

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Mutagenesis at position 215 could shift the catalytic ability of keratinase KerSMD to

hydrolyze synthetic peptides and macromolecular substrates. We improved

keratinolytic activity of five mutants and obtained two thermophilic keratinases.

- 1 Insight into the substrate specificity of keratinase KerSMD from
- 2 Stenotrophomonas maltophilia by site-directed mutagenesis studies in S1 pocket
- 3 Zhen Fang,^{a, b, e} Juan Zhang,^{a, e,*} Baihong Liu,^{a, b, e} Guocheng Du,^{c,e,*} Jian Chen ^{d,e}
- 4 ^{*a*} Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan
- 5 University, Wuxi 214122, China
- 6 ^b Synergetic Innovation Center of Food Safety and Nutrition, Wuxi 214122, China
- ^{*c*} Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of
- 8 Education, Jiangnan University, Wuxi 214122, China
- 9 ^d National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan
- 10 University, Wuxi 214122, China
- ¹¹ ^e School of Biotechnology, Jiangnan University, Wuxi 214122, China
- 12 * Corresponding authors
- 13 Juan Zhang, E-mail: <u>zhangj@jiangnan.edu.cn</u>, Tel.: +86-510-85918307, Fax:
- 14 +86-510-85918309.
- 15 Guocheng Du, E-mail: gcdu@jiangnan.edu.cn. Tel./Fax: +86-510-85918309.
- 16 School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
- 17
- 18
- 19
- 20
- 21
- 22

23 Abstract

steric hindrance

24	The keratinase KerSMD from Stenotrophomonas maltophilia can hydrolyze broad
25	substrates but its keratinolytic activity needs to be improved for industrial application.
26	From sequence alignment and homologous modeling, we deduced that four residues,
27	Ser180, Glu208, Tyr215, and Arg216, lying at the entrance or bottom of the S1 pocket,
28	were related to the substrate specificity. The S1 pocket was enlarged by mutating a
29	series of amino acids. We found that mutagenesis at position 215 could shift the
30	catalytic ability of KerSMD to hydrolyze synthetic peptides and macromolecular
31	substrates. We improved the keratinolytic activities of five mutants (Y215G, Y215S,
32	Y215A, S180G/Y215A, and S180G/Y215S) and obtained two thermophilic
33	keratinases (Y215S and S180G/Y215S). Compared to the wild type, the
34	S180G/Y215S showed the highest keratinolytic activity (4755 U mg ⁻¹) and the
35	S180G/Y215A showed the most excellent specificity to degrade feather. Our results
36	indicate that steric hindrance and hydrophilia in the S1 pocket have a significant effect
37	on feather keratin preference of keratinase, and the hydrogen bonds in S1 pocket have
38	great influence on thermostability. These findings not only give an insight into the
39	relationship between S1 pocket and substrate specificity but also suggest approaches
40	for protein engineering of keratinase.
41	
42	Keywords: keratinase; site-directed mutagenesis; substrate specificity; S1 pocket;

1 Introduction 44

45	Keratinase is a well-known protease used in degrading insoluble keratin
46	substrates, such as feather, wool, hair, and horn, which are not easily digested by
47	common proteases (papain, pepsin, and trypsin) because of the existence of disulfide
48	bonds and highly hydrophobic interactions. ¹⁻⁵ It has been reported that feather waste
49	can be transformed into feed additives by keratinase. ⁶ Besides the effective
50	application on feather recycling, keratinase also has great potentials in leather
51	treatment, textile process, peptide production, and fertilizer industry. ⁷⁻¹⁰
52	Nowadays, there is a growing demand of keratinase for the industrial
53	application. ^{11, 12} Industrial enzymes always need high specific activity, temperature
54	stability, and inoxidizability. Keratinolytic activity or substrate specificity is one of
55	the important biochemical properties to determine whether a novel keratinase has a
56	commercial prospect. ^{9, 11} However, commercially available keratinases are rare
57	because of their low activities or thermostabilty to degrade keratin substrates.
58	Improving the specific activity or other characterizations by protein engineering
59	is a fast way to get satisfactory keratinases. Protein engineering, such as site-directed
60	mutagenesis and directed evolution, is the common technique to obtain an excellent
61	enzyme. Nevertheless, the directed evolution by random mutations may need a lot of
62	work to screen an excellent enzyme. ¹⁸ Since many keratinases belong to the
63	subtilisin-like protease and they often share highly conserved amino acid sequences,
64	site-directed mutagenesis based on homology modeling can be used to modify
65	enzyme characteristics. ^{7, 11, 13} For example, a conserved Gly166, located at the bottom

