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Abstract 13 

This paper reports the successful modification of biaxially oriented 14 

polypropylene (BOPP) films to permanently enhance their hydrophilic properties for 15 

potential flexible packing applications. This protocol consists of three sequential 16 

processes: 1) an on-line dielectric barrier discharge (DBD) plasma pretreatment, 2) a 17 

polyvinyl alcohol/silk fibroin/polyethylene glycol (PVA/SF/PEG) coating, and 3) 18 

ethanol solution finishing. The optimal modification conditions included: DBD 19 

plasma pretreatment for 10 seconds, coating with aqueous PVA/SF/PEG (3%/3%/1%) 20 

solution, and finally, 8 minutes of treatment with 60% ethanol solution. The fully 21 

modified BOPP films exhibited approximately a 16° static contact angle (SCA), a 22 

near zero haze value, and an effectively 100% transmittance value under visible light 23 

(400–700 nm). The atomic force microscopy (AFM) of the surface morphology of the 24 

modified BOPP films showed that the surface roughness increased from 3.79 nm 25 
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(untreated) to 21.10 nm (fully treated). The Fourier transfer infrared spectroscopy 1 

(FT-IR) results showed that polar functional C=O groups were grafted onto the BOPP 2 

film that was pretreated with the DBD plasma. Further modification of the pretreated 3 

BOPP film with the PVA/SF/PEG coating significantly enhanced the density of the 4 

C-O and N-H groups. The gravure printing images indicated that the adhesive 5 

property of the BOPP film for water-based ink improved substantially after the 6 

hydrophilic modifications.  7 

Keywords: BOPP film; DBD plasma pretreatment; Composite coating; Ethanol 8 

solidification; Gravure printing 9 

1. Introduction 10 

Biaxially oriented polypropylene (BOPP) film is widely used in the production 11 

of protective coatings, pressure sensitive tape, and decorative products and in labeling 12 

and printing [1]. It is also increasingly being used to replace traditional materials such 13 

as glass, metal, and paper in food packing applications because it possesses better 14 

flexibility, higher transparency, and adequate chemical inertness [2]. However, 15 

because of its low surface free energy (SFE) (lower than 22 mJ/m
2
 [3, 4]), BOPP film 16 

has a low adhesive ability with other materials. Therefore, it is essential to increase 17 

the SFE value of the hydrophobic BOPP film to meet the requirements for 18 

applications in the material and printing fields. It should be noted that presently the 19 

prevailing practice is to use the oily-inks to print on the hydrophobic BOPP films, 20 

such practices are unfriendly to both the workers and the environment. Because of the 21 

stricter regulations imposed by many countries (both developed and developing 22 

countries) on printing industries to minimize environmental concerns, new protocols 23 

employing water-based inks for printing are greatly desired and the hydrophilic 24 

modification of the BOPP film is therefore of great interest both scientifically and 25 

practically. 26 

In recent years, chemical, plasmatic, and corona discharge processes have been 27 

applied to increase the SFE value of BOPP film [5]. Among these approaches, the 28 

corona discharge technique has gained popularity for industrial applications of BOPP 29 
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film because of its simplicity, suitability for continuous online operation, and cost 1 

effectiveness. This technique can graft functional groups including hydroxyl, carbonyl, 2 

and carboxylic polar groups onto a BOPP film surface, which will increase the SFE 3 

value of the modified BOPP film [6]. However, Novak et al. [7] showed that the SFE 4 

value of corona discharge-treated BOPP film decreases with time.  5 

To mitigate such a drawback, a BOPP film treated by corona discharge with an 6 

acrylic acid (AA) monomer was investigated by Liao [8] and Nanticha [6] et al. 7 

Unfortunately, the AA polymer coating has a weak water resistance and is generally 8 

inhomogeneous because of the filament discharge created by the corona plasma [9]. 9 

Additionally, while many vacuum plasma systems have been widely used to modify 10 

organic films [10], they are often associated with high operational costs. Therefore, it 11 

is necessary to develop a new protocol for the modification of BOPP film, especially 12 

for water-based ink printing applications. 13 

In this paper, a novel protocol for the BOPP film modification is reported. The 14 

protocol consisted of three sequential processes: 1) the dielectric barrier discharge 15 

