Diversity oriented synthesis of tri-substituted methanes containing aminouracil and hydroxynaphthaquinone/hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium
Diversity oriented synthesis of tri-substituted methanes containing aminouracil and hydroxynaphthaquinone/ hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium

Ruchi Bharti and Tasneem Parvin*

Received (in XXX, XXX) Xth XXXXXXXXT 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Synthesis of a series of tri-substituted methane derivatives have been reported via one-pot multicomponent reaction of aldehyde, 1,3-dimethyl-6-aminouracil and 2-hydroxy-1,4-naphthaquinone/ hydroxycoumarin using bifunctional thiourea based organocatalyst in aqueous medium. Use of organocatalyst, water as solvent and no need of column chromatographic purification are the notable features of this methodology.

Introduction

Tri-substituted methanes (TRSMs) are important class of molecules having a wide range of pharmacological and biological activities such as anti-cancer, antiproliferative, antibacterial, etc. They are also used as molecular chemosensors and for the generation of dendrimers. Substituted methane derivatives having substituents such as aminouracil, hydroxynaphthaquinone/ hydroxycoumarin are considered as important bioactive molecules. Some representative examples of trisubstituted methanes having anticoagulant, antioxidant, antibacterial, antimicrobial and antibiofilm activities are shown in Figure 1.

Figure 1 Biologically active tri-substituted methane derivatives containing aminouracil, hydroxynaphthaquinone/ hydroxycoumarin moiety

Considering the importance of tri-substituted methanes recently Karami et al have reported a three component reaction of aryl aldehydes, 4-hydroxycoumarin and 3-methyl-1-phenyl-2-pyrAzolin-5-one using ZnO nanoparticle for the green synthesis of trisubstituted methane derivatives. Panda et al have also reported the synthesis of tri-substituted methanes having aryl and heteroaryl rings. Similarly, Atmakur et al. reported the regioselective synthesis of highly functionalized 3-benzylpyrimidino chromen-2-ones in a one pot three component reaction in acetic acid and determined their anti-microbial and anti-biofilm activities. Thus a plethora of methods are known in literature for the synthesis of tri-substituted methane derivatives. From the green chemistry point of view design of methodology with pot, atom and step economic approach has remained one of the prime goal in organic synthesis.

In this direction multicomponent reactions (MCRs) where more than two components react in one pot have gained considerable attention in recent time. Similarly organocatalysis imparts environment friendliness in organic synthesis due to its inherent low toxicity, metal free and simple reaction conditions. Thus employing organocatalysis in MCRs makes the process greener.

In continuation of our work on MCRs we wanted to design an organocatalyzed MCR for the synthesis of some structurally divergent tri-substituted methanes having some bioactive moieties such as aminouracil, hydroxynaphthaquinone/ hydroxycoumarin as substituents. Among the organocatalysts bifunctional thiourea based organocatalysts are popular in organic synthesis due to their activation of electrophile by double-hydrogen-bonding interactions with thiourea moiety as well as the activation of nucleophile by the other part (basic moiety). In this paper we have reported a three component reaction of aldehyde, 1,3-dimethyl-6-aminouracil and 2-hydroxy-1,4-naphthaquinone/4-hydroxycoumarin in aqueous medium in presence of bifunctional thiourea based organocatalyst for the synthesis of trisubstituted methane derivatives (Scheme 1).

Scheme 1 Synthesis of tri-substituted methane derivatives.
Result and discussion

Considering the popularity as well as virtues of bifunctional thiourea based organocatalysts in organic synthesis, we initially synthesized organocatalyst I having a thiourea moiety and two basic sites using a two component reaction of 2-piperidinoethyl isothiocyanate and 4-amino-1-benzyl piperidine as shown in Scheme 2.