66	of substrate binding pocket of subtilisin BPN', was substituted to nonionic amino
67	acids to change its specificity to different hydrophobic substrates. ¹⁸ So, the
68	site-directed mutagenesis is convenient to shift the substrate specificity by changing
69	the size or electrostatic interactions of the substrate binding cleft. ¹⁴⁻¹⁷
70	Since keratinase is a new-type enzyme and its mechanism on degrading keratin is
71	unclear, broadening its industrial application by random mutagenesis is difficult.
72	However, changing substrate binding pocket may overcome keratinase disadvantages,
73	such as low keratinolytic activity and low thermostability. There are many substrate
74	binding pockets on protease surface, and the pocket close to three catalytic residues
75	(His, Asp, and Ser) is called S1 pocket, which also exists in keratinase. ^{28,34} Except for
76	subtilisin BPN', crystal structures and molecular modifications of proteases were
77	investigated and it stated that S1 pocket is important to identify special residues for
78	binding and catalysis. ¹⁸ Since the S1 pocket is the main factor affecting substrate
79	specificity of subtilisin protease, it is interesting to investigate whether the S1 pocket
80	of keratinase has the similar function and to explain its catalytic mechanism.
81	In our previous study, a novel keratinase named KerSMD from
82	Stenotrophomonas maltophilia BBE11-1 has been isolated for potential feather
83	digestion and textile treatment. ^{20, 21} Compared to the commercial keratinase KerA,
84	KerSMD has excellent heat stability and substrate specificity for degrading feathers. ^{21,}
85	²² However, its keratinolytic activity does not meet the industrialization demands. The
86	catalytic domain of KerSMD shows high identity (48%) with subtilisin-like proteases
87	(Protein Data Bank: 3LPA, 3LPD, 3TI7, and 3TI9), providing its possibility for

RSC Advances Accepted Manuscript

88	homology modeling. ²¹ In this report, the alignment of amino acid sequences between
89	KerSMD and other keratinolytic subtilisins were conducted to determine the key
90	residues in the S1 pocket. We selected four amino acids (Ser180, Glu208, Tyr215, and
91	Arg216) for site-directed mutagenesis. Enzyme activities towards micromolecular
92	substrates (synthetic peptides) and macromolecular substrates (casein and feather)
93	were assayed. Our results indicate that the change of S1 pocket can affect substrate
94	specificity, thermostability, and keratinolytic activity. The possible function of S1
95	pocket may provide new clues for protein engineering of keratinase.

96 **2** Experimental

97 2.1 Bacterial strains, plasmids, and materials

98	The keratinase KerSMD gene (GenBank accession number KC814180) from S.
99	maltophilia BBE11-1 was cloned into plasmid pET-22b according to the previous
100	work. ²¹ The hosts for plasmid cloning and expression were <i>Escherichia coli</i> JM109
101	and BL21 (DE3), respectively. PrimeSTAR HS DNA polymerase, PCR reagents, and
102	competent cell preparation kit were purchased from TaKaRa (Dalian, China). Plasmid
103	extraction and DNA sequencing were conducted by Sangon (Shanghai, China).
104	Restriction endonucleases were obtained from Fermentas (Shanghai, China).
105	N-Succinyl-Ala-Ala-Pro-Ala-p-nitroanilide (AAPA),
106	N-Succinyl-Ala-Ala-Pro-Val-p-nitroanilide (AAPV), N-Succinyl-Ala-Ala-Pro-Phe-
107	<i>p</i> -nitroanilide (AAPF), and <i>N</i> -Succinyl-Ala-Ala-Pro-Leu- <i>p</i> -nitroanilide (AAPL) were
108	from Sigma-Aldrich (Saint Louis, USA). Feather meal was prepared from local farm.