(DBD) plasma pretreatment, 2) the polyvinyl alcohol/silk fibroin/polyethylene glycol 16 

(PVA/SF/PEG) coating, and 3) ethanol solution finishing. The pretreatment of an 17 

on-line DBD plasma system ensured an adequate adhesion between the BOPP film 18 

and the functional coating, the PVA/SF/PEG coating yielded the desired topology, and 19 

the final finishing step with 60% ethanol solution transformed the silk fibroin 20 

structure in the functional coating from the alpha helix to beta folding to enhance the 21 

hydrophilicity of the modified BOPP film [11].   22 

2. Experimental 23 

2.1 The BOPP film modification system 24 

Fig. 1 illustrates the system employed for the hydrophilic modification of the 25 

BOPP film, which consists of four main components: the DBD plasma pretreatment 26 

apparatus, the coating device, drying system, and the ethanol treatment chamber. The 27 

DBD plasma was realized by using four parallel liquid electrodes, and a quartz tube 28 

with a wall thickness of 1 mm acted as the dielectric layer. The gap between the top 29 
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and bottom electrodes was 2 mm. An AC power source with a maximum peak voltage 1 

of 30 kV and an adjustable frequency range of 8 to 30 KHz was employed for the 2 

plasma generation. The discharge power and the treatment time of the plasma system 3 

are optimized to 60 watts and 3 s, respectively. The PET pretreatment with DBD 4 

plasma can improve the binding intensity between the PET membrane and 5 

PVA/SF/PEG film. The PVA/SF/PEG solution warmed in a water tank (40-50°C) was 6 

coated homogeneously onto the surface of the pretreated BOPP film using squeeze 7 

rollers. Subsequently, the coated BOPP film was dried in the first drying oven 8 

(60-80°C) for 120 s. Finally, The PVA/SF/PEG-coated BOPP film passed through the 9 

ethanol treatment chamber and was dried by an oven (80-120°C) for 90 s. It should be 10 

noted that the batch-type operation can be performed in the step of ethanol processing.   11 

 12 

Fig.1. Schematic illustration of the complete system for the BOPP film 13 

modification 14 

2.2 Preparation of the PVA/ SF/PEG coating solution  15 

Silk fibroin was obtained following a similar process as reported in our previous 16 

work [12]. Briefly, a degummed silk fibroin from B. mori was dissolved in a 9.3 M 17 

lithium bromide (LiBr) solution overnight at 37°C, followed by dialysis processing 18 

for 3 days to remove the LiBr. PVA (PVA 1797, Shanghai Petrochemical Co., Ltd.) 19 

and PEG (PEG 10000, Hangzhou Gaojing Fine Chemical Industry Co., LTD) powders 20 

were separately dissolved in deionized water at the desired concentrations (at 80°C 21 

and facilitated by a water bath) and mixed with the SF solution at ratios corresponding 22 

to the desired SF/PVA/PEG ratios. The rheological characteristic of the PVA/SF/PEG 23 

mixture was evaluated using Dynamic Rheometry (Brookfield / DV-III). In this paper, 24 
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unless otherwise specified, the PVA, SF, PEG, and ethanol concentrations are all in 1 

weight percentages. 2 

2.3 The PVA/SF/PEG coating characterization 3 

Water static contact angle (SCA) measurements (using a Kruss Drop Shape 4 

Analysis System (DSA10, Kruss GmbH, Germany)) were employed to characterize 5 

the hydrophilicity of the BOPP films that were modified under various conditions. A 6 

volume of 3 µL of deionized water was dropped on the surface of the modified BOPP 7 

film, and the SCA value was measured with a CCD camera. Three measurements on 8 

three different locations of each specimen were performed, and the average SCA 9 

value was used for analysis. The surface morphology and roughness of the modified 10 

BOPP film was achieved in air under ambient conditions using atomic force 11 

microscopy (AFM, XE-100E, PSLA, Korea), which employs a NSC-15/Al probe 12 

operated in non-contact mode. Meanwhile, the topography of modified BOPP film 13 

was also characterized by a field emission scanning electron microscopy (FESEM, 14 