Recently we have reported a L-proline catalyzed three component reaction of 2-hydroxy-1,4-naphthaquinone, aldehydes, and aminopyrazoles which gives cyclised product 2H-benzo[g]pyrazolo[3,4-h]quinoline-5,10(4H,11H)-diones in ethanol under reflux conditions. In continuation of our that work when we have carried out the reaction of 4-chlorobenzaldehyde 1c, 1,3-dimethyl-6-aminouracil 2 and 2-hydroxy-1,4-naphthaquinone 3 in H2O without any catalyst under reflux conditions, we ended with acyclic product i.e., tri-substituted methane derivatives instead of the cyclic product. The yield of the reaction was only 33% after 6 hrs (Table 1, entry 1). Our next endeavour was to enhance the yield of the reaction by employing various catalysts. For this purpose, various catalysts were tested. We achieved a slight improvement in the yield of the product, but the results were still not very satisfactory (Table 1, entries 2-6). Interestingly, when we performed the same reaction in the presence of our newly synthesized thiourea-based organocatalyst I (Table 1, entry 7), the maximum yield was obtained. It is noteworthy to mention that a mixture of Et3N and thiourea (20+ 20) mol% provided lower yields as compared to organocatalyst I (Table 1, entry 8).

Table 1 Screening of catalysts

<table>
<thead>
<tr>
<th>Entries</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>---</td>
<td>H2O</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>---</td>
<td>AcOH</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>L-proline</td>
<td>H2O</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>Thiourea</td>
<td>H2O</td>
<td>6</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>Et3N</td>
<td>H2O</td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>DABCO</td>
<td>H2O</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>H2O</td>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td>8</td>
<td>Et3N+Thiourea</td>
<td>H2O</td>
<td>6</td>
<td>68</td>
</tr>
</tbody>
</table>

Isolated yield.

Next, we performed a screening of various solvents such as H2O, EtOH, MeCN, THF, DMSO and Toluene (Table 2, entries 1–6) to see the effect of solvents on the reaction. The results of Table 2 revealed that water was the best solvent for the reaction in terms of yield and reaction time.

Table 2 Effects of solvents

<table>
<thead>
<tr>
<th>Entries</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>H2O</td>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>EtOH</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>MeCN</td>
<td>7</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>THF</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>DMSO</td>
<td>8</td>
<td><30</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>Toluene</td>
<td>6</td>
<td>58</td>
</tr>
</tbody>
</table>

Isolated yield.

With the optimized reaction conditions, we then explored the generality of the method by using various aldehydes (both aromatic and aliphatic) with 2-hydroxy-1,4-naphthaquinone and 1,3-dimethyl-6-aminouracil. The results are summed up in Table 3.

Table 3 Synthesis of tri-substituted methane derivatives containing aminouracil and hydroxynaphthaquinone moieties

<table>
<thead>
<tr>
<th>Entries</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>H2O</td>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>EtOH</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>MeCN</td>
<td>7</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>THF</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>DMSO</td>
<td>8</td>
<td><30</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>Toluene</td>
<td>6</td>
<td>58</td>
</tr>
</tbody>
</table>

Isolated yield.
3. Aromatic aldehydes containing various substituents like 4-Me, 4-Cl, 4-NO₂, 3-OMe, 4-F, 4-Br, 4-CH(Me)₂, 3-Br, 3-NO₂ and aliphatic aldehydes like cyclohexyl aldehyde, butyraldehyde were underwent smoothly to provide the corresponding tri-substituted methane derivatives (4a-4l) in good to moderate yields. Next we tried the reaction with phenylacetaldehyde, however, in this case the reaction provided a inseparable mixture of products. It is quite clear from Table 3 that neither the nature nor the positions of substituents on aromatic ring in aromatic aldehydes alter the yield of reaction to any significant extent. However, aliphatic aldehydes provide lower yields as compared to aromatic one, which may be due to the less stability as well as tendency of those aldehydes to exist in enol form.

After the successful synthesis of tri-substituted methane derivatives containing hydroxycoumarin, aminouracil and aromatic/aliphatic ring, we did the three component reaction of 4-hydroxycoumarin, aldehyde and 1,3-dimethyl-6-aminouracil under the similar reaction condition and we obtained the corresponding tri-substituted methane derivatives (Scheme 3).

