

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Simultaneous determination of two flavonoids based on disulfide linked
2	β -cyclodextrin dimer and Pd clusters functionalized graphene-modified electrode
3	
4	
5	Xin Ran ^{a, 1} , Long Yang ^{a, 1} , Genfu Zhao ^a , Hanzhang Ye ^a , Yanqiong Zhang ^a , Shuangmei
6	Fan ^a , Xiaoguang Xie ^{a,} *, Hui Zhao ^{b,} *, Can-Peng Li ^{a,} *
7	
8	
9	^a School of Chemical Science and Technology, Yunnan University, Kunming 650091,
10	PR China.
11	^b Laboratory for Conservation and Utilization of Bio-resource, Yunnan University,
12	Kunming 650091, PR China.
13	
14	
15	
16	
17	
18	¹ These authors contributed equally to this work.
19	* Corresponding authors.
20	Fax or Tel: 86-871-65031119. E-mail: xgxie@ynu.edu.cn (X. xie);
21	zhaohyau@yahoo.com.cn (H. Zhao); lcppp1974@sina.com (CP. Li)
22	

RSC Advances Accepted Manuscript

23	Abstract: In the present work, ultrafine Pd clusters with a uniform size of ~2.0 nm
24	were monodispersed on the surface of reduced graphene oxide (RGO) using a clean
25	and green approach in the absence of additional reductants and surfactants. Disulfide
26	linked β -cyclodextrin dimer (SS- β -CD) was non-covalently bonded to the surface of
27	Pd@RGO. By combining the merits of Pd@RGO and the SS-β-CD, a highly sensitive
28	electrochemical sensing platform was developed based on the SS- β -CD-Pd@RGO
29	nanohybrids. Electrochemical simultaneous detection of baicalin and luteolin using
30	SS- β -CD-Pd@RGO nanohybrids-modified electrode is described for the first time.
31	The SS- β -CD showed higher supramolecular recognition capability than the native
32	β -CD, which may be caused by the cooperative binding abilities of two adjacent CD
33	units. Due to the synergistic effects from the Pd@RGO (e.g. the good electrochemical
34	properties and large surface area) and SS- β -CD (<i>e.g.</i> a hydrophilic external surface, a
35	high supramolecular recognition, and a good enrichment capability), the
36	SS- β -CD-Pd@RGO modified electrode was found to have linear response ranges of
37	0.02–20.00 μM for baicalin and 0.01–10.00 μM for luteolin with relatively low
38	detection limits of 0.0052 μ M for baicalin and 0.0070 μ M for luteolin, respectively.
39	The results indicated that SS- β -CD-Pd@RGO nanohybrids are excellent sensing
40	materials for the electrochemical determination of flavonoids. The proposed method
41	could be successfully utilized to detect baicalin and luteolin in serum samples, and
42	exhibited a promising application in practice.
43	

44 **1. Introduction**

2

Page 3 of 38

45	Flavonoids, plant polyphenolic compounds abundant in fruits and vegetables,
46	exhibit a wide variety of biochemical and pharmacological effects, including
47	antioxidant free-radical scavenging, anti-inflammatory, anti-carcinogenic, etc. ¹ In
48	plants, they are utilized in response to microbial infection. However, in animals and
49	humans, flavonoids protect cells against damage caused by reactive oxygen species. ²
50	Moreover, they have the capacity to inhibit the growth of a wide range of bacteria via
51	disruption of bacterial cell walls following by their complexation with the
52	extracellular soluble protein components. ³ Flavonoids also exert anti-viral actions
53	due to their favourable oxidation potentials. ⁴ Baicalin (Scheme 1A) and luteolin
54	(Scheme 1B), belonging to the class flavonoids, are two important anti-inflammatory
55	and anticancer drugs, which are widely used in medical practice. As a result of the
56	above pharmacological effects, different kinds of concentrated composite herbal
57	preparations that contain baicalin and luteolin as the active component have been used
58	clinically as therapeutical medicine. Besides, a lot of health functional foods and
59	different beverages usually contain baicalin and luteolin. Therefore, establishment of
60	highly sensitive analytical techniques for the determination of baicalin and luteolin is
61	of great significance in clinics, pharmaceutics, and functional foods. So far, several
62	methods such as thin layer chromatography, ⁵ capillary electrophoresis, ^{6,7} GC, ^{8,9}
63	HPLC, ¹⁰⁻¹² fluorimetry, ¹³ and LC–MS ^{14,15} have been developed for the analysis of
64	baicalin and luteolin. Although these methods have advantages of sensitivity and
65	accuracy, their high cost and complicated operation limit their extensive application.
66	Electrochemical detection is an attractive alternative to these techniques because it

67	features high sensitivity, instrument simplicity, fast response, low cost, and feasibility
68	of miniaturization. Although the electrochemical methods have been reported for
69	determination of the different type of flavonoids, ¹⁶⁻²¹ to the best of our knowledge,
70	there are no reports yet for simultaneous determination of baicalin and luteolin by an
71	electrochemical method.
72	Noble metals with ultrafine sizes have attracted considerable attention because of
73	their large surface areas and high number of edge and corner atoms that enhance the
74	catalytic properties of noble metal nanocomposites. ^{22,23} Therefore, the synthesis of
75	small metal particles with high accessible surface areas is a worthwhile endeavor.
76	Unfortunately, surface energies increase with decreased noble metal particle size,
77	leading to serious aggregation of small particles. ^{24,25} Particularly, the synthesis of
78	small sized particles with the sizes of less than 2 nm, which are also known as clusters
79	differentiating from nanoparticles (NPs) due to their small sizes and narrow size
80	distribution, represents many more challenges because of its high requirement of
81	control over the nucleation and growth processes compared with that of NPs. 26,27
82	Thus, the metal particles were usually anchored to suitable supports to overcome the
83	aggregation. ^{27,28} Graphene, which is a robust 2D sheet of sp ² -hybridized carbon, is
84	the most promising one among all the available support materials. ²⁹ Pd cluster and its
85	composite are widely used for many applications because of their lower cost than
86	other noble metals. ³⁰ Research based on first-principles calculations indicates that Pd
87	could interact with and bind more strongly to graphene because more interaction
88	states and transmission channels are generated between them and because Pd tends to

RSC Advances Accepted Manuscript

4

89	grow into three-dimensional structures on graphene surfaces. ²⁵ This provides a hint
90	that graphene could be an ideal substrate for growing and anchoring Pd clusters for
91	high-performance electrocatalytic or electrochemical devices.
92	Supramolecular host-guest recognition based on noncovalent interaction has
93	attracted great attention in nowadays, which has been widely employed to develop
94	different electrochemical sensors by modifying organic macrocyclic hosts on various
95	electrodes. ^{18,31-38} Cyclodextrins (CDs), as the typical macrocyclic molecules, are
96	oligosaccharides composed of six, seven, or eight glucose units (α -, β -, γ -CD,
97	respectively), which are toroidal in shape with a hydrophobic inner cavity and a
98	hydrophilic exterior and are capable of forming inclusion complexes with a wide
99	variety of hydrophobic guests. ^{39,40} Graphene is a material that holds great promise for
100	potential applications in many technological fields because of its high surface area,
101	low cost, and high conductivity. ^{36,39} It has been reported that the composites of CDs
102	and graphene could be formed by van der Waals force, hydrogen-bonding, and
103	hydrophobic interaction. ^{34,37,39} A graphene that is functionalized with CDs is likely to
104	obtain new functionalized materials that simultaneously possess the unique properties
105	of graphene (e.g. high electrical conductivity and large surface area) and CDs (e.g.
106	high supramolecular recognition and good enrichment capability). Thus, the
107	integration of graphene and CDs can be potentially applied in the field of
108	electrochemical sensing or biosensing. As a recently developing family of CD
109	derivatives, bridged bis(β -CD)s exhibit significantly enhanced binding abilities and
110	molecular recognition through the cooperative binding of two adjacent CD units in