JEOL, Japan). The chemical composition of the modified BOPP film was investigated 15 

using XPS (K-Ahpha, USA). The X-ray source was Al Kα at 1486.6 eV and was 16 

operated at 300 W. The tensile strength was measured as a representative mechanical 17 

property of the modified BOPP film using a tensile strength instrument (XLW-B, 18 

Shanghai Tianzhi Co., LTD). The haze and transmittance values of the modified 19 

BOPP film were measured with an ultraviolet-visible spectrometer at 633 nm (WGT-S, 20 

shanghai Jingke Co., LTD, China). Finally, the gravure printing properties of the 21 

modified BOPP film were explored using a pilot-scale roll-to-roll machine (IGT/G1) 22 

with a red water-based polyurethane ink (Red-1) (Wuhan Sanhe Surplus Industrial and 23 

Trading Company, China).  24 

3. Results and discussion  25 

3.1 The optimal ratio of PVA/SF/PEG for modifying the BOPP film 26 

To determine the optimized PVA/SF/PEG ratio, solutions containing PVA, SF, 27 

and PEG at various concentrations were prepared, and the SCA values of the modified 28 

BOPP films were measured. Fig. 2 (a) shows the SCA values as a function of the PVA 29 
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for various SF and PEG concentrations, and the SCA value initially significantly 1 

decreased with an increase in the PVA content. However, the decrease rate became 2 

much smaller once the PVA concentration exceeded 3%. In contrast, for the same PVA 3 

concentration, the SCA value of the modified BOPP film decreased noticeably with an 4 

increase in the SF concentration (lines A to E for 1%, 2%, 4%, 5%, and 6.7%, 5 

respectively), with the exception of 3%, which clearly resulted in a significantly lower 6 

SCA value, as shown in Fig. 2 (a) for line F. Based on the phenomena observed in Fig. 7 

2 (a) and the effect of the viscosity on the coating process, 3%/3% was selected as the 8 

optimized ratio for PVA/SF.  9 

As an excellent softening and dispersant agent, PEG [10] was added to negate 10 

the adverse effect (the PVA/SF coating layer was brittle) of the inner stress between 11 

the PVA/SF coating and the BOPP film. The experimental results, depicted by line G 12 

in Fig. 2 (a), showed that adding 1% of PEG is sufficient for our purposes. The 13 

optimized PVA/SF/PEG ratio was determined consequently to be 3%/3%/1%. At this 14 

ratio, the SCA value was lower than 20°, which is the desired SCA value for high 15 

quality printing in the packing industry. To increase the hydrophilicity of the 16 

functional layer, the PVA/SF and PVA/SF/PEG coated BOPP films were further 17 

treated with 60% ethanol solution, and Fig. 2 (b) shows the change in the SCA values 18 

as a function of treatment time for the samples F and G as shown in Fig. 2 (a) 19 

(represented as F* and G*). The data depicted in Fig. 2 (b) indicated that the SCA 20 

values of F* and G* as a function of ethanol treatment time followed a “V” pattern  21 

and the minimum SCA values of F* and G* lines were approximately 22° and 16°, 22 

respectively, with a treatment time of 8 minutes (considered as the optimal ethanol 23 

treatment time). Moreover, the treatment with 60% ethanol solution also significantly 24 

improved the hydrophilicity of the modified BOPP films (discussed in later sections). 25 
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 1 

 Fig. 2. SCA measurements: (a) The SCA values of the BOPP films modified 2 

under various conditions, (b) The SCA values of the BOPP film coated with 3 

PVA/SF(F*: 3%/3%) and PVA/SF/PEG (G*: 3%/3%/1%) as a function of the 4 

treatment time for the 60% ethanol solution 5 

3.2 The rheological properties of the PVA/SF/PEG solution 6 

The rheological properties of the PVA/SF/PEG solution were evaluated by 7 

studying the linear viscoelastic behaviors, as shown in Fig. 3. Figures 3 (a) and 3 (c) 8 

show the complex viscosity as a function of the angular frequency. The measured 9 

complex viscosity inversely depended on the angular frequency in a near linear 10 

manner at low frequencies for two different PVA/SF ratios with/without 1% PEG 11 

(3%/3% and 5%/3% for Fig. 3 (a) and 3 (c), respectively). The data depicted in Fig. 12 

