while m_e^* and m_h^* are the effective masses of electrons and holes, respectively. Since Bi₂S₃ NPs exhibit the average diameter of ~3.5 nm (Fig. 3d. f), the calculated band gap should be 2.9 eV which is close to that of (2.7 eV) Bi₂MoO₆.

The band edge positions of Bi_2MoO_6 (2.64 eV), bulk Bi_2S_3 (1.3 eV) and Bi_2S_3 NPs (2.9 250 equation:³⁹ eV) be evaluated by the following empirical 251 can $E_{vB} = X - E_0 + 0.5E_g$ (1); $E_{CB} = E_{vB} - E_g$ (2), where E_{vB} is the valence band (VB) edge 252 potential, X is the electronegativity of the semiconductor, which is the geometric mean of the 253 electronegativity of the constituent atoms. The X values for Bi_2MoO_6 and Bi_2S_3 are calculated 254 as 5.50 eV⁴⁰ and 5.95 eV³³, respectively. E_0 is the energy of free electrons on the hydrogen 255 scale (about 4.5 eV), and E_g is the band gap energy of the semiconductor. According to the 256 Eqs. (1) and (2), E_{VB} and E_{CB} values of Bi_2MoO_6 are determined to be 2.32 eV and -0.32 eV, 257 those of bulk Bi₂S₃ are 2.1 eV and 0.8 eV, and those of Bi₂S₃ NPs (~3.5 nm) are 2.90 eV and 0 258 eV. The VB of Bi_2S_3 shifts to more positive potentials to produce the larger VB energy 259 260 difference (ΔE_V) between Bi₂MoO₆ and Bi₂S₃, which further favors the electrons transfer and strong oxidization ability of holes. 261

262 **3.2** Photocatalytic performances under visible-light irradiation

263 Rhodamine B (RhB), a common dye widely used in dyeing cellulose, nylon, silk and 264 wool, was firstly chosen as a representative pollutant to evaluate the photocatalytic

performance of Bi₂S₃/Bi₂MoO₆ heterojunction (Fig. 7). For comparison, RhB degradation 265 266 without photocatalyst (blank test) and with pure Bi_2MoO_6 or pure Bi_2S_3 , was also performed under the other identical conditions, respectively. When dissolved in distilled water, RhB 267 displays a major absorption band centered at 554 nm that is used to monitor the photocatalytic 268 degradation. Clearly, Bi2MoO6, Bi2S3 and Bi2S3/Bi2MoO6 heterojunction can reach the 269 absorption equilibrium within 30 min in the dark and Bi₂S₃/Bi₂MoO₆ heterojunction can 270 271 adsorb RhB molecules more efficiently (44.3%) than pure Bi_2MoO_6 (0.021%) and pure Bi_2S_3 272 (0.005%) due to the larger surface area.

Subsequently, the photocatalytic reaction was carried out for another 60 min under 273 visible-light irradiation (Fig. 7). The blank test indicates that the degradation of RhB is 274 275 extremely slow without photocatalyst under visible-light irradiation. By using the bulk Bi_2S_3 as the VLD photocatalyst, the degradation of RhB is also slow, and only 14% RhB can be 276 277 removed after 60 min of reaction. When pure Bi_2MoO_6 is used as the VLD photocatalyst, the 278 photodegradation efficiency of RhB can just approach 29% after 60 min, indicating low photocatalytic activity. Importantly, when Bi₂S₃/Bi₂MoO₆ heterojunction is used as the VLD 279 photocatalyst, 100% RhB can be removed after 60 min of visible-light irradiation, indicating 280 the highest photocatalytic activity. Furthermore, the photocatalytic degradation rate was 281 calculated by the apparent pseudo-first-order model (the inset of Fig. 7). The rate from 282 Bi_2S_3/Bi_2MoO_6 heterojunction was determined to be 0.0643 min⁻¹ which is greatly higher than 283 that from the pure Bi_2S_3 (0.000195 min⁻¹) and pure Bi_2MoO_6 (0.000493 min⁻¹). These facts 284 indicate that the construction of Bi₂S₃/Bi₂MoO₆ heterojunction improve greatly the 285 photocatalytic performances, which is similar to the previous reports on heterojunction 286

- 287 photocatalysts such as Alpha-beta-Ga₂O₃ junction^{41,42}, Sr₂TiO₄/SrTiO₃ (La,Cr)
- heterojunction⁴³ and $Ga_2O_3/ZnGa_2O_4$ heterojunction⁴⁴.