RSC Advances Accepted Manuscript

111	comparison with native CDs. ^{41,42} Therefore, considerable efforts have been devoted
112	in this field to design and synthesize various CD dimers with considerable structural
113	diversity to achieve the enhanced binding abilities. ⁴³ Hence, diverse functional
114	groups such as organoseleniums, ⁴⁴ disulfides, ⁴⁵ pyridines, ^{46,47} ethylene glycol, ⁴⁸
115	aromatic diamine, ⁴⁹ and pyrene ⁵⁰ have been used as the linker between two CD units.
116	Unexpectedly, their molecular recognition behaviors have not been extensively
117	investigated. In addition, these bridged bis(β -CD)s are rarely employed to construct
118	electrochemical sensing or biosensing platforms.
119	In the present paper, ultrafine Pd clusters with a uniform size of ~ 2.0 nm were
120	monodispersed on the surface of reduced graphene oxide (RGO) using a clean and
121	green approach in the absence of additional reductants and surfactants. The disulfide
122	linked β -cyclodextrin dimer (SS- β -CD) was non-covalently bonded to the surface of
123	Pd@RGO. By combining the merits of Pd@RGO and the SS-β-CD, a highly sensitive
124	electrochemical sensing platform was developed based on the SS- β -CD-Pd@RGO
125	nanohybrids. The designed electrochemical sensing platform is illustrated in Scheme
126	2. Two flavonoid compounds, namely, baicalin and luteolin were chosen as
127	simultaneous probes to verify the performance of the SS- β -CD-Pd@RGO
128	nanohybrids.
129	
130	2. Materials and methods

131 **2.1 Chemicals**

132 Graphite oxide was purchased from Nanjing XFNANO Materials Tech Co., Ltd.

6

133	(Nanjing, China). PdCl ₂ and β -CD were obtained from Sigma Chemical Co. (St.
134	Louis, MO, USA). Thiol-β-cyclodextrin (SH-β-CD) was purchased from Shandong
135	Binzhou Zhiyuan Bio-Technology Co., Ltd (Shandong, China). Baicalin and luteolin
136	were obtained from Aladdin Chemical Reagent Lo., Ltd. All aqueous solutions were
137	prepared with deionized water (DW, 18 M Ω cm). All other reagents were of analytical
138	grade.
139	
140	2.2 Apparatus
141	Electrochemical impedance spectroscopy (EIS) and differential pulse
142	voltammetery (DPV) experiments were performed with a CHI 660E Electrochemical
143	Workstation from Shanghai Chenhua Instrument (Shanghai, China) and conducted
144	using a three-electrode system, with the modified GCE as working electrode, a
145	platinum wire as the counter electrode, a saturated calomel electrode (SCE) as the
146	reference electrode. The morphologies of the prepared samples were characterized by
147	a QUNT200 scanning electron microscopy (SEM, USA) and a JEM 2100
148	transmission electron microscopy (TEM, Japan). UV-visible spectra were analyzed in
149	a U-2001 Hitachi (Tokyo, Japan) UV spectrophotometer. Fourier transform infrared
150	(FTIR) study was performed over the wavenumber, range of 4000–400 cm^{-1} by a
151	Thermo Fisher SCIENTIFIC Nicolet IS10 (Thermo Fisher, Massachusetts, USA)
152	FTIR impact 410 spectrophotometer using KBr pellets. Thermogravimetric analysis
153	(TGA) was carried out on a Q50 TGA (TA Instruments, New Castle, DE, USA), at a
154	heating rate of 5 °C min ⁻¹ from 25 to 800 °C in argon.

RSC Advances Accepted Manuscript

155

156 **2.3 UV-vis spectroscopic measurements**

157	Inclusion com	plexes formatio	n of baicalin/SS	-β-CD, baicalin/	β-CD,
-----	---------------	-----------------	------------------	------------------	-------

- 158 luteolin/SS- β -CD, and luteolin/ β -CD were studied in DW using the spectral shift
- method. The concentration of baicalin and luteolin were kept constant at 50 μ M, the
- 160 SS- β -CD concentration was 0.36 mM, while the β -CD concentration was 0.72 mM.
- 161 Initially, stock solutions of baicalin, luteolin, SS- β -CD, and β -CD in DW were
- 162 prepared. Aliquots from each solution were transferred to a 25 mL volumetric flask
- and the volume was made up using DW so that the required concentrations are
- 164 obtained. The prepared solutions were stirred for 30 min at room temperature, filtered
- 165 through 0.45 μm membrane filter, and the UV-vis absorption spectra were recorded in
- the wavelength range from 200 to 500 nm against blank solutions containing the same
- 167 concentrations of SS- β -CD or β -CD. The recorded spectra were compared to the
- 168 spectrum of free baicalin or luteolin.

169

170 **2.4 Preparation of the RGO**

171 The graphite oxide was exfoliated in to graphene oxide (GO) sheets by

172 ultrasonication at room temperature for 1 h. The as-obtained yellow-brown aqueous

- suspension of GO was stored at room temperature and used for further experiment.
- 174 Compared with the traditional procedure using highly toxic hydrazine as reductant, a
- green approach was adopted to prepare RGO reported by Fan et al. ⁵¹ with some
- modifications. In a typical experiment, the pH of $50.0 \text{ mL of } 0.5 \text{ mg mL}^{-1} \text{ GO}$

177	aqueous suspension was adjusted to 11.0 using 1.0 M NaOH. Then it was transferred
178	to a round bottom flask and stirred at 90 °C in an oil bath for 5.0 h. After cooling to
179	room temperature, the resulting stable black dispersion was centrifuged at 16000 rpm
180	and washed with DW for three times. Finally, the RGO material was obtained by
181	freeze-drying.
182	
183	2.5 Preparation of the Pd@RGO
184	For preparation of the Pd@RGO material, 10.0 mg RGO was dispersed into 20.0
185	mL of DW via sonication. Then 0.80 mL of 5.0 mM $PdCl_2$ aqueous solution was
186	added to the RGO suspension dropwise and stirred in an ice bath for 0.5 h. After
187	centrifuging and washing with DW for three times, the resulting Pd@RGO was
188	obtained by freeze-drying.
189	
190	2.6 Synthesis of SS-β-CD dimer
191	SS- β -CD dimer was synthesized using the method reported by Tang and
192	co-workers. 52 Briefly, the SH- β -CD (2.0 g) was dissolved in 10% H_2O_2 (25 mL) by
193	heating, and the mixture was stirred at room temperature for 5 h. A white precipitate
194	was obtained after the solvent was added to acetone. The precipitate was filtered.
195	After evaporation of acetone and water in vacuo, SS- β -CD dimer was obtained. The
196	yield of the SS- β -CD was calculated to be 94.1%.