3(a) and 3(c) also showed that the measured complex viscosity increased noticeably 13 

when the PVA concentration increased from 3% to 5%. Additionally, adding 1% PEG 14 

also significantly increased the measured complex viscosity value, which is in good 15 

agreement with Zhao [13] and Gahleitner [14]. 16 

Figures 3(b) and 3(d) show the values of the storage moduli (lines I and III) and 17 

the loss moduli (lines II and IV) as a function of the angular frequency for the samples 18 

depicted in Fig. 3(a) and 3(c), respectively. As observed from Fig. 3(b) and 3(d), for 19 

both samples, the storage modulus is relatively independent of the angular frequency 20 

(lower end), and the addition of 1% PEG would significantly increase the storage 21 

modulus and result in an improved elasticity.  22 

However, for the loss modulus and for low angular frequencies, the loss modulus 23 

increased with increasing frequency. The addition of 1% PEG resulted in a significant 24 
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increase in the loss modulus. However, the data depicted in Fig. 3 (b) showed that 1 

such an increase diminished as the frequency increased up to 30 Hz (Line II for no 2 

PEG and line IV for 1% PEG, as shown in Fig. 3 (b)). A similar trend for the loss 3 

modulus was observed in Fig. 3 (d) as well. However, unlike what was depicted in Fig. 4 

3 (b), the increase in the loss modulus induced by the 1% PEG remained unchanged 5 

as a function of frequency until the frequency approached 100 Hz. The phenomena 6 

observed in Figs. 3 (b) and 3 (d) indicate that adding 1% PEG increased the flexibility 7 

and adhesive property of the functional coating. 8 

 9 

Fig. 3. The rheological behaviors of samples with different PVA/SF/PEG ratios: 10 

(a) The PVA/SF (3%/3%) solution, (b) The storage modulus (I without PEG, III with 11 

PEG) and the loss modulus (II without PEG, IV with PEG ) of the sample (a), (c) The 12 

PVA/SF (5%/3%) solution, (d) The storage modulus (I without PEG, III with PEG) 13 

and loss modulus (II without PEG, IV with PEG) of the sample (c). The PEG 14 

concentration was 1%. 15 

3.3 The mechanical properties of the modified BOPP film 16 

The tensile force (TFσ, MPa) and the relative elongation (Eɛ, %) at break were 17 

evaluated to determine the effect of the modification parameters on the mechanical 18 

properties of the BOPP film. Table 1 summarizes the relevant mechanical 19 

characteristics of the BOPP films modified under various conditions. The thickness, 20 

length and width of the original BOPP film were 20 µm, 100 mm and 10 mm, 21 
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respectively, and the thicknesses of the PVA/SF/PEG and PVA/SF coating layers were 1 

each approximately 1.5 µm. Sample I was the original BOPP film, and its tensile force 2 

at break σ (TFσ) and its elongation at break ɛ (Eɛ) were approximately 138.65 MPa 3 

and 9%, respectively. After the DBD plasma pretreatment for 3 seconds (for sample 4 

II), the TFσ and Eɛ values increased to 158.7 MPa and 10%, respectively (such 5 

increases were considered irrelevant and were usually neglected because of the 6 

characteristics of the DBD plasma treatment [15]). The TFσ and Eɛ values of samples 7 

III-VIII were compared with those of sample II to identify the effects of the various 8 

coating layers. As shown in Table 1, after the BOPP film was modified by the 9 

PVA/SF/PEG (of various ratios) coatings, substantial increases in both the TFσ and Eɛ 10 

values were observed, and sample VI (PVA/SF/PEG ratio of 3%/3%/1%) exhibited 11 

the best mechanical properties in terms of the TFσ and Eɛ values. These observations 12 

were consistent with the rheological property analysis in Section 3.2. Moreover, after 13 

sample VI was further treated with deionized water or 60% ethanol solution, the TFσ 14 

and Eɛ values decreased, but the ethanol solution treatment only marginally decreased. 15 