109 Other analytical grade reagents were all purchased from Sangon.

110 **2.2 Media and culture conditions**

- 111 The Luria-Bertani (LB) medium containing 100 µg ml⁻¹ ampicillin was used for
- 112 the recombinant *E. coli* bacteria to grow. The seed culture was incubated at 37 °C
- 113 with sufficient shaker (200 rpm). When the bacterial density reached $OD_{600} 0.6$,
- 114 isopropyl- β -D-1-thiogalactopyranoside (IPTG) was added to the medium of *E. coli*
- BL21 (DE3) to a final concentration of 0.1 mM. The temperature for fermentation
- 116 culture was also decreased to 20 °C. After 72 h incubation, the broth was centrifuged
- 117 to obtain cell-free supernatant.

118 **2.3 Site-directed mutagenesis**

- 119 With the plasmid kerSMD/pET-22b, we obtained new mutants by one-step PCR
- 120 method. The site saturation mutagenesis of Tyr215 was carried out with mutagenic
- 121 primers 5'-ACAACGCTTCCAAGNNKCGTCCGGCCAGTTG-3' (N represents A, T,
- 122 G, or C, and K represents G or T). The double mutants were constructed using the
- 123 first PCR mutagenesis as the template. Then, all PCR products were digested with
- 124 DpnI endonuclease at 37 °C for 1 h. The reaction mixture containing the new mutants
- 125 was transformed into *E. coli* JM109. The correct mutants were checked by DNA
- sequencing and then transformed into the expression host of *E. coli* BL21 (DE3).

127 2.4 Purification of KerSMD and its mutants

128 The fermentation supernatant of recombinant *E. coli* BL21 (DE3) was collected

129	and resuspended in 30% (w/v) solid ammonium sulfate solution. The purification
130	method was according to the former reference. ²¹ The sample was purified by
131	hydrophobic interaction and anion exchange columns with the AKTA pure system
132	(GE Healthcare, Sweden). The keratinolytic fractions were collected and dialyzed
133	against buffer A (20 mM Tris-HCl, pH 8.5) overnight. Then, the enzyme solution was
134	submitted to Q-Sepharose HP (GE Healthcare, Sweden) by using equilibrium buffer A.
135	Buffer B (20 mM Tris-HCl and 1M NaCl, pH 8.5) with a linear gradient from 0% to
136	100% was used to elute keratinases. The keratinolytic fractions were obtained for
137	sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis
138	reported by Fang <i>et al.</i> ²¹ The enzyme solution was preserved at -80 °C.

139 **2.5 Caseinolytic and keratinolytic activity assays**

140	The caseinolytic activity was based on the release of tyrosine during the
141	hydrolysis of casein. Enzymes (100 μ l) with different concentrations were added to
142	200 μl buffer C (50 mM Gly-NaOH, pH 9.0) containing 1% (w/v) casein. Then the
143	mixture was incubated at 50 °C for 10 min. The reaction was terminated by the
144	addition of 200 μl 4% (w/v) trichloroacetic acid (TCA), and then centrifuged at 10,
145	$000 \times g$ for 10 min. The Folin-Phenol reagent was used to measure the amount of
146	released tyrosine. One unit (U) of caseinolytic activity was defined as per ml enzyme
147	required to release one µmole tyrosine per minute.
148	Keratinolytic activity was determined at 50 °C for 60 min in a 1 ml reaction
149	mixture including of 50 mg feather meal and different concentration of keratinase in