Scheme 3 The three component reaction of 4-hydroxycoumarin, aldehyde and 1,3-dimethyl-6-aminouracil.

Looking at the molecular skeleton having pyrimidine and coumarin fragments in tri-substituted methane derivatives as well as their biological activity, the scope of the reaction was tested with different substituted aldehydes and the results are presented in the Table 4 (6a-f).

Table 4 Synthesis of tri-substituted methane derivatives containing aminouracil and hydroxycoumarin moiety

<table>
<thead>
<tr>
<th>R₂CHO</th>
<th>1</th>
<th>NH₂</th>
<th>2</th>
<th>OH</th>
<th>5</th>
<th>R₁</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6a, 5 hrs, 76% 6b, 4 hrs, 85% 6c, 3 hrs, 83% 6d, 4 hrs, 86% 6e, 5 hrs, 82% 6f, 4 hrs, 88%

Isolated yield.

All the products were characterized by IR, ¹H NMR, ¹³C NMR spectroscopy and elemental analysis. To remove the ambiguity in structure further D₂O exchange experiment was performed with compound 4c. The labile protons of -NH₂ and -OH were vanished in the D₂O exchanged ¹H NMR spectra of 4c (Figure 2). From this it was confirmed that the product was not cyclised and free -NH₂ and -OH groups were present in the tri-substituted methane derivatives.

Figure 2 ¹H NMR and D₂O exchanged ¹H NMR spectra of 4c

A plausible mechanism for the formation of trisubstituted methane derivatives has been proposed in Scheme 4. Similar to literature reports we believe initially aldehyde reacts with 3 or 5 via Aldol condensation followed by dehydration to give intermediate B. Then third component undergoes Michael addition followed by tautomerization to provide the corresponding trisubstituted methane derivatives 4 or 6. We believe our synthesized thiourea based organocatalyst I plays dual role in this reaction. The basic functionalities present in this organocatalyst activates nucleophile and the thiourea moiety activates the C=O group by the double hydrogen bonding interaction.

Scheme 4 Proposed reaction mechanism
Conclusions

We have synthesized a bifunctional thiourea-based organocatalyst and explored its application in the one-pot three component reaction of aldehyde, 1,3-dimethyl-6-aminoauracil and 2-hydoxy-1,4-naphthaquinone/4-hydroxycoumarin in aqueous medium for the synthesis of diverse tri-substituted methane derivatives having biologically active moieties such as pyrimidine and naphthquinone/coumarin as substituents. In addition, there are free -OH, -NH2 and CO groups in our product molecules which can be explored as ligand in coordination chemistry as well as in heterocyclic chemistry for further functionalization or for the synthesis of fused heterocycles. Studies towards the application of this methodology are under way.

Experimental

Starting materials and solvents are commercially available and used without further purification. The purity of the synthesized compounds were ascertained by thin layer chromatography on silica gel GF 254 in ethyl acetate using iodine vapours as detecting agent. Melting points were determined by the melting point apparatus using capillary tube method. IR spectra were recorded on a Shimadzu FTIR spectrophotometer in KBr pellet.

1H NMR and 13C NMR spectra were recorded in CDCl3 and DMSO-d6 and were expressed in parts per million (δ, ppm) downfield using Me4Si as internal standard on Bruker Avance II 400 MHz spectrometer. Elemental analyses were carried out in a Perkin Elmer 2400 automatic carbon, hydrogen, nitrogen analyzer.

Typical experimental procedure for the synthesis of bifunctional thiourea based organocatalyst I:

First, 4-amino-1-benzyl piperidine (0.5 mmol) was dissolved in DCM and allowed to cool at 0°C. Then 2-piperidinomethyl isothiocyanate (0.5 mmol) was added in the reaction mixture and allowed to stir at room temperature until the completion of the reaction as checked by TLC. The reaction mixture was cooled, the solid was filtered off and washed with ethanol to afford the desired product.