Considering the significant hydrophilicity that was induced by the 60% ethanol 16 

solution treatment, such a marginal sacrifice of the mechanical strength was 17 

warranted. 18 

Table 1. Mechanical strength properties of the BOPP samples: I: The original 19 

BOPP film; II: The DBD plasma pretreated sample; III: The PVA/SF (3%/3%) coated 20 

sample; IV: Sample III treated with deionized water for 8 minutes; V: Sample III 21 

treated with 60% ethanol solution for 8 minutes; VI: The PVA/SF/PEG (3%/3%/1%) 22 

coated sample; VII: Sample VI treated with deionized water for 8 minutes; VIII: 23 

Sample VI treated with 60% ethanol solution for 8 minutes 24 

Sample Tensile force at 

break σ (MPa) 

Elongation at 

break ɛ (%) 

I 138.65 9.00 

II 158.70 10.00 

III 215.44 21.00 
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IV 165.40 16.00 

V 210.05 20.00 

VI 216.34 26.00 

VII 199.05 15.00 

VIII 213.32 24.00 

3.4 The morphological characteristics of the modified BOPP film 1 

AFM provides both qualitative (visual) and quantitative characterization of the 2 

surface morphology of films [16] and was employed in this study. Fig. 4 shows the 3 

morphologies and the roughness of the BOPP film treated under different conditions. 4 

Compared with the original BOPP film (Fig. 4(a)), the roughness of the BOPP film 5 

pretreated by the DBD plasma increased by approximately 90% (from 3.79 to 7.19 6 

nm), and the surface was visually much coarser, as shown in Fig. 4(b). This 7 

observation was encouraging because a higher surface roughness often leads to a 8 

significantly enhanced combined intensity due to the BOPP film and the functional 9 

coating. Fig. 4(c) and 4(d) display the AFM images of the BOPP film modified with 10 

PVA/SF (3%/3%) and PVA/SF/PEG (3%/3%/1%) coatings, and a homogeneous 11 

distribution of the coating materials is observed in both figures. However, the 12 

PVA/SF/PEG coating resulted in a significantly higher roughness of 16.91 nm (a 13 

135% increase from 7.19 nm), whereas only a marginal increase in roughness (from 14 

7.19 to 8.06 nm) was induced by the PVA/SF coating. The addition of 1% PEG was 15 

highly beneficial.  16 

Figures 4(e) and 4(f) present the effect of deionized water on the surfaces of the 17 

BOPP films that were modified with PVA/SF and PVA/SF/PEG coatings. The 18 

treatment with deionized water on the PVA/SF coated BOPP film resulted in a similar 19 

topology with a significantly decreased surface roughness (from 8.06 to 3.68 nm, even 20 

lower than the 7.19 nm before coating), as shown in Fig. 4(e). However, the treatment 21 

with deionized water on the PVA/SF/PEG coated BOPP film resulted in a much 22 

different topology with a slightly decreased surface roughness (from 16.91 to 14.07 23 

nm), as shown in Fig. 4 (f). Isolated holes were created, and some had diameters as 24 

large as 1 µm. Such a dramatic alteration in the surface topology suggests that the 25 
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PEG in the PVA/SF/PEG coating might have leached out into the deionized water. 1 

This may be attributed to the high solubility of PEG in water. Fig. 4(f) indicates that a 2 

substantial increase in the hydrophilicity of the BOPP film that was coated with the 3 