150	buffer C. The reaction was stopped by adding the 1 ml 4% (w/v) TCA. After
151	centrifugation at 10, 000 \times g for 10 min, the OD ₂₈₀ of supernatant was measured. The
152	definition of one unit (U) keratinase activity was described as the 0.001AU increase
153	of absorbance at 280 nm.
154	2.6 Temperature and pH stability of wild type and mutants
155	The optimal reaction temperature and enzyme thermostability are measured by
156	incubating the purified enzymes at various temperatures (30-80 °C, 20 mM phosphate
157	buffer, pH 7.0). The half-life ($t_{1/2}$) of enzyme activity at 50 °C was determined. The
158	optimal reaction pH of the wild type and mutants were also assayed by maintaining
159	samples at different pHs (pH 5.0 to 12.0). The buffers considered to adjust pH ranges
160	were NaAc-HAc (pH 4.0 to 6.0, 100 mM), Na ₂ HPO ₄ - NaH ₂ PO ₄ (pH 6.0 to 8.0, 100
161	mM), Tris-HCl (pH 8.0 to 9.0, 100 mM), and Glycine-NaOH (pH 9.0 to 12, 100 mM).
162	The highest enzyme activity was considered as 100%, and the relative activities were
163	recorded as a percentage. All assays were performed in triplicate with an experimental
164	error under 5%.

165 **2.7 Kinetic parameters of wild type and mutants**

166	Four synthetic peptides (AAPL, AAPF, AAPV, AAPA) containing different
167	hydrophobic amino acids in P1 site were used to investigate the changes of kinetic
168	parameters. The method was based on Windhorst et al. ²³ The reaction was conducted
169	in buffer D (100 mM Tris-HCl, 5% v/v dimethylformamide, pH 8.2) at 25 °C. The

RSC Advances Accepted Manuscript

170	enzyme concentration was varied between 9.0×10^{-9} M and 2.0×10^{-8} M, and the
171	substrate was in the range of 0.1 to 1.6 mM. An absorbance at 405 nm ($\varepsilon_{405} = 9600$
172	M ⁻¹ cm ⁻¹) was measured at 0.1s intervals with UV2450 spectrophotometer (Shimadzu,
173	Japan) to monitor the release of <i>p</i> -nitroaniline. The kinetic parameters of K_m and k_{cat}
174	were obtained by nonlinear regression analysis with the software UVProbe. The
175	various substrates were repeated at least two times with a standard deviation under
176	5%.

177 **2.8 Model constructions of wild type and mutants**

178	In order to determine the constitution of the S1 pocket, the homology models of
179	KerSMD and other mutants were constructed with the program Modeller V9.11. ²⁴ The
180	model of the catalytic domain was based on the crystal structures of subtilisin-like
181	proteases (Protein Data Bank: 3LPA, 3LPC, 3LPD, 3TI9, 3TI7, 1DBI, 1THM, 3AFG)
182	while the PPC domain was constructed with the temples of vEP C-ter 100 (PDB:
183	2LUW) and kexin (PDB: 10T5). After the catalytic domain and PPC domain were
184	linked together by the program Discovery Studio V2.5 (Accelrys, San Diego, CA), the
185	model of KerSMD was obtained by choosing the lowest score model and the models
186	of mutants were designed by using the protocol Build Mutants. Molecular dynamics
187	(MD) simulations by NAMD software (http://www.ks.uiuc.edu/) were conducted for
188	energy minimization and fully reducing the steric clashes. The CHARMM force field,
189	periodic boundary condition of water box, and Particle Mesh Ewald (PME) algorithm
190	were employed. By setting a constant temperature of 310 K, 1 atm pressure, and 1 ns

- running time, the whole system was fully relaxed to obtain the minimum energy
- 192 models. The online tools of PROCHECK, ERRAT of SAVES
- 193 (http://services.mbi.ucla.edu/SAVES/) showed the stereochemical quality value to be

194 **95%**.

195 **3 Results and discussion**

196 **3.1. Selection of mutagenesis sites**

197	Since KerSMD had a subtilisin-like catalytic domain, the keratinase model was
198	conducted according to similar proteases. ³⁴ As shown in Fig. 1A, the model structure
199	clearly showed that KerSMD had a catalytic triangle (Asp42, H105, and Ser289) and
200	a S1 pocket (Ser176-Ser180, Ala204-Glu208, and Tyr215-Ala218). The residue
201	Tyr215 of KerSMD, located in the chain-binding cleft, has an uncharged polar side
202	chain; while the Arg216 is the strong hydrophilic residue near the bottom of the S1
203	pocket (Fig. 1B). Comparing the S1 pockets of various keratinolytic proteases (BprV,
204	Fervidolysin, and KerA) and other subtilisins (E and BPN'), we found that pockets
205	mainly consisted of hydrophobic amino acids and shared high homology (Fig. 1C).
206	However, Ser180, Glu208, Tyr215, and Arg216 are high hydrophilic amino acids.
207	Furthermore, the structure model revealed that Glu208 and Tyr215 with long and
208	polar chains were a hidden trouble to block the binding of P1 substrate (Fig. 1). To
209	investigate whether the steric volume or hydrophobicity affected the substrate
210	specificity of keratinase KerSMD, we constructed E208N, E208S, Y215T, Y215Q,
211	Y215G, R216W, and R216Y mutants. The substitution might decrease hydrophilic