198 2.7 Preparation of the SS-β-CD-Pd@RGO nanohybrids

199	The fabrication of the SS- β -CD-Pd@RGO nanohybrid was carried out by
200	sonicating 10 mg of Pd@RGO in 20 mL of 0.5 mg mL ⁻¹ SS- β -CD at room
201	temperature for 2 h and stirred for another 10 h. Finally, the resulting stable black
202	suspension was centrifuged and washed with DW for three times to remove unbound
203	SS- β -CD, and then lyophilized to obtain SS- β -CD-Pd@RGO nanohybrid. The
204	β -CD-Pd@RGO composite was prepared using the similar procedure by replacing
205	SS- β -CD with native β -CD.
206	
207	2.8 Preparation of the modified electrodes
208	GC electrode (3 mm in diameter) was polished with 0.3 and 0.05 $\mu m Al_2O_3$
209	powder respectively and subsequently sonicated in ethanol and DW to remove the
210	adsorbed substance and dried in air. The SS- β -CD-Pd@RGO was dispersed in DW at
211	a concentration of 0.5 mg mL ^{-1} with the aid of ultrasonic agitation for 20 min,
212	resulting in a homogeneous suspension. To prepare the SS- β -CD-Pd@RGO modified
213	electrode, 5 μ L of the SS- β -CD-Pd@RGO suspension was dropped onto the electrode
214	surface and dried at room temperature. The obtained electrode was noted as
215	SS- β -CD-Pd@RGO/GC electrode. The β -CD-Pd@RGO/GC, Pd@RGO/GC, and
216	RGO/GC electrodes were prepared in the same way.
217	
218	2.9 Electrochemical measurements
219	Before electrochemical measurements, the RGO/GC, Pd@RGO/GC,
220	β-CD-Pd@RGO/GC, and SS-β-CD-Pd@RGO/GC electrodes were electrochemically

10

221	reduced in 0.1 M phosphate buffer (PBS, pH 7.0) by cycling the potential between 0
222	and -1.4 V for 15 cycles. Prior to the electrochemical reduction, the PBS was
223	completely saturated with nitrogen gas to remove the dissolved oxygen. After that,
224	DPV was carried out 0.1 M PBS (pH 3.0) containing different concentrations of
225	baicalin and luteolin by scanning the potential from 0.0 to 0.7 V with an amplitude of
226	0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range from 10^1
227	to 10^5 Hz with an amplitude of 5 mV using 2.0 mM [Fe(CN) ₆] ^{3-/4-} redox couple (1:1)
228	with 0.1 M KCl as supporting electrolyte. All the measurements were carried out at
229	room temperature.
230	
231	3. Results and Discussion
232	3.1 UV-vis spectroscopic measurements
232 233	3.1 UV-vis spectroscopic measurements The UV-vis spectroscopy was used to investigate the interactions between baicalin
232233234	3.1 UV-vis spectroscopic measurements The UV-vis spectroscopy was used to investigate the interactions between baicalin and SS- β -CD or β -CD. As shown in Fig. 1A , the baicalin shows two strong
232233234235	3.1 UV-vis spectroscopic measurements The UV-vis spectroscopy was used to investigate the interactions between baicalinand SS-β-CD or β-CD. As shown in Fig. 1A, the baicalin shows two strongabsorptions at 277 and 318 nm, respectively. The two absorbances increased slightly
 232 233 234 235 236 	3.1 UV-vis spectroscopic measurements The UV-vis spectroscopy was used to investigate the interactions between baicalinand SS-β-CD or β-CD. As shown in Fig. 1A, the baicalin shows two strongabsorptions at 277 and 318 nm, respectively. The two absorbances increased slightlywhen the β-CD was added to the aqueous solution of baicalin. However, significant
 232 233 234 235 236 237 	3.1 UV-vis spectroscopic measurements The UV-vis spectroscopy was used to investigate the interactions between baicalinand SS-β-CD or β-CD. As shown in Fig. 1A, the baicalin shows two strongabsorptions at 277 and 318 nm, respectively. The two absorbances increased slightlywhen the β-CD was added to the aqueous solution of baicalin. However, significantincreases of the two absorbances were observed when the SS-β-CD was added to the
 232 233 234 235 236 237 238 	3.1 UV-vis spectroscopic measurements The UV-vis spectroscopy was used to investigate the interactions between baicalinand SS-β-CD or β-CD. As shown in Fig. 1A, the baicalin shows two strongabsorptions at 277 and 318 nm, respectively. The two absorbances increased slightlywhen the β-CD was added to the aqueous solution of baicalin. However, significantincreases of the two absorbances were observed when the SS-β-CD was added to theaqueous solution of baicalin. Complexation of baicalin with SS-β-CD exhibited
 232 233 234 235 236 237 238 239 	3.1 UV-vis spectroscopic measurements The UV-vis spectroscopy was used to investigate the interactions between baicalinand SS-β-CD or β-CD. As shown in Fig. 1A , the baicalin shows two strongabsorptions at 277 and 318 nm, respectively. The two absorbances increased slightlywhen the β-CD was added to the aqueous solution of baicalin. However, significantincreases of the two absorbances were observed when the SS-β-CD was added to theaqueous solution of baicalin. Complexation of baicalin with SS-β-CD exhibitedgreatly enhanced absorbances compared to the complexation with native β-CD. The
 232 233 234 235 236 237 238 239 240 	3.1 UV-vis spectroscopic measurements The UV-vis spectroscopy was used to investigate the interactions between baicalinand SS-β-CD or β-CD. As shown in Fig. 1A, the baicalin shows two strongabsorptions at 277 and 318 nm, respectively. The two absorbances increased slightlywhen the β-CD was added to the aqueous solution of baicalin. However, significantincreases of the two absorbances were observed when the SS-β-CD was added to theaqueous solution of baicalin. Complexation of baicalin with SS-β-CD exhibitedgreatly enhanced absorbances compared to the complexation with native β-CD. Theluteolin shows two strong absorptions at 269 and 352 nm, respectively, as shown in
 232 233 234 235 236 237 238 239 240 241 	3.1 UV-vis spectroscopic measurements The UV-vis spectroscopy was used to investigate the interactions between baicalinand SS-β-CD or β-CD. As shown in Fig. 1A, the baicalin shows two strongabsorptions at 277 and 318 nm, respectively. The two absorbances increased slightlywhen the β-CD was added to the aqueous solution of baicalin. However, significantincreases of the two absorbances were observed when the SS-β-CD was added to theaqueous solution of baicalin. Complexation of baicalin with SS-β-CD exhibitedgreatly enhanced absorbances compared to the complexation with native β-CD. Theluteolin shows two strong absorptions at 269 and 352 nm, respectively, as shown inFig. 1B. Similar to baicalin, complexation of luteolin with SS-β-CD exhibited greatly

243 absorbances was caused by the cooperative binding of two adjacent hydrophobic