289

Fig. 7 The adsorption and degradation efficiency of RhB in aqueous solution (10 mg L^{-1} , 50

291 mL, pH = 6.27) versus the exposure time under visible-light irradiation ($\lambda > 400$ nm), in the

absence of photocatalyst and in the presence of as-prepared samples (30 mg).

293

Fig. 8 The adsorption and degradation efficiency of 4-CP in aqueous solution (1 mg L⁻¹, 50 mL, pH = 6.34), versus the exposure time under visible-light irradiation ($\lambda > 400$ nm), in the absence of photocatalyst and in the presence of as-prepared samples (30 mg).

251

To further illustrate the fact that the real photocatalytic performance of Bi₂S₃/Bi₂MoO₆ heterojunction results from the excitation of the photocatalyst rather than the sensitization mechanism, colorless parachlorophenol (4-CP) was used as the model of pollutants (Fig. 8). Obviously, no 4-CP can be absorbed by all these photocatalysts for 30 min of dark reaction,

RSC Advances Accepted Manuscript

which should be attributed to the nature of the electrically neutral of 4-CP. In the subsequent 302 303 photocatalytic reaction process, the degradation of 4-CP without photocatalyst and with bulk Bi₂S₃, is extremely slow and nearly no 4-CP is removed after 150 min of visible-light 304 irradiation. By using pure Bi_2MoO_6 as the VLD photocatalyst, 4-CP degradation is also very 305 306 slow and only 13% 4-CP is photocatalytically degraded after 150 min of visible-light irradiation. Surprisingly, when Bi₂S₃/Bi₂MoO₆ heterojunction is used as the VLD 307 308 photocatalyst, 4-CP in the solution is rapidly photocatalytically decomposed during 60 min of 309 visible-light irradiation, and the photodegradation efficiency reaches up to 98.7% at 60 min. When the illumination time lasts to 90 min, 100% 4-CP has been removed, indicating the 310 photocatalytic Bi₂S₃/Bi₂MoO₆ 311 highest activity heterojunction among these of 312 above-mentioned photocatalysts.

In order to further confirm the role of the nanojunction in Bi_2S_3/Bi_2MoO_6 heterojunction, 313 314 the removal efficiencies of RhB and 4-CP were compared (Fig. 9). When pure Bi_2MoO_6 is 315 used as the VLD photocatalyst, 29% RhB is removed after 60 min, and the removal efficiency of 4-CP can reach 13% after 150 min. By using pure Bi₂S₃ as the VLD photocatalyst, only 316 14% RhB is removed after 60 min, and nearly no 4-CP is degraded after 150 min. Thus, the 317 total degradation efficiencies by two individual photocatalysts (Bi_2MoO_6 and Bi_2S_3) are 42% 318 319 (29% + 13%) for RhB after 60 min, or 14% (14% + 0) for 4-CP after 150 min. More 320 importantly, Bi₂S₃/Bi₂MoO₆ heterojunction can remove 100% RhB after 60 min or 100% 321 4-CP after 90 min, which are both higher than the total removal efficiencies (42% and 14%) by pure Bi₂MoO₆ and Bi₂S₃ for RhB and 4-CP removal. These results strongly reveal that 322 there is a synergic effect in Bi_2S_3/Bi_2MoO_6 heterojunction, which is similar to the 323 phenomenon in our previous study.^{45,46} 324

325

326 Fig. 9 The comparison of removal efficiencies of RhB after 60 min and 4-CP after 150 min,

by Bi_2MoO_6 , Bi_2S_3 and Bi_2S_3/Bi_2MoO_6 heterojunction.

328

Fig. 10 TOC removal during RhB (60 mg L^{-1} , 100 mL) photocatalytic degradation process by Bi₂S₃/Bi₂MoO₆ heterojunction (300 mg).

331

It is well known that the mineralization is the ultimate goal in pollutant treatment, and total organic carbon (TOC) value is usually used as an important index for the mineralization degree of organic species. Herein, the mineralization of RhB was investigated by immersing 300 mg Bi_2S_3/Bi_2MoO_6 in 100 mL RhB aqoeous solution (60 mg L⁻¹) under visible-light irradiation, and TOC value was recorded during the photocatalytic process (Fig. 10). Obviously, with the increase of irradiation time, the TOC concentration continuously decreases, indicating that RhB is steadily mineralized. After six hours, the TOC concentration

RSC Advances Accepted Manuscript

decreases from 40.85 mg L⁻¹ at 0 h to 9.791 mg L⁻¹ at 6 h, reaching a high mineralization ratio of 76%. This fact demonstrates that Bi_2S_3/Bi_2MoO_6 heterojunction superstructures can efficiently degrade and mineralize organic pollutants under visible-light irradiation.