and steric hindrance of the S1 pocket and change substrate specificity.

213 **3.2. First round site-directed mutagenesis in S1 pocket**

214	The purified keratinase KerSMD and its mutants (S180G, E208N, E208S, Y215G,
215	Y215T, Y215Q, R216W, and R216Y) were subjected to 10% SDS-PAGE to estimate
216	their molecular sizes which were all about 44 kDa based on a single band on
217	SDS-PAGE (see supplementary Fig. S1). Their biochemical characterizations were
218	assayed and shown in Table 1. Compared with the wild type, the mutants S180G and
219	Y215Q had a lower optimal reaction temperature (55 $^{\circ}$ C) and pH (7.0). The optimal
220	temperature of E208S and Y215T increased to 70 $^{\circ}$ C and 65 $^{\circ}$ C, respectively; while
221	their optimal pH increased to 9.0. It indicated that lower charge side chain might
222	change thermostability and alkaline stability.
223	Besides, four synthetic peptides, each different at the P1 site, were used to reveal
224	the substrate specificity of the S1 pocket. Table 1 showed that wild type and mutants
225	all preferred to hydrolyze phenylalanine at the P1 site. The Y215G exhibited the
226	highest activity towards AAPF and AAPL while its activity towards AAPV was the
227	lowest. Only the mutant Y215Q decreased activity towards all four synthetic peptides.
228	It seemed that replacing the Tyr215 with short side-chain residues could significantly
229	improve catalytic efficiency to larger P1 residue, such as Phe. Substrate selectivity of
230	R216W and R216Y did not change much. Our results showed that long and
231	hydrophilic side chains in S1 pocket might restrict substrate preference.
232	The mutagenesis of position Tyr215, i.e., the bottom of the S1 pocket, also

233	brought out strong effects to catalyze macromolecular substrates. As shown in Table 1,
234	Y215G mutant has the highest protease activity in degrading soluble casein and
235	insoluble feather while the hydrophilic substitution of Y215Q suffered an obvious
236	decrease in the keratinolytic activity. Mutagenesis results in the Tyr215 site showed
237	that keratinolytic activity was probably related to the hydrophobic and short chains.
238	Other reduction of steric hindrance also had a slightly positive effect on the enzyme
239	activity. Asparagine, a strong hydrophilic peptide but small steric hindrance
240	substituted at position 208, promoted all protease activities. Serine is less charged
241	than Asp and Glu, and the mutant E208S had a lower caseinolytic activity, indicating
242	that hydrophobicity at position 208 might be negative. There were on obvious
243	changes to other mutants, such as R216W and R216Y.
244	3.3. Mutagenesis with nonionic amino acids at Tyr215

245	Since our first round site-directed mutagenesis showed that keratinolytic activity
246	of keratinase might be related hydrophobic position of Tyr215, we chose some
247	nonionic amino acids for substitution of Tyr215. Highly hydrophilic Y215N and
248	Y215P decreased keratinase activity when compared with the same volume residue of
249	Y215T (Table 2). By increasing the hydrophobicity at Tyr215, it only obtained a few
250	mutants with improved caseinolytic or keratinolytic activity (Table 2). The excellent
251	mutants were Y215S, Y215T, Y215G, Y215A, and Y215F. The side chain volume of
252	Y215S was close to Y215A, but Y215A was more hydrophobic and yielded the better
253	substrate specificity to degrade keratin (Table 2). Glycine, which is a nearly neutral