- 244 cavities with baicalin in SS- β -CD. ^{41,43,53}
- 245

246 **3.2 Characterization of the SS-β-CD-Pd@/RGO nanohybrids**

247	The SEM image of RGO was obtained as shown in Fig. S1. The microstructure
248	image reveals that the RGO material consists of randomly aggregated thin, wrinkled
249	sheets closely associated with each other. The morphologies and microstructures of
250	Pd@RGO was investigated by TEM observation as shown in Figs. 2A-C. The most
251	striking feature is that the Pd clusters with a uniform size ~2.0 nm are fairly well
252	monodispersed on the surface of RGO. The driving force for Pd clusters deposition on
253	RGO could be caused by the redox reaction between Pd^{2+} and RGO. The RGO is the
254	electron donors or the reductants for subsequent Pd cluster growth on the RGO
255	surface. Previous reports have explored that both single-wall carbon nanotubes
256	(SWNTs) 54 and GO 25 could, respectively, reduce AuCl ₄ $^{3-}$ and PdCl ₄ $^{2-}$ to generate Au
257	NPs and Pd NPs without any additional reductant. These phenomena are explained by
258	the difference in the redox potentials of $AuCl_4^{3-}$ ions and SWNTs (0.5 V vs SCE) or
259	$PdCl_4^{2-}$ and GO (0.48 V vs SCE), which facilitates the reduction of noble metal ions.
260	Similar to these carbon materials, RGO is also good reducing agents for the formation
261	of Pd@RGO nanocomposites. The small size of Pd clusters deposited on the RGO
262	surface indicates that the remaining oxygen-containing groups, (generally the
263	graphene produced via the reduction method has some oxygen-containing groups),
264	may play an important role in controlling the formation of Pd clusters through

265	increasing the anchoring ability of Pd nuclei on the RGO surface and avoiding
266	Ostwald ripening following nuclei. ²⁵ The β -CD-Pd@RGO and
267	SS- β -CD-Pd@RGO nanohybrids were characterized by FTIR and TGA analysis. Fig.
268	2D shows the FTIR spectra of the RGO, β -CD-Pd@RGO, and SS- β -CD-Pd@RGO
269	materials. It is found that the FTIR spectrum of RGO is essentially featureless except
270	some weak absorptions of the remaining oxygen-containing groups. Whereas the
271	FTIR spectra of β-CD-Pd@RGO and SS-β-CD-Pd@RGO exhibit the typical CD
272	absorption features of the coupled C–O–C stretching/O–H bending vibrations at 1204
273	cm ⁻¹ , the coupled C–O/C–C stretching/O–H bending vibrations at 1090 cm ⁻¹ , and
274	O–H stretching vibrations at 3435 cm ⁻¹ . The presence of these peaks confirmed that
275	the β -CD and SS- β -CD molecules were successfully attached to the surface of the Gra.
276	The prepared SS- β -CD-Pd@RGO and the related materials were also characterized
277	by TGA, as shown in Fig. 2E. For the pristine RGO, there is a minor loss in mass
278	(24%) at a temperature of approximately 600 °C owing to the pyrolysis of a small
279	amount of the labile oxygen-containing functional groups. The β -CD-Pd@RGO
280	material exhibited an abrupt mass loss when the temperature was approximately 260
281	^{o}C because of the decomposition of $\beta\text{-}CD;$ the mass loss reached about 60 wt% when
282	the temperature was 600 °C. Similarly, the SS- β -CD-Pd@RGO nanohybrid also
283	exhibited an abrupt mass loss when the temperature was approximately 260 $^{\circ}$ C owing
284	to the decomposition of SS- β -CD; the mass loss reached approximately 61 wt% when
285	the temperature was 600 °C. The amount of β -CD and SS- β -CD grafted to RGO were
286	estimated to be approximately 36.0% and 37.0%, respectively. It should be noted here

that the amount of SS- β -CD attached to RGO is approximately equal to that of β -CD.

289	3.3 Electrochemical characterization of the modified electrodes
290	The value of the charge transfer resistance (R_{ct}) of the modified electrode was
291	estimated by the semicircle diameter. Fig. 2F illustrates the EIS of the bare GCE,
292	RGO/GCE, Pd@RGO/GCE, β-CD-Pd@RGO/GCE, and SS-β-CD-Pd@RGO/GCE.
293	Obviously, the bare GCE exhibited a semicircle portion and the value of R_{ct} was
294	estimated to be approximately 800 Ω . While the R_{ct} decreased dramatically, nearly to
295	zero at RGO/GCE, indicating that RGO/GCE formed high electron conduction
296	pathways between the electrode and electrolyte. When the Pd@RGO modified on the
297	bare GCE, the semicircle decreased further, revealing that Pd clusters with excellent
298	conductivity can facilitate the electron transfer. For the β -CD-Pd@RGO/GCE and
299	SS- β -CD-Pd@RGO/GCE, their semicircles both increased to approximately 1500 Ω .
300	This is because of the β -CD or SS- β -CD layer hindered the electron transfer and made
301	the interfacial charge transfer difficult. The β -CD and SS- β -CD are successfully
302	immobilized of on the graphene, which was directly proved by the TGA analysis. The
303	increased R_{ct} is not a direct proof that β -CD or SS- β -CD are immobilized on the
304	grapheme. but it can be a auxiliary evidence.
305	The kinetics of the electrode reactions was investigated by studying the effect of
306	scan rate at the SS- β -CD-Pd@RGO/GCE using 2.0 mM [Fe(CN) ₆] ^{3-/4-} redox couple
307	(1:1) with 0.1 M KCl as supporting electrolyte. As shown in Fig. S2A, both anodic
308	peak current (I_{pa}) and cathodic peak current (I_{pc}) increased with the increase of scan

RSC Advances Accepted Manuscript

309	rate in the range of 50–400 mV s ⁻¹ . Also, the I_{pa} and I_{pc} showed a linear relationship
310	with the scan rate respectively (Fig. S2B), suggesting that the electrode reaction is a
311	adsorption-controlled electrochemical process. ⁵⁵ It can be seen that both I_{pa} and I_{pc} of
312	the modified electrode increased linearly and were proportional to the scan rate
313	according to Eqs. I_{pa} (μ A) = 0.30 v (mV/s) + 36.3 and I_{pc} (μ A) = -0.27 v (mV/s) -
314	65.3. The separation of peaks suggests that the process is not perfectly reversible;
315	however, stable redox peak current and position during repeated scans at a particular
316	scan rate suggests that the SS- β -CD-Pd@RGO/GCE exhibit a quasi-reversible
317	process. ⁵⁶ Moreover, both anodic peak potential (E_{pa}) and cathodic peak potential (E_{pc})
318	demonstrated a linear relationship with the scan rate respectively (Fig. S2C),
319	indicating that the electron transport form redox moieties to the electrode is very
320	facile. ⁵⁷
321	
322	3.4 Electrochemical behavior of baicalin and luteolin on the modified electrodes
323	The electrochemical behaviors of baicalin and luteolin toward the modified
324	electrodes were investigated using CV and DPV. The CVs for the oxidation and
325	reduction of 20 µM baicalin at bare GCE, RGO/GCE, Pd@RGO/GCE,
326	β-CD-Pd@RGO/GCE, and SS-β-CD-Pd@RGO/GCE were obtained in 0.1 M PBS
327	(pH 3.0) as shown in Fig. 3A. Enhanced redox currents of baicalin using the
328	RGO-modified GCE were observed in comparison with that in the bare GCE. This
329	increase indicated that the high surface area and high conductivity of the RGO

330 increased the effective electrode area and improved the electroactivity towards