Fig. 11. Cycling runs in photocatalytic degradation of 4-CP over Bi₂S₃/Bi₂MoO₆
 heterojunction.

342

The stability of Bi₂S₃/Bi₂MoO₆ heterojunction was also studied through the degradation 346 347 of 4-CP under visible-light irradiation (Fig. 11). It should be noted that the Bi_2S_3/Bi_2MoO_6 348 heterojunction is easily recycled by simple filtration without any treatment in these experiments. After four cycles of the photodegradation process of 4-CP, the Bi₂S₃/Bi₂MoO₆ 349 heterojunction does not exhibit any significant loss of activity, as shown in Fig. 11, 350 confirming that the components of the Bi_2S_3/Bi_2MoO_6 heterojunction is not corroded by light 351 352 and that the heterojunction structure is stable during the photocatalytic process. This fact can 353 be further supported by XRD patterns, which reveal that Bi_2S_3/Bi_2MoO_6 heterojunction after the photocatalytic reaction exhibits the similar diffraction peaks compared with that of the 354 as-prepared Bi₂S₃/Bi₂MoO₆ heterojunction (Fig. 355 1). Therefore, the as-prepared Bi₂S₃/Bi₂MoO₆ heterojunction is an effective and stable VLD photocatalyst. 356

357	Based on the above results, one can conclude that Bi_2S_3/Bi_2MoO_6 heterojunction exhibits
358	higher photocatalytic activity than the pure Bi_2MoO_6 and pure Bi_2S_3 (Fig. 7, 8), and even
359	higher than the sum of two individual photocatalysts $(\mathrm{Bi}_2\mathrm{MoO}_6 \text{ and } \mathrm{Bi}_2\mathrm{S}_3)$ for the
360	photocatalytic degradation of RhB or 4-CP (Fig. 9). The possible reasons for the higher
361	photocatalytic activity of Bi_2S_3/Bi_2MoO_6 heterojunction are analyzed, and we believe that
362	there are chiefly two reasons. One reason is the hierarchical nanopores of $\mathrm{Bi}_2\mathrm{S}_3/\mathrm{Bi}_2\mathrm{MoO}_6$
363	heterojunction compared with Bi_2MoO_6 and Bi_2S_3 as shown in Fig. 3a-c and Fig. 2a, b.
364	Undoubtedly, these hierarchical porous superstructures can improve the physicochemical
365	properties and be served as transport paths for small molecules, further facilitating the
366	absorption and photodegradation of RhB and 4-CP. The other reason should be due to the
367	efficient separation of photogenerated electron-hole pairs. ⁴¹⁻⁴⁴ Obviously, more matching band
368	gaps are thus obtained due to the presence of $\mathrm{Bi}_2\mathrm{S}_3$ nanoparticles (NPs) in $\mathrm{Bi}_2\mathrm{S}_3/\mathrm{Bi}_2\mathrm{MoO}_6$
369	heterojunction, further facilitating the separation of photogenerated electrons and holes. The
370	energy band diagram and photocatalytic process of $\mathrm{Bi}_2\mathrm{S}_3/\mathrm{Bi}_2\mathrm{MoO}_6$ heterojunction can be
371	proposed, as shown in Fig. 12. Under visible-light irradiation, the photocatalytic reaction is
372	initiated by the absorption of visible-light photons with energy equal or higher than the
373	band-gap in either $\mathrm{Bi}_2\mathrm{S}_3$ or $\mathrm{Bi}_2\mathrm{MoO}_6$ semiconductors, which results in the creation of
374	photogenerated holes in its VB and electrons in its conduction band (CB). Since the CB and
375	VB of Bi_2MoO_6 lie above those of Bi_2S_3 NPs, the photogenerated electrons easily migrate
376	from the CB of Bi_2MoO_6 to that of Bi_2S_3 NPs; and the photogenerated holes can also be easily
377	transferred from the VB of Bi_2S_3 NPs to that of Bi_2MoO_6 . As a result, less of a barrier exists
378	due to the promoted separation and migration of photogenerated carriers by the internal field.
379	So the probability of electron-hole recombination can be decreased. Larger numbers of

383

Fig. 12 The proposed possible mechanism for the improvement of photocatalytic activity.