I-[[1-(benzylpiperidin-4-yl)]-3-[(2-piperidin-1-yl)ethyl]thiourea (I): White powdery solid; mp = 240-242 °C; IR (KBr): 3273, 3151, 3054, 2929, 1574, 1495, 1240, 961, 860, 747 cm⁻¹; 1H NMR (400 MHz, CDCl₃): 7.33-7.22 (m, 5H), 6.72 (brs, 1H), 4.02 (brs, 1H), 3.51 (s, 2H), 3.45-3.38 (m, 2H), 2.88-2.85 (m, 2H), 2.48-2.42 (m, 7H), 2.15-2.09 (m, 2H), 2.05-2.02 (m, 2H), 1.59-1.51 (m, 6H), 1.48-1.47 (m, 2H) ppm; 13C (100 MHz, CDCl₃): 182.1, 138.3, 129.3, 128.7, 129.7, 69.2, 54.5, 52.4, 41.8, 32.2, 30.9, 25.8, 24.1 ppm; Anal. Calcd. For C₂₃H₂₄N₄S (360.56): C, 66.22; H, 6.21; N, 15.54; Found: C, 66.71; H, 8.98; N, 15.68.

Typical experimental procedure for the synthesis of 4c: To a solution of 2-hydoxy-1,4-naphthaquinone 0.174 g (1 mmol) and 4-chlorobenzaldehydes 0.14 g (1 mmol) in 1 ml water, 20 mol% thiourea-based organocatalyst I was added and stirred under reflux condition for 15 minutes. Afterwards, 1,3-dimethyl-6-aminoauracil 0.155g (1 mmol) was introduced and stirring was continued till the completion of the reaction as checked by TLC.

The resulting mixture was cooled at room temperature, the solid was filtered off, washed with water first, then with 5 ml ethanol to afford the pure product.

6-amino-5-[(1,4-dihydro-2-hydoxy-1,4-dioxonaphthalen-3-yl)(phenyl)methyl]-1,3-dimethyl/pyrimidine-2,4 (1H,3H)-dione 4a:

Yield 79%; Red powdered solid; mp = 250-251 °C; IR (KBr): 3405, 3254, 2923, 1694, 1633, 1603, 1578, 1498, 1345, 967, 878, 755 cm⁻¹; 1H NMR (400 MHz, DMSO-d6): δ 13.20 (s, 1H), 8.03 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.85 (t, J = 8.0 Hz, 1H), 7.82 (t, J = 8.0 Hz, 1H), 7.27-7.17 (m, 5H), 7.15 (s, 2H), 5.86 (s, 1H), 3.38 (s, 3H), 3.15 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 185.9, 181.0, 163.6, 158.5, 154.4, 150.1, 138.3, 134.3, 134.1, 133.7, 130.5, 129.7, 129.2, 127.9, 125.9, 125.4, 121.4, 86.5, 58.8, 35.1.
6-amino-5-(1,4-diaryl-1,4-dioxanaphthalen-3-yl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione 4f: Yield 67%; Orange red solid; mp = 201-202 °C; IR (KBr): 3372, 3239, 2920, 1697, 1670, 1608, 1579, 1371, 975, 861, 752 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 14.08 (s, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 8.0 Hz, 1H), 7.75 (t, J = 8.0 Hz, 1H), 7.23 (s, 2H), 3.82 (d, J = 8.0 Hz, 3H), 3.46 (s, 3H), 1.59-1.52 (m, 5H), 1.12-1.01 (m, 1H), 0.76-0.73 (m, 2H) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 186.8, 180.9, 164.2, 158.2, 154.8, 152.7, 149.8, 134.1, 133.4, 131.2, 130.5, 125.9, 124.0, 85.2, 33.1, 31.5, 30.9, 29.9, 28.1, 27.6, 26.1 ppm. Anal. Calcld. For C₂₃H₁₉BrN₂O₂ (496.43): C, 55.66; H, 3.65; N, 10.64. Found: C, 55.57; H, 3.52; N, 10.46.