331	baicalin oxidation and reduction. Another reason for the enhancement of the currents
332	at the RGO-modified GCE is considered to be the π - π interaction between the
333	baicalin and the RGO film on the GCE. 58 In the case of Pd@RGO/GCE, the redox
334	currents of baicalin were enhanced compared with that of the RGO-modified GCE,
335	indicating that Pd clusters with excellent conductivity can amplify the electrochemical
336	signal. Generally, an increase in the peak current and a decrease in the peak potential
337	could be ascribed to the electrocatalysis. However, the peak potential here is almost
338	no change. Recently, Compton et al. reported that the electrochemical reaction at a
339	thin film-modified electrode being facilitated without a change in the electrochemical
340	rate constant could be considered to alter the solubilities and diffusion coefficients of
341	the electroactive species. ⁵⁹ Thus, the enhancement of the redox currents at
342	Pd@RGO/GCE may also be caused by the altered solubilities or diffusion coefficients
343	of the electroactive species. In addition, the redox currents increased remarkably
344	when the β -CD–Pd@RGO nanohybrid was immobilized onto the surface of GCE.
345	This may be attributed to the β -CD molecules with excellent supramolecular
346	recognition capability that formed inclusion complexes with baicalin. Interestingly,
347	due to the cooperative binding abilities of two adjacent CD units, the redox currents
348	of baicalin at SS- β -CD–Pd@RGO/GCE increased dramatically. This result
349	demonstrated that SS- β -CD possesses higher supramolecular recognition capability
350	than the native β -CD. The CVs for the oxidation and reduction of 10 μ M luteolin at
351	bare GCE, RGO/GCE, Pd@RGO/GCE, β-CD-Pd@RGO/GCE, and
352	SS-β-CD–Pd@RGO/GCE in 0.1 M PBS (pH 3.0) were also obtained as shown in Fig.

353	3B . Similar to baicalin, the redox currents of luteolin at the modified electrodes
354	increased in sequence. As can been seen, the peak to peak potential difference both for
355	baicalin and luteolin in Fig. 3A and B that were close to 0 mV, indicated that the
356	process was adsorption controlled. 55
357	Fig. S3A shows the CVs of 20 μ M baicalin at SS- β -CD–Pd@RGO/GCE for
358	different scan rates. The accumulation condition was carried out at -0.2 V for 200 s.
359	Both anodic peak current (I_{pa}) and cathodic peak current (I_{pc}) increase gradually with
360	an increase in scan rate. As shown in Fig. S3B, the peak current increases linearly
361	with the scan rate in the 50 to 400 mV s^{-1} range, and the equation can be expressed as
362	$I_{\text{pa}}(\mu A) = 0.136 v (\text{mV/s}) + 9.15 (\text{R}^2 = 0.9985) \text{ and } I_{\text{pc}}(\mu A) = -0.042 v (\text{mV/s}) +$
363	0.757. The representation of redox peak current vs. scan rate was linear, indicating
364	that in this case, the process was adsorption controlled. ⁵⁵ In addition, both anodic
365	peak potential (E_{pa}) and cathodic peak potential (E_{pc}) demonstrated a linear
366	relationship with the scan rate respectively (Fig. S3C).
367	Similarly, the effect of scan rate on the redox of luteolin was also studied. Fig.
368	S4A shows the CVs of 10 μ M luteolin at SS- β -CD–Pd@RGO/GCE for different scan
369	rates. As shown in Fig. S4B , both anodic peak current (I_{pa}) and cathodic peak current
370	$(I_{\rm pc})$ increase linearly with the scan rate in the 50 to 400 mV s ⁻¹ range, and the
371	equation can be expressed as $I_{pa}(\mu A) = 0.155 v (mV/s) + 10.59 (R^2 = 0.9985)$ and I_{pc}
372	$(\mu A) = -0.146 v (mV/s) - 7.05$, indicating that the redox of luteolin on
373	SS- β -CD–Pd@RGO/GCE is a typical adsorption-controlled process. ⁵⁵ Also, both
374	anodic peak potential (E_{pa}) and cathodic peak potential (E_{pc}) demonstrated a linear

RSC Advances Accepted Manuscrip

375	relationship with the scan rate respectively (Fig. S4C).
376	The DPVs for the oxidation of 20 μ M baicalin at bare GCE, RGO/GCE,
377	Pd@RGO/GCE, β-CD-Pd@RGO/GCE, and SS-β-CD-Pd@RGO/GCE were
378	obtained in 0.1 M PBS (pH 3.0) as shown in Fig. 3C. The oxidation of 20 μ M
379	baicalin at the bare GCE showed a small peak current of 1.5 μ A. Enhanced oxidation
380	peak current of baicalin using the RGO-modified GCE was observed in comparison
381	with that in the bare GCE. In the case of Pd@RGO/GCE, the oxidation current of
382	baicalin was enhanced compared with that of the RGO-modified GCE. In addition,
383	the oxidation current increased remarkably when the β -CD–Pd@RGO nanohybrid
384	was immobilized onto the surface of GCE. Furthermore, the oxidation current of
385	baicalin at SS- β -CD-Pd@RGO/GCE increased dramatically, which is 1.5 and 24.8
386	times higher than that of the β -CD–Pd@RGO/GC and bare GC electrodes,
387	respectively. The DPV results were in accordance with that of CV. Although the
388	amount of SS- β -CD attached to RGO measured by TGA is approximately equal to
389	that of β -CD, the higher oxidation peak current of baicalin at
390	SS- β -CD–Pd@RGO/GCE than that at β -CD–Pd@RGO/GCE was obtained. This is
391	only caused by the higher supramolecular recognition capability of SS- β -CD. The
392	DPVs for the oxidation of 10 μ M luteolin at bare GCE, RGO/GCE, Pd@RGO/GCE,
393	β-CD–Pd@RGO/GCE, and SS-β-CD–Pd@RGO/GCE in 0.1 M PBS (pH 3.0) were
394	also obtained as shown in Fig. 3D. Similar to baicalin, the oxidation peak currents of
395	luteolin at the modified electrodes increased in sequence, indicating that the
396	SS- β -CD-Pd@RGO/GCE nanohybrid is highly suitable for the detection of baicalin
	19

397	and luteolin by combining the merits of Pd@RGO and SS- β -CD. Fig. 3E shows the
398	oxidation of 20 μM of baicalin (a), 10 μM of luteolin (b), and a mixture (c) containing
399	20 μ M of baicalin and 10 μ M of luteolin at the SS- β -CD–Pd@RGO/GCE in 0.1 M
400	PBS (pH 3.0). Two well-defined peaks that were present at 0.30 and 0.42 V $$
401	corresponded to baicalin and luteolin, respectively, which were well separated from
402	each other with a potential difference of 120 mV. The potential differences were large
403	enough to simultaneously determine the concentrations of baicalin and luteolin. Fig.
404	$3F$ shows the oxidation of a mixture containing 20 μM of baicalin and 10 μM of
405	luteolin at bare GCE, RGO/GCE, Pd@RGO/GCE, β -CD–Pd@RGO/GCE, and
406	SS-β-CD-Pd@RGO/GCE in 0.1 M pH 3.0 PBS. Improved oxidation currents of
407	baicalin and luteolin using these modified electrode were observed. The results are in
408	accordance with that for individual baicalin and luteolin in Figs. 3C and D. These
409	results suggested that the SS- β -CD-Pd@RGO nanohybrid-modified electrode was a
410	better electrode for the simultaneous electrochemical sensing of baicalin and luteolin
411	than β -CD–Pd@RGO/GCE.
412	
413	3.5 Simultaneous determination of baicalin and luteolin using DPV
414	Under optimal conditions (the optimal solution pH is 3.0, the optimal
415	accumulation condition is -0.2 V for 200 s, see ESI for details), DPV was used to

V for 200 s, see **ESI** for details), DPV was used to

determine the concentrations of baicalin and luteolin because it is a highly sensitive 416

417 and low-detection limit electrochemical method. Fig. 4A shows the DPV curves of

418 baicalin and luteolin on the SS-\beta-CD-Pd@RGO/GCE under the different solution