PVA/SF/PEG would be required for it to meet the criteria for high quality printing 4 

with water-based ink. This issue was addressed by treating the modified BOPP film 5 

with the 60% ethanol solution, as discussed in section 3.1.  6 

Figures 4(g) and 4(h) show the surface morphologies of the PVA/SF and the 7 

PVA/SF/PEG coated BOPP film after treatment with the 60% ethanol solution. Some 8 

nodules formed due to the ethanol in the PVA/SF coating (see Fig. 4(g)). A potential 9 

explanation for this phenomenon is that the contraction of the SF micro-islands during 10 

the transformation from the alpha helix to beta folding may extrude the swollen PVA 11 

nodules. However, for the PVA/SF/PEG coating, the treatment with 60% ethanol 12 

solution still induced the creation of micro holes, but the average depth of these holes 13 

was approximately 50 nm, which is substantially lower than those created by the 14 

deionized water (approximately 80 nm) (Fig. 4(h) and 4(f)). Moreover, the surface 15 

roughness was further increased to 21.10 nm. Such improvements may be due to the 16 

restructuring effect of ethanol on the SF, which may have partially reduced the 17 

exposure of the PEG content in the PVA/SF/PEG coating.  18 
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 1 

Fig. 4. The AFM 3D images of different samples: (a) The original BOPP film, (b) 2 

The BOPP pretreated with DBD plasma, (c) The BOPP pretreated with DBD plasma 3 

and coated with PVA/SF (3%/3%), (d) The BOPP pretreated with DBD plasma and 4 

coated with PVA/SF/PEG (3%/3%/1%), (e) The sample (c) treated with deionized 5 

water, (f) The sample (d) treated with deionized water, (g) The sample (c) treated with 6 

60% ethanol solution, (h) The sample (d) treated with 60% ethanol solution 7 

In order to investigate the effect of processing protocol employed in this study on 8 

the BOPP topography, the SEM measurement was also performed. Fig. 5(a) shows the 9 

surface morphology of original BOPP film, and it was fairly smooth. After the 10 

original BOPP film was treated by the DBD plasma for 3 s, as shown in Fig. 5 (b), 11 

many micro-papilla were formed on the BOPP surface and the surface roughness was 12 

increased significantly, consistent with the AFM results presented in Fig. 4. When the 13 
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plasma pretreated BOPP film was coated with the PVA/SF/PEG coating and dried, as 1 

shown in Fig. 5 (c), many micro-islands appeared. A definite mechanism of such an 2 

island formation is yet to be determined but it may be caused by the agglomeration of 3 

the SF phase in the drying process. Fig. 5 (d) shows the surface of the PVA/SF/PEG 4 

coated BOPP film after the 60% ethanol solution treatment. Compared with Fig. 5 (c), 5 

the boundary of islands became unclear, which indicates that the phases of PVA and 6 

SF in PVA/SF/PEG film were rearranged under the function of ethanol.    7 

 8 

Fig. 5. The SEM images of samples: (a) The original BOPP film, (b) The BOPP 9 

pretreated with DBD plasma, (c) The sample (b) coated with PVA/SF/PEG 10 

(3%/3%/1%), (d) The sample (c) treated with 60% ethanol solution.  11 

3.5 The chemical structure analysis on the modified BOPP film  12 

A widely used method to probe the chemical constituents of thin films, 13 

ATR-FTIR spectroscopy [17], was employed to characterize the chemical structures 14 

of the modified BOPP films, as shown in Fig. 6. The assignments of the main 15 

absorption peaks in the ATR-FTIR spectra are summarized in Table 2. Curve 1 in Fig. 16 

6 is the spectrum of the original BOPP film. The characteristic peaks at 2930, 1450, 17 

1375, 1168, 978 and 840 cm
-1

 that represent C-H stretching matched well with those 18 

previously reported [18-20]. Curve 2 in Fig. 6 is the spectrum of the BOPP film 19 

modified with the PVA/SF coating, and new peaks appeared within the range of 20 

1725-1650 cm
-1

. These new peaks were assigned to the bending of the N-H bond 21 

associated with C-N and C-O stretching [21]. When the PVA/SF coated BOPP film 22 

was further treated with the 60% ethanol solution, the peak at 1725 cm
-1

 disappeared, 23 
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as represented by curve 3. This disappearance may be due to the transformation of the 1 