386 4. Conclusions

387 In summary, Bi_2S_3/Bi_2MoO_6 heterojunction has been prepared by a simple solvothermal synthesis method. It consists of flower-like superstructures with diameters ranging from 1 to 3 388 389 μ m, which are built from Bi₂MoO₆ nanosheets with a thickness of about 15 nm decorated with Bi₂S₃ nanoparticles with diameter of ~3.5 nm. The Bi₂S₃/Bi₂MoO₆ heterojunction 390 391 displays higher efficient visible-light-driven photocatalytic activity in degradation of RhB and 392 4-CP, even higher than the sum of the activities of two individual photocatalysts (Bi_2MoO_6) and Bi₂S₃). Moreover, Bi₂S₃/Bi₂MoO₆ heterojunction can efficiently mineralize organic 393 pollutants and be re-used due to excellent stability. Therefore, Bi₂S₃/Bi₂MoO₆ heterojunction 394 has great potential as an efficient and stable visible-light-driven photocatalyst for water 395 environmental purification and remediation application. 396

397					
398	Acknowledgements				
399		This work was financially supported by the National Natural Science Foundation of			
400	China (Grant Nos. 21377023 and 21477019), the Fundamental Research Funds for the Central				
401	Universities, and DHU Distinguished Young Professor Program.				
402					
403	References				
404	1	M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev., 1995, 95,			
405		69-96.			
406	2	A. Kubacka, M. Fernandez-Garcia and G. Colon, Chem. Rev., 2012, 112, 1555-1614.			
407	3	H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu and X. Wang, Chem. Soc. Rev.,			
408		2014, 43, 5234-5244.			
409	4	J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong and Z.			
410		Kang, Science, 2015, 347, 970-974.			
411	5	X. Chen and S. S. Mao, Chem. Rev., 2007, 107, 2891-2959.			
412	6	X. Chen, L. Liu, P. Y. Yu and S. S. Mao, Science, 2011, 331, 746-750.			
413	7	J. W. Tang, Z. G. Zou and J. H. Ye, Angew. Chem. Int. Ed., 2004, 43, 4463-4466.			
414	8	L. S. Zhang, W. Z. Wang, J. Yang, Z. G. Chen, W. Q. Zhang, L. Zhou and S. W. Liu., Appl.			
415		Catal. A-Gen., 2006, 308, 105-110.			
416	9	R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han and C. Li, Nat.			
417		Commun., 2013, 4, 1432.			
418	10	L. S. Zhang, W. Z. Wang, L. Zhou and H. Xu, Small, 2007, 3, 1618-1625.			
		21			
		21			

- 419 11 L. S. Zhang, H. L. Wang, Z. G. Chen, P. K. Wong and J. S. Liu, Appl. Catal. B-Environ.,
- 420 2011, 106, 1-13.
- 421 12 H. Cheng, B. Huang, and Y. Dai, *Nanoscale*, 2014, 6, 2009-2026.
- 422 13 L. Zhang, T. Xu, X. Zhao and Y. Zhu, Appl. Catal. B-Environ., 2010, 98, 138-146.
- 423 14 W. Yin, W. Wang and S. Sun, *Catal. Commun.*, 2010, 11, 647-650.
- 424 15 Y. Shimodaira, H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 2006, 110,
 425 17790-17797.
- 426 16 Y. Ma, Y. Jia, Z. Jiao, M. Yang, Y. Qi and Y. Bi, Chem. Commun., 2015, 51, 6655-6658.
- 427 17 J. Long, S. Wang, H. Chang, B. Zhao, B. Liu, Y. Zhou, W. Wei, X. Wang, L. Huang and
- 428 W. Huang, *Small*, 2014, 10, 2791-2795.
- 429 18 Z. Li, X. Chen and Z. Xue, Crystengcomm, 2013, 15, 498-508.
- 430 19 M. Zhang, C. Shao, P. Zhang, C. Su, X. Zhang, P. Liang, Y. Sun and Y. Liu, J. Hazard.
- 431 *Mater.*, 2012, 225, 155-163.
- 432 20 M. Zhang, C. Shao, J. Mu, Z. Zhang, Z. Guo, P. Zhang and Y. Liu, *Crystengcomm*, 2012,
 433 14, 605-612.
- 434 21 J. Ma, L. Z. Zhang, Y. H. Wang, S. L. Lei, X. B. Luo, S. H. Chen, G. S. Zeng, J. P. Zou, S.
- 435 L. Luo and C. T. Au, *Chem. Eng. J.*, 2014, 251, 371-380.
- 436 22 Z. Zhang, W. Wang, D. Jiang and J. Xu, Catal. Commun., 2014, 55, 15-18.
- 437 23 D. Yue, D. Chen, Z. Wang, H. Ding, R. Zong and Y. Zhu, *Phys. Chem. Chem. Phys.*, 2014,
- 438 16, 26314-26321.
- 439 24 P. Zhang, C. Shao, M. Zhang, Z. Guo, J. Mu, Z. Zhang, X. Zhang and Y. Liu, J. Hazard.
- 440 *Mater.*, 2012, 217, 422-428.
- 441 25 Y. S. Xu and W. D. Zhang, Appl. Catal. B-Environ., 2013, 140, 306-316.