419	concentrations. The oxidation peak currents increased with the increased baicalin and
420	luteolin concentrations. Fig. 4B shows the corresponding calibration curve for
421	baicalin. The oxidation currents were proportional to the baicalin concentrations
422	between 0.02 and 20.0 μ M with a detection limit of 0.0052 μ M (<i>S</i> / <i>N</i> = 3). The
423	corresponding regression equation was calculated as $I(\mu A) = 1.88C(\mu M) + 1.12$ with
424	a correlation coefficient of 0.996. Fig. 4C shows the corresponding calibration curve
425	for luteolin. The oxidation currents were also proportional to the concentration of
426	luteolin between 0.01 and 10.0 μ M with a detection limit of 0.0070 μ M (<i>S</i> / <i>N</i> = 3).
427	The corresponding regression equation was calculated as $I(\mu A) = 3.80C(\mu M) + 1.27$
428	with a correlation coefficient of 0.995. The performance of the proposed
429	SS- β -CD-Pd@RGO-modified electrode was compared with those of other reported
430	electrodes. Table 1 shows that the SS- β -CD-Pd@RGO/GCE exhibited a lower
431	detection limit and wider linear range than the other electrodes. Thus, the modified
432	electrode that was fabricated can be used to simultaneously detect baicalin and
433	luteolin in solutions with high sensitivity. In the present work, the excellent detection
434	performance of the proposed electrochemical sensor may be attributed to two factors:
435	(1) the RGO with the unique structure and outstanding properties (good
436	electrochemical properties and large surface area) loaded lots of Pd clusters and large
437	amount of SS- β -CD; (2) the SS- β -CD with higher supramolecular recognition and
438	enrichment capability than the native β -CD provided more binding sites for
439	recognition abundant of guest molecules.
440	

440

20

441	3.6 Selectivity, reproducibility, and stability
442	Interference during the simultaneous detection of baicalin and luteolin was caused
443	by glucose, oxalic acid, citric acid, urea, ascorbic acid, uric acid, dopamine, which
444	were studied using the SS- β -CD-Pd@RGO-modified GCE. The currents for
445	oxidation of 20 μM of baicalin and 10 μM of luteolin at the SS- β -CD–Pd@RGO/GC
446	electrode were compared with the signal obtained in the presence of interfering
447	species. As shown in Fig. S10, a ten-fold concentration of glucose, oxalic acid, citric
448	acid, urea, and AA did not affect the baicalin and luteolin responses. In addition, no
449	significant interference from common ions, such as Na^+ , K^+ , Ca^{2+} , Mg^{2+} , Cl^- , NO_3^- ,
450	$SO_4^{2^-}$, $CO_3^{2^-}$, Cu^{2^+} , Zn^{2^+} , and Al^{3^+} , was observed, even at 100-fold excess
451	concentrations (Data not shown). Thus, the simultaneous and quantitative detection of
452	baicalin and luteolin was reliable at ambient conditions.
453	The oxidation peak currents of 20 μM of baicalin and 10 μM of luteolin using six
454	equal SS- β -CD–Pd@RGO/GCEs were compared to evaluate the fabrication
455	reproducibility of the SS- β -CD-Pd@RGO-modified electrode. The six modified
456	electrodes exhibited similar electrochemical responses with a relative standard
457	deviation (RSD) of 4.6%, indicating satisfactory reproducibility.
458	Successive cyclic potential scans for 50 cycles and long-term storage assays were
459	used to examine the stability of the SS- β -CD–Pd@RGO-modified electrode. A 7.5%
460	decrease in the initial peak current was observed after 30 continuous cycle scans.
461	Additionally, a long-term stability experiment was performed intermittently (every 5
462	days). The constructed sensor was stored in a refrigerator at 4 °C when not in use.

463	Initial responses of over 94.2% and 84.6% remained after storage for 15 and 30 days,
464	respectively, revealing an acceptable stability of the SS- β -CD–Pd@RGO-modified
465	electrode.
466	
467	3.7 Real sample analysis and potential application of the constructed sensor
468	The SS-β-CD-Pd@RGO/GCE sensor was used to detect baicalin and luteolin in
469	human serum samples using standard addition methods to evaluate the feasibility of
470	the SS-β-CD-Pd@RGO-modified electrode for real sample analysis. The serum
471	sample was diluted one hundred times with 0.1 M PBS (pH 3.0). Results showed
472	apparent recoveries ranging from 96.6% to 106.0% and RSDs ranging from 2.9% to
473	5.6% (Table 2). These findings demonstrated that the SS- β -CD-Pd@RGO-based
474	sensor that was fabricated in this study has practical applications.
475	The proposed sensor may also be expanded to potential applications in biological
476	and functional food samples. It is worth noting that, as an oligosaccharide, SS- β -CD
477	is stable enough under complex conditions, and thus seems to be more suitable for
478	analysis of practical samples. In addition, SS-β-CD possesses higher molecular
479	recognition capability than native β -CD and its synthesis is very easy. Therefore, this
480	sensor could be used to determine the flavonoids in biological samples and provide
481	new opportunities for analysis of flavonoids metabolites in organisms in the future.
482	
483	4. Conclusions

484 In summary, by combining the merits of Pd@RGO and the SS- β -CD, a highly

RSC Advances Accepted Manuscript

485	sensitive electrochemical sensing platform was developed based on the
486	SS- β -CD-Pd@RGO nanohybrids. Electrochemical simultaneous detection of baicalin
487	and luteolin using SS- β -CD-Pd@RGO nanohybrids-modified electrode is described
488	for the first time. Due to the synergistic effects from the Pd@RGO and SS- β -CD, the
489	SS-β-CD-Pd@RGO modified GC electrode was found to have linear response ranges
490	of 0.02–20.00 μM for baicalin and 0.01–10.00 μM for luteolin with relatively low
491	detection limits of 0.0052 μM for baicalin and 0.0070 μM for luteolin, respectively,
492	implying that SS- β -CD-Pd@RGO nanohybrids are excellent sensing materials for the
493	electrochemical determination of flavonoids. In addition, the proposed sensing
494	platform was employed for detection of baicalin and luteolin in human serum samples
495	with satisfactory results. Thus, the present work might broaden the electrochemical
496	application of various bridged bis(β -CD)s in electrochemical sensing or biosensing
497	field.
498	
499	Acknowledgements
500	This work was supported by the Natural Science Foundation of China (31160334)
501	and the Natural Science Foundation of Yunnan Province (2012FB112, 2014RA022),
502	People's Republic of China.