254	hydrophobic amino acid and has the smallest steric volume, yielded the maximum
255	caseinolytic and keratinolytic activity. It indicated that hydrophobicity was not the
256	most important fact to affect enzymatic activities. In fact, the volume of side chains
257	had important effect on keratinolytic activity. For example, the similarly hydrophobic
258	mutants Y215A and Y215M showed obvious difference in keratinolytic activity.
259	Because of the smaller volume of Ala at Tyr215, it contributed to a larger S1 pocket
260	and higher keratinolytic activity. The heavy side chain of Y215W also resulted in
261	tremendous decrease of keratinolytic activities. So the bulkiness of the side chains
262	may have more weight than hydrophobicity on enzymatic activities.
263	The space volume of side chain of Tyr215 has great effect on catalytic kinetics of
264	S1 pocket. The residue at position 215 was mutated into uncharged polar or nonpolar
265	side chains and analyzed kinetically with an increasing size in the side chains. ²⁵ The
266	mutant Y215N was the highest hydrophilic side chain and considered as the control
267	according to Kyte et al. ²⁶ As shown in Fig. 2, the change in position 215 resulted in
268	different P1 substrate specificity. With the increase in the side chain volume, the
269	catalytic efficiency of the mutants (from Gly215 through Cys215) showed decreasing
270	tendency for the substrate AAPF and AAPL. Although Cys and Thr are similar steric
271	chains, the different decreasing curve appeared between Cys215 and Thr215. It was
272	deduced that Cys was more hydrophilic and was oxidized more easily. Upon further
273	increasing the side chain volume from Pro to Trp, there were no further decrease in
274	k_{cat}/K_m value, and AAPF remained the preferred substrate. The catalytic efficiency to
275	AAPA substrate was the highest for Phe215 (Fig. 2). Although the volume of Tyr215

276	and Phe215 are similar, the Tyr215 with hydrophilic side chain showed obvious
277	decrease of k_{cat}/K_m value to AAPA. The same case was also happened to the Met215,
278	which shared similar side chain volume of 102 \AA^3 to Ile215 and Leu215 but suffered
279	serious decline of catalytic efficiency. However, not all mutants with large side chains
280	could inhibit keratinolytic activity. For example, the large steric hindrance of mutant
281	Y215F showed similar activity to Y215T, indicating that Phe215 probably formed
282	intermolecular forces with keratin substrate.
283	3.4. Combinational mutations at position S180, E208 and Y215
284	In order to further verify the importance of the S1 pocket, we constructed the
285	different combinational mutants at position S180, E208 and Y215, and their
286	enzymatic properties were characterized. After the introduction of short and
287	hydrophobic side chains in the S1 pocket, the catalytic efficiencies were improved
288	towards AAPF (Table 3). The S180G/Y215S obtained the maximum k_{cat}/K_m value. On
289	the other hand, the introduction of hydrophilic residues resulted in about 50%
290	decrease in the activities of E208S/Y215S and S180G/E208S/Y215S to catalyze
291	AAPF. Those two mutants also showed a decrease in keratinolytic activity and
292	E208S/Y215S showed the lowest value. We deduce that excessive hydrophilicity of
293	the S1 pocket might inhibit catalytic activity to AAPF and feather keratin. In addition,
294	we observed that K_m value was greatly lowered by the triple mutation
295	S180G/E208S/Y215G which consisted of substitution with small amino acids in the
296	S1 pocket. We deduced that S1 pocket consisting of three flexible substitutions was

RSC Advances Accepted Manuscript

297	against its binding ability and activity. Combinational mutations that involved
298	position Glu208 might be negative (Fig. 3). It had reported that Glu could form
299	hydrogen bonds with other residues. ²⁷ So it probably resulted from the loss of
300	hydrogen bonds to maintain the structure stability of the S1 pocket.
301	The protease activities of combinational mutants on casein and feather also
302	showed different results. The polar and nonpolar side chains at position 215 showed
303	tremendous differences in hydrolyzing casein substrate. In detail, S180G/Y215A and
304	E208S/Y215A yielded the highest substrate specificity to feather but their activities
305	on casein were the lowest (Fig. 3). Contrarily, the substitution of Ser in the position
306	Tyr215 yielded both the highest activities of S180G/Y215S on casein and feather (Fig.
307	3). Replacing Phe in position 215 showed a little effect on protease activities of
308	S180G/Y215F.We also observed that four mutants, E208S/Y215S, E208S/Y215F,
309	S180G/E208S/Y215S, and S180G/E208S/Y215F, decreased activities on both casein
310	and feather, and the activity value of E208S/Y215S is the lowest (Fig. 3). It indicated
311	that hydrophilic substitution has negative effect on S1 pocket and decreases protease
312	activities.