- 442 26 B. Yuan, C. Wang, Y. Qi, X. Song, K. Mu, P. Guo, L. Meng and H. Xi, *Colloid Surf.*443 *A-Physicochem. Eng. Asp.*, 2013, 425, 99-107.
- 444 27 H. G. Yu, Z. F. Zhu, J. H. Zhou, J. Wang, J. Q. Li and Y. L. Zhang, *Apl. Sur. Sci.*, 2013,
 445 265, 424-430.
- 446 28 P. Wang, Y. Ao, C. Wang, J. Hou and J. Qian, Carbon, 2012, 50, 5256-5264.
- 447 29 M. Zhang, C. Shao, J. Mu, X. Huang, Z. Zhang, Z. Guo, P. Zhang and Y. Liu, *J. Mater.*448 *Chem.*, 2012, 22, 577-584.
- 30 G. Tian, Y. Chen, X. Meng, J. Zhou, W. Zhou, K. Pan, C. Tian, Z. Ren and H. Fu, *Chempluschem*, 2013, 78, 117-123.
- 451 31 Q. Yan, M. Sun, T. Yan, M. Li, L. Yan, D. Wei and B. Du, *Rsc Adv.*, 2015, 5,
 452 17245-17252.
- 453 32 Y. Chen, G. Tian, Y. Shi, Y. Xiao and H. Fu, Appl. Catal. B-Environ., 2015, 164, 40-47.
- 454 33 Z. Zhang, W. Wang, L. Wang and S. Sun, ACS Appl. Mater. Interfaces, 2012, 4, 593-597.
- 455 34 J. Cao, B. Xu, H. Lin, B. Luo and S. Chen, *Catal. Commun.*, 2012, 26, 204-208.
- 456 35 H. P. Jiao, X. Yu, Z. Q. Liu, P. Y. Kuang and Y. M. Zhang, *Rsc Adv.*, 2015, 5,
 457 16239-16249.
- 458 36 J. Cao, B. Xu, H. Lin, B. Luo and S. Chen, *Dalton Trans.*, 2012, 41, 11482-11490.
- 459 37 H. Cheng, B. Huang, X. Qin, X. Zhang and Y. Dai, Chem. Commu., 2012, 48, 97-99.
- 460 38 B. G. Pejova, I., Mater. Chem. Phys., 2006, 99, 39-49.
- 39 X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, *J. Am. Chem. Soc.*, 2008, 130,
 7176-7177.
- 463 40 H. Li, J. Liu, W. Hou, N. Du, R. Zhang and X. Tao, *Appl. Catal. B-Environ.*, 2014, 160,
 464 89-97.

23

- 465 41 X. Wang, Q. Xu, M. Li, S. Shen, X. Wang, Y. Wang, Z. Feng, J. Shi, H. Han, and C. Li,
- 466 *Angew. Chem. Int. Ed.*, 2012, 51, 13089-13092.
- 467 42 M. G. Ju, X. Wang W. Z. Liang, Y. Zhao and C. Li, J. Mater. Chem. A, 2014, 2,
 468 17005-17014.
- 469 43 Y. Jia, S. Shen, D. Wang, X. Wang, J. Shi, F. Zhang, H. Han and C. Li, *J. Mater. Chem. A*,
 470 2013, 1, 7905–7912.
- 471 44 X. Wang, S. Shen, S. Jin, J. Yang, M. Li, X. Wang, H. Han and C. Li, Phys. Chem. Chem.
- 472 *Phys.*, 2013, 15, 19380-19386.
- 473 45 H. Zhao, L. Zhang, X. Gu, S. Li, B. Li, H. Wang, J. Yang and J. Liu, RSC Adv., 2015, 5,
- 474 10951.
- 475 46 L. Zhang, K. H. Wong, Z. Chen, J. C. Yu, J. Zhao, C. Hu, C. Y. Chan and P. K. Wong,
 476 *Appl. Catal. A-Gen.*, 2009, 363, 221-229.

477

Graphical Abstract

Flower-like Bi₂S₃/Bi₂MoO₆ heterojunction has been prepared via a solvothermal method and it exhibits stable and remarkable enhanced photocatalytic activity.