503

504 **References:**

1 L. Zhang, A. S. Ravipati, S. R. Koyyalamudi, S. C. Jeong, N. Reddy, P. T. Smith,

J. Bartlett, K. Shanmugam, G. Münch, M. J. Wu, J. Agric. Food Chem., 2011, 59,

- 507 12361–12367.
- 508 2 M. E. Carlotti, S. Sapino, E. Ugazio, G. Caron, *J. Incl. Phenom. Macro.*, 2010, 70,
 509 81–90.
- 510 3 E. Pinho, M. Grootveld, G. Soares, M. Henriques, *Carbohyd. Polym.*, 2014, 101,
- 511 121–135.
- 512 4 D. D. Orhan, B. Ozçelik, S. Ozgen, F. Ergun, *Microbiol. Res.*, 2010, 165,
 513 496–504.
- 514 5 M. Okamoto, M. Ohta, H. Kakomn, T. Omori, *Chromatographia*, 1993, **35**,
- 515 281–284.
- 516 6 S. J. Sheu, C. F. Lu, J. High Resolut. Chromatogr., 1996, **19**, 409–412.
- 517 7 Y. M. Liu, S. J. Sheu, Anal. Chim. Acta, 1994, 288, 221–226.
- 518 8 C. S. Liu, Y. S. Song, K. J. Zhang, J. C. Ryu, M. Kim, T. H. Zhou, J. Pharm.
- 519 *Biomed. Anal.*, 1995, **13**, 1409–1414.
- 520 9 M. C. Lin, M. J. Tsai, K. C. Wen, J. Chromatogr. A, 1999, 830, 387–395.
- 521 10 Q. Chang, M. Zhu, Z. Zuo, M. Chow, W. K. Ho, J. Chromatogr. B: Biomed. Sci.
- 522 *Appl.*, 2001, **760**, 227–235.
- 523 11 F. M. Areias, P. Valentao, P. B. Andrade, F. Ferreres, R. M. Seabra, Food Chem.,
- 524 2001, **73**, 307–311.
- 525 12 S. M. Wittemer, M. Veit, J. Chromatogr. B, 2003, 793, 367–375.
- 526 13 G. Favaro, C. Clementi, A. Romani, V. Vickackaite, *J. Fluoresc.*, 2007, 17,
 527 707–714.
- 528 14 J. G. Renee, C. K. Geoffrey, A. Z. Mamdouh, J. A. Louise, Phytochem. Anal.,

529		2000, 11, 257–267.
530	15	D. A. van Elswijk, U. P. Schobel, E. P. Lansky, H. Irth, J. van der Greef,
531		<i>Phytochemistry</i> , 2004, 65 , 233–241.
532	16	D. M. Zhao, X. H. Zhang, L. J. Feng, Q. Qi, S. F. Wang, Food Chem., 2011, 127,
533		694–698.
534	17	S. H. Wu, B. J. Zhu, Z. X. Huang, J J. Sun, <i>Electrochem. Commun.</i> , 2013, 28,
535		47–50.
536	18	Z. Liu, A. Zhang, Y. Guo, C. Dong, Biosens. Bioelectron., 2014, 58, 242-248.
537	19	P. F. Pang, Y. P. Liu, Y. L. Zhang, Y. T. Gao, Q. F. Hu, Sens. Actuators B, 2014,
538		194 , 397–403.
539	20	A. Y. Tesio, A. M. Granero, N. R. Vettorazzi, N. F. Ferreyra, G. A. Rivas, H.
540		Fernández, M. A. Zon, Microchem. J., 2014, 115, 100-105.
541	21	H. Ibrahim, Y. Temerk, Sens. Actuators B, 2015, 206, 744-752.
542	22	M. L. Pang, J. Y. Hu, H. C. Zeng, J. Am. Chem. Soc., 2010, 132, 10771-10785.
543	23	J. A. Farmer, C. T. Campbell, Science, 2010, 329 , 933–936.
544	24	R. J. White, R. Luque, V. L. Budarin, J. H. Clark, D. J. Macquarrie, Chem. Soc.
545		<i>Rev.</i> , 2009, 38 , 481–494.
546	25	X. M. Chen, G. H. Wu, J. M. Chen, X. Chen, Z. X. Xie, X. R. Wang, J. Am.
547		Chem. Soc., 2011, 133 , 3693–3695.
548	26	W. Chen, S. Chen, Angew. Chem., Int. Ed., 2009, 48, 4386-4389.
549	27	H. J. Yin, H. J. Tang, D. Wang, Y. Gao, Z. Y. Tang, ACS Nano, 2012, 6,
550		8288–8297.
		25

RSC Advances Accepted Manuscript

- 551 28 Y. J. Wang, D. P. Wilkinson, J. Zhang, Chem. Rev., 2011, 111, 7625–7651.
- 552 29 M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev., 2010, 110, 132–145.
- 553 30 L. Yang, H. Zhao, S. Fan, B. Li, C.-P. Li, Anal. Chim. Acta, 2014, 852, 28-36.
- 554 31 J. Zhou, M. Chen, G. W. Diao, ACS Appl. Mater. Interfaces, 2013, 5, 828-836.
- 555 32 G. Zheng, M. Chen, X. Y. Liu, J. Zhou, J. Xie, G. W. Diao, *Electrochim. Acta*,
- 556 2014, **136**, 301–309.
- 557 33 M. Chen, Y. Meng, W. Zhang, J. Zhou, J. Xie, G. W. Diao, *Electrochim. Acta*,
- 558 2013, **108**, 1–9.
- 559 34 Y. Yao, L. Zhang, J. Xu, X. Wang, X. Duan, Y. Wen, *J. Electroanal. Chem.*, 2014,
 560 **713**, 1–8.
- 561 35 J. M. Gong, X. M. Han, X. L. Zhu, Z. Q. Guan, *Biosens. Bioelectron.*, 2014, 61,
 562 379–385.
- 563 36 L. Yang, H. Zhao, Y. C. Li, C.-P. Li, Sens. Actuators B, 2015, 207, 1-8.
- 564 37 L. Yang, S. Fan, G. Deng, Y. Li, X. Ran, H. Zhao, C.-P. Li, *Biosens. Bioelectron.*,
 565 2015, 68, 617–625.
- 566 38 L. Yang, H. Zhao, C.-P. Li, S. M. Fan, B. C. Li, *Biosens. Bioelectron.*, 2015, 64,
 567 126–130.
- 568 39 Y. Guo, S. Guo, J. Ren, Y. Zhai, S. Dong, E. Wang, *ACS Nano*, 2010, 4,
 569 4001–4010.
- 570 40 G. Zhu, X. Zhang, P. Gai, X. Zhang, J. Chen, Nanoscale, 2012, 4, 5703–5709.
- 571 41 Y. Zhao, J. Gu, Y. C. Yang, H. Y. Zhu, R. Huang, B. Jing, J. Mol. Struct., 2009,
- **930**, 72–77.

- 573 42 P. Li, Y. Liu, X. Wang, B. Tang, Analyst, 2011, 136, 4520–4525.
- 574 43 Y.-M. Zhang, H.-Z. Chen, Y. Chen, F. Ding, Y. Liu, New J. Chem., 2013, 37,
- 575 1554–1560.
- 576 44 Y. Liu, B. Li, C. C. You, T. Wada, Y. Inoue, J. Org. Chem., 2001, 66, 225–232.
- 577 45 Y. Okabe, H. Yamamura, K. Obe, K. Ohta, M. Kawai, K. Fujita, *Chem. Commun.*,
- 578 1995, **5**, 581–582.
- 579 46 T. Jiang, D. K. Sukumaran, S. D. Soni, D. S. Lawrence, *J. Org. Chem.*, 1994, 59,
 580 5149–5155.
- 581 47 H. F. M. Nelissen, M. Feiters, R. J. M. Nolte, J. Org. Chem., 2002, 67,
- 582 5901–5906.
- 583 48 Y. Hasegawa, M. Miyauchi, Y. Takashima, H. Yamaguchi, A. Harada,
- 584 *Macromolecules*, 2005, **38**, 3724–3730.
- 585 49 Y. Liu,; Y. W. Yang,; Y. Zhao,; L. Li,; H. Y. Zhang,; S. Z. Kang, J. Inclusion
- 586 Phenom. Macrocyclic Chem., 2003, **47**, 155–160.
- 587 50 T. Ogoshi, M. Hashizume, T. Yamagishi, Y. Nakamoto, *Langmuir*, 2010, 26,
 588 3169–3173.
- 589 51 X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, *Adv. Mater.*, 2008, **20**, 4490–4493.
- 591 52 B. Tang, H. Liang, K. Xu, Z. Mao, X. Shi, Z. Chen, *Anal. Chim. Acta*, 2005, 554,
 592 31–36.
- 593 53 D. Chen, Z. Chen, K. Xu, B. Tang, J. Agric. Food Chem., 2011, 59, 4424–4428.
- 594 54 H. C. Choi, M. Shim, S. Bangsaruntip, H. Dai, J. Am. Chem. Soc., 2002, 124,