313 **3.5. Temperature effect on five high-activity mutants**

Since site-directed mutagenesis in S1 pocket has great effect on spatial structure and may change protein stability, it is important to investigate the optimal reaction temperature and thermostability of mutants. In total, five mutants, Y215G, Y215S, Y215A, S180G/Y215A, and S180G/Y215S, obtained higher keratinolytic activities

318	and were considered for further analysis. The 50 °C was chose for thermostability
319	analysis because temperatures between 40 $^{\circ}$ C and 60 $^{\circ}$ C were the best conduction for
320	feather degradation treatment and showed lowest damage to amino acids. ¹ Fig. 4A
321	showed that three mutants, Y215G, Y215S, and S180G/Y215S, shifted their optimal
322	reaction temperature from 50 °C to 60 °C. And Y215S mutant achieved the maximum
323	keratinolytic activity (nearly 7000 U mg ⁻¹) at 60 °C, more than 2-fold of that wild
324	type. Keratinases with improved thermophilic property can be used in food processing
325	or feed additives which always need short-time sterilization at high temperature. ⁴ Fig.
326	4B showed that Y215S mutant had high thermostability, indicating its great potential
327	in feather waste treatment at 50 °C. However, introducing of Gly at position 180 or
328	215, Y215G, S180G/Y215A, and S180G/Y215S decreased their highest keratinolytic
329	activities at 40 °C, approaching the temperature of poultry and promoting feather
330	digestion in stomach and intestines. Y215A and S180G/Y215A showed a decrease in
331	heat stability (Fig. 4B). It is known that glycine and alanine are flexible and may
332	change enzyme structure, and the hydrophobic alanine on the protein surface may
333	reduce enzyme stability in an aqueous solution.
334	3.6. Structure modeling and analysis of wild type keratinase and mutants

335 Structure modeling and analysis of the wild type and mutants (Y215A, Y215S, 336 Y215G, S180G/Y215A, and S180G/Y215S) were studied in Fig. 5, which showed 337 that constitutive factors of substrate-binding clefts were important to keratinolytic 338 activity of KerSMD. The substitutions of Gly and Ser were all short side chains,

RSC Advances Accepted Manuscript

339	opening the pocket entrance to bind to a larger residue at the P1 site (Fig. 5). We
340	deduce that the size of the S1 pocket is the main factor on substrate selectivity. This
341	was proved by mutagenesis in the S1 pocket which had a significant effect on the
342	keratinolytic activity and the P1 specificity to synthetic substrates. Since Phe at the P1
343	position of AAPF shows obvious steric hindrance and high hydrophobicity, the size of
344	the S1 pocket needs to be sufficiently larger to bind a substrate. The hydrophobic
345	pocket also contributes its high binding ability to hydrolyze AAPF or AAPL. ^{16, 28} It
346	has been reported that the S1 pocket of subtilisin-like protease is near the catalytic
347	center and binds to special residues in the protein substrate. ²⁸⁻³⁰ KerSMD has a
348	subtilisin-like catalytic domain and broad specificity to hydrolyze casein, collagen,
349	and keratin, and it may be related to the S1 pocket. ²¹ In our study, we improved the
350	keratin specificity of mutants S180G and E208S by enlarging the width of the S1
351	pocket.
352	The position 215 in the center of S1 pocket may be the main residue to decide
353	binding ability of peptides, such as AAPF and AAPL. Tyr215 in KerSMD was
354	corresponding to the conserved Gly166 in subtilisin E or BPN'. ^{14, 27, 31} There have
355	been many studies on site-directed mutagenesis at Gly166 in subtilisin, and that
356	hydrophobic substitutions at position