6-amino-5-((4-fluorophenyl)1,4-diaryl-1,4-dioxanaphthalene-3-yl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione 4g: Yield 89%; Red orange solid; mp = 241-242 °C; IR (KBr): 3396, 3246, 2922, 1738, 1687, 1665, 1659, 1578, 1371, 969, 893, 753 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 13.18 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.84 (t, J = 8.0 Hz, 2H), 7.80 (t, J = 8.0 Hz, 2H), 7.30-7.24 (m, 4H), 7.21 (s, 2H), 5.84 (s, 1H), 3.37 (s, 3H), 3.15 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 185.8, 181.0, 163.5, 158.5, 154.4, 150.1, 137.7, 134.3, 133.4, 131.7, 130.6, 120.7, 127.9, 126.0, 125.7, 123.2, 85.4, 34.4, 30.4, 28.2 ppm. Anal. Calcld. For C₂₃H₁₈FNO₃ (435.34): C, 63.45; H, 4.17; N, 9.65; Found: C, 63.53; H, 4.20; N, 9.78.

6-amino-5-((bromophenyl)1,4-diaryl-1,4-dioxanaphthalene-3-yl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione 4h: Yield 79%; Orange solid; mp = 251-252 °C; IR (KBr): 3393, 3210, 2921, 1680, 1650, 1603, 1573, 1488, 1343, 905, 835, 756 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 13.15 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.85 (t, J = 8.0 Hz, 1H), 7.81 (t, J = 8.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 2H), 7.19-7.15 (m, 4H), 5.82 (s, 1H), 3.37 (s, 3H), 3.15 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 185.7, 180.9, 163.5, 158.5, 154.4, 150.1, 137.8, 134.3, 133.5, 131.7, 130.8, 129.2, 126.0, 125.7, 123.2, 118.7, 85.3, 34.5, 30.4, 28.2 ppm. Anal. Calcld. For C₂₃H₁₈BrN₂O₃ (496.31): C, 55.66; H, 3.66; N, 8.47; Found: C, 55.75; H, 3.62; N, 8.60.

Typical experimental procedure for the synthesis of 6b: To a solution of 4-hydroxycoumarin 0.162 g (1 mmol) and 4-methoxybenzaldehydes 0.136 g (1 mmol) in 1 ml water, 20 mol% thiourea-based organocatalyst I was added and stirred under reflux condition for 15 minutes. Afterwards, 1,3-dimethyl-6-aminouracil 0.155 g (1 mmol) was introduced and stirring was continued till the completion of the reaction as checked by TLC. The resulting mixture was cooled at room temperature, the solid was filtered off, washed with water first, then with 5 mL ethanol to afford the pure product.

6-amino-5-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2(2H)-pyrimidinone 6a: Yield 76%; White crystalline solid; mp = 247-249 °C; IR (KBr): 3529, 3428, 3155, 3017, 1708, 1671, 1490, 1378, 1049, 1013, 860, 765 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 14.05 (s, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.26-7.22 (m, 2H), 7.18 (d, J = 8.0 Hz, 3H), 7.15-7.12 (m, 1H), 6.21 (s, 2H), 4.51 (t, J = 8.0 Hz, 1H), 3.53-3.48 (m, 2H), 3.41 (s, 3H), 3.39 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 163.5, 161.5, 151.8, 151.6, 149.8, 140.1, 131.9, 128.0, 128.0, 126.1, 125.9, 124.1, 123.5, 115.9, 105.5, 88.5, 34.5, 30.3, 28.1 ppm. Anal. Calcld. For C₁₅H₁₂N₂O₂ (419.43): C, 65.86; H, 0.50; N, 10.02; Found: C, 65.93; H, 0.59; N, 10.15.

6-amino-5-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2(2H)-pyrimidinone 6b: Yield 85%; White needle like solid; mp = 191-194 °C; IR (KBr): 3555, 3346, 3184, 2972, 1691, 1655, 1608, 1573, 1443, 1071, 1032.
References

Acknowledgements

We are grateful to NIT Patna and Department of Science and Technology India for financial support with Sanction No. SR/FT/CS-008/2010. The authors are grateful to IIT Patna and SAIF-Panjab university for providing the analytical facilities for characterization of products.