RSC Advances Accepted Manuscript

- *595 9058–9059*.
- 596 55 J. Molina, J. Fernández, C. García, A. I. del Río, J. Bonastre, F. Cases,
- *Electrochim., Acta*, 2015, **166**, 54–63.
- 598 56 E. Topoglidis, Y. Astuti, F. Duriaux, M. Gratzel, J. R. Durrant, Langmuir, 2003,
- **19**, 6894–6900.
- 600 57 A. Kaushik, A. Vasudev, S. K. Arya, S. Bhansali, *Biosens. Bioelectron.*, 2013,
 601 50, 35–41.
- 602 58 M. A. Raj, S. A. John, Anal. Chim. Acta, 2013, 771, 14–20.
- 603 59 W. G. Hepburn, C. Batchelor-McAuley, K. Tschulik, E. O. Barnes, R. T.
- 604 Kachoosangi, R. G. Compton, Phys. Chem. Chem. Phys., 2014, 16,
- 605 18034–18041.
- 606 60 G. Chen, H. Zhang, J. Ye, *Talanta*, 2000, **53**, 471–479.
- 607 61 D. Lu, S. Lin, L. Wang, T. Li, C. Wang, Y. Zhang, J. Solid State Electrochem.,
- 608 2014, **18**, 269–278.
- 609
- 610 Figure captions:
- 611 Scheme 1. Chemical structures of baicalin (A) and luteolin (B).
- 612

613 Scheme 2. The illustration of the SS-β-CD-Pd@RGO nanohybrids simultaneously

sensing baicalin and luteolin by an electrochemical strategy.

615

616 **Fig. 1. (A)** UV-vis spectra of free baicalin (50 μ M), 50 μ M baicalin + 0.72 mM β-CD,

617	50 μ M baicalin + 0.32 mM SS- β -CD, free β -CD (0.72 mM), and free SS- β -CD (0.32
618	mM) in aqueous solution. (B) UV-vis spectra of free luteolin (50 μ M), 50 μ M luteolin
619	+ 0.72 mM β -CD, 50 μ M luteolin + 0.32 mM SS- β -CD, free β -CD (0.72 mM), and
620	free SS-β-CD (0.32 mM) in aqueous solution.
621	
622	Fig. 2. (A–C) TEM images of Pd@RGO at different magnifications. (D) FTIR spectra
623	of RGO, β-CD-Pd@RGO, and SS-β-CD-Pd@RGO. (E) TGA curves of RGO,
624	β -CD-Pd@RGO, and SS- β -CD-Pd@RGO. (F) EIS characterization of bare GCE,
625	RGO/GCE, Pd@RGO/GCE, β-CD-Pd@RGO/GCE, and SS-β-CD-Pd@RGO/GCE
626	using 2.0 mM $[Fe(CN)_6]^{3-/4-}$ redox couple (1:1) with 0.1 M KCl as supporting
627	electrolyte.
628	
629	Fig. 3. CVs of 20 μ M baicalin (A) and 10 μ M luteolin (B) at bare GCE, RGO/GCE,
630	Pd@RGO/GCE, β-CD-Pd@RGO/GCE, and SS-β-CD-Pd@RGO/GCE in 0.1 M PBS
631	(pH 3.0). DPVs of 20 μ M baicalin (C) and 10 μ M luteolin (D) at bare GCE,
632	RGO/GCE, Pd@RGO/GCE, β-CD-Pd@RGO/GCE, and SS-β-CD-Pd@RGO/GCE in
633	0.1 M PBS (pH 3.0). (E) DPVs obtained for the oxidation of 20 μ M baicalin (a), 10
634	
	μ M of luteolin (b), and a mixture (c) containing 20 μ M baicalin and 10 μ M of luteolin
635	μ M of luteolin (b), and a mixture (c) containing 20 μ M baicalin and 10 μ M of luteolin at the SS- β -CD-Pd@RGO/GCE in 0.1 M PBS (pH 3.0). (F) DPVs obtained for the
635 636	μ M of luteolin (b), and a mixture (c) containing 20 μ M baicalin and 10 μ M of luteolin at the SS- β -CD-Pd@RGO/GCE in 0.1 M PBS (pH 3.0). (F) DPVs obtained for the oxidation of a mixture containing 20 μ M of baicalin and 10 μ M of luteolin at bare
635 636 637	μ M of luteolin (b), and a mixture (c) containing 20 μ M baicalin and 10 μ M of luteolin at the SS- β -CD-Pd@RGO/GCE in 0.1 M PBS (pH 3.0). (F) DPVs obtained for the oxidation of a mixture containing 20 μ M of baicalin and 10 μ M of luteolin at bare GCE, RGO/GCE, Pd@RGO/GCE, β -CD-Pd@RGO/GCE, and

RSC Advances Accepted Manuscript

639	0.05	V.

- **Fig. 4. (A)** DPV curves obtained for the oxidation of baicalin and luteolin at
- 642 SS-β-CD-Pd@RGO/GCE for different concentrations. Calibration curves for
- simultaneous determination of baicalin (B) and luteolin (C) using the proposed sensor.
- 644 The error bars represent the standard deviations of three parallel tests.

Figures:

Scheme 1

Scheme 2 Ran et al.

Fig. 1 Ran et al.

Fig.2

Fig. 3

Fig. 4

different electrodes.						
Sample	Electrode	Method	Liner range (µM)	$LOD(\mu M)$	Ref	
baicalin	Carbon disc electrode	CE-ED	1.0-1000	0.548	60	
	DM-β-CD-GNs/GCE	DPV	0.04-3.0	0.01	18	
	SS-β-CD-Pd@RGO/GCE	DPV	0.02–20	0.007	This work	
luteolin	PDDA-G-CNTs/β-CD/GCE	DPV	0.05–60	0.02	61	
	Carbon disc electrode	SWV	0.004-1.0	0.001	17	
	GNs/HA/GCE	DPV	0.02–10	0.01	19	
	SS-β-CD-Pd@RGO/GCE	DPV	0.01-10	0.0052	This work	

Table 1

Comparison of the analytical parameters for baicalin and luteolin detection by different electrodes.

Table 2

Determination of baicalin and luteolin in human serum samples (n=3).

Sample	Added (µM)		Founded (µM)		RSD (%)		Apparent recovery (%)	
	baicalin	luteolin	baicalin	luteolin	baicalin	luteolin	baicalin	luteolin
1	1.0	0.5	1.02	0.53	4.5	5.6	102.0	106.0
2	10.0	5.0	9.84	4.83	3.9	4.5	98.4	96.6
3	15.0	7.5	15.53	7.41	3.1	2.9	103.5	98.8

Tables

Graphic Abstract

The illustration of the SS- β -CD-Pd@RGO nanohybrids simultaneously sensing baicalin and luteolin by an electrochemical strategy.