SF [11]. Moreover, the intensity of the absorption bands at 3300 cm
-1

, which 2 

represented the stretching of the N-H or O-H groups, increased substantially, 3 

indicating an increased exposure of the PVA or the amide groups to the SF. Curves 4 4 

and 5 in Fig. 6 show the structure conversion of the PVA/SF/PEG coated BOPP film 5 

before and after 60% ethanol solution treatment, respectively. All of the absorption 6 

peaks decreased. Additionally, the peak at 1080 cm
-1

 in curve 5 also disappeared. The 7 

cause for such decreases and the disappearance may be due to possible leaching of the 8 

PEG contents into the solution.  9 

 10 

Fig. 6. The ATR-FTIR spectra of the BOPP films: Curve 1: The original BOPP 11 

film; Curve 2: The PVA/SF (3%/3%) coated film; Curve 3: Sample 2 treated with 12 

60% ethanol solution; Curve 4: The PVA/SF/PEG (3%/3%/1%) coated film; Curve 5: 13 

Sample 4 treated with 60% ethanol solution 14 

Table 2 The assignments of the main absorption peaks in the infrared spectra of 15 

the BOPP samples 16 

Absorption 

Peak/cm
-1

 

Assignment  Vibration type 
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3300 N-H   O-H Stretching vibration 

2930 C-H Stretching vibration 

2350 C-H Stretching vibration 

1725 - 1650 N-H  C-N  C-O Stretching and 

bending vibration 

1450 - 1375 CH2   CH3 Bending vibration 

1100 - 1080 C-O Stretching vibration 

Table 3 summarizes the atomic compositions of the BOPP films, as determined 1 

via the XPS analysis. Compared with the original BOPP film (only C was present), 10 2 

seconds of DBD plasma pretreatment exposed O and N and increased the O/C and 3 

N/C ratios, indicating the polar groups grafted onto the BOPP surface. These polar 4 

groups were beneficial because they increased the adhesive properties of the film 5 

surface. Moreover, after the pretreated BOPP film was modified with the 6 

PVA/SF/PEG coating, the atomic concentration of O increased significantly and the 7 

O/C ratio doubled (compared with the pretreated BOPP film). However, the treatment 8 

with 60% ethanol solution resulted in a slightly lower O/C ratio and a substantially 9 

higher N/C ratio. This may be due to the bonding of the amino functional groups of 10 

the SF on the surface due to the presence of the polar groups in ethanol. Moreover, the 11 

treatment with 60% ethanol solution may decrease the surface energy because it 12 

increased the surface roughness and the density of the –NH2 groups as the FTIR 13 

results presented in Fig. 6. Both lead to lower surface energy, according to the 14 

Guimond theory, which suggests that the surface energy of a material is mainly 15 

determined by the surface structures and atomic types [22]. 16 

Table 3 Summary of the atomic compositions of the BOPP films calculated with 17 

the XPS data 18 

Sample Atomic concentration (%) Atomic ratio 

O N C O/C N/C 

Original BOPP film 

DBD pretreated 

0 0 100 0 0 

17.27 2.19 80.54 0.21 0.03 
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PVA/SF/PEG coated 

Ethanol treated 

(PVA/SF/PEG coated) 

29 1.9 69.1 0.42 0.03 

25.63 7.64 66.74 0.38 0.11 

3.6 The haze and transmittance analysis 1 

The haze and transmittance values are two important parameters for the packing 2 

applications of BOPP films. The haze and transmittance values for the 3 

original/modified BOPP films are shown in Fig. 7. For the original BOPP film 4 

(sample I), the haze and transmittance values were 48.6% and 92.9%, respectively. 5 

The DBD plasma pretreatment resulted in a noticeable 21.0% increase in the haze 6 

value and a marginal 2.0% decrease in the transmittance value. (sample II in Fig. 7). A 7 

significant decrease in the haze value was observed after the BOPP film was modified 8 

with the PVA/SF (3%/3%) coating (to 6.4%, as represented by sample III in Fig. 7). 9 

Further deionized water treatment led to a lower haze value (2.6%), while further 10 

ethanol solution treatment yielded an increased haze value (9%) (samples IV and V, 11 

respectively). However, after the BOPP film was modified with the PVA/SF/PEG 12 

(3%/3%/1%) coating, the haze value was reduced to near zero, and the transmittance 13 

value increased to effectively 100%. Virtually no difference in the haze and 14 

transmittance values was observed after the PVA/SF/PEG coated BOPP film was 15 

further treated with either deionized water or ethanol solution. The cause of the low 16 

haze and high transmittance values was due to the antistatic functional groups [5] and 17 

the surface roughness [23, 24]. 18 

Lin [25] suggested that a lower surface roughness decreases the haze and 19 

increases the transmittance values of BOPP films, in contrary to our results. Our 20 

experimental results showed that the BOPP film modified with the PVA/SF/PEG 21 

coating had a high surface roughness, a near zero haze value, and a nearly 100% 22 

transmittance value. The cause of the discrepancy has yet to be determined but may be 23 

due to the hydrophilic nature of the PVA/SF/PEG coating, which generally is 24 

associated with reduced haze values [26, 27].  25 
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 1 

Fig. 7. The visible range haze and transmittance values of the BOPP films: I: The 2 

original BOPP film; II: The DBD plasma pretreated film; III: The PVA/SF (3%/3%) 3 

coated film; IV: Sample III treated with deionized water; V: Sample III treated with 4 

60% ethanol solution; VI: The PVA/SF/PEG (3%/3%/1%) coated film; VII: Sample 5 

VI treated with deionized water; VII: Sample VI treated with 60% ethanol solution 6 

3.7 Printability 7 

Fig. 8 shows the gravure printing quality of the BOPP films that were treated 8 

with different methods. The printing quality of the original BOPP film was very poor 9 

(multiple ink dots were present), as shown in Fig. 8 (a). The printability increased 10 

marginally when the BOPP film was pretreated with the DBD plasma. However, the 11 

red ink was still not homogeneously printed on the BOPP surface, as shown in Fig. 8 12 

(b). Fig. 8 (c) demonstrates the printing quality of the BOPP film modified with the 13 

PVA/SF/PEG coating, and a substantially higher pixel accuracy was achieved. After 14 

further treatment with 60% ethanol solution for 8 minutes, visually flawless printing 15 

was achieved, as depicted by Fig. 8 (d). Fig. 8 shows that the novel protocol 16 

developed in this study successfully improved the applicability of the BOPP film for 17 

high quality printing. Additionally, our experimental results agree with the claim that 18 

the wettability is closely associated with the ink adhesion [28, 29]. 19 
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 1 

Fig. 8. Images (20 mm x 20 mm) at 100 times magnification of the red water-based 2 

ink printed on the BOPP films: (a) On the original BOPP film; (b): On the DBD 3 

plasma pretreated film; (c): On the PVA/SF/PEG (3%/3%/1%) coated film; (d): On 4 

sample (c) treated with 60% ethanol solution 5 

4. Conclusion 6 

A novel modification protocol was established and an environmentally friendly 7 

PVA/SF/PEG coating was designed to improve the printability of BOPP film, making 8 

the modified BOPP film highly competitive for packing applications. The entire 9 

modification process included DBD plasma pretreatment (corona discharge), 10 

PVA/SF/PEG coating, and ethanol solution finishing. The 60% ethanol solution 11 

finishing significantly enhanced the hydrophilicity of the BOPP films modified with 12 

the PVA/SF/PEG coating. The contact angle of the finished BOPP film decreased 13 

from 98.5º to 16.09º after the entire treatment processes, and the haze value decreased 14 

to nearly zero, whereas the transmittance value increased to effectively 100%. The 15 

surface characteristics of the modified BOPP film are highly competitive for high 16 

quality printing applications. Moreover, besides enhancing the printability, the 17 

PVA/SF/PEG coating also improved the mechanical strength of the BOPP films. 18 

While some micro-holes occurred on the modified BOPP surface, their impact on the 19 

printing quality is negligible because the micro-holes are shallow. Indeed, such 20 

micro-holes may be favorable because our experimental results indicated that they 21 
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may enhance the combined intensity of the ink and the modified BOPP film. High 1 

quality printing with water-based ink was achieved using the fully modified BOPP 2 

film.   3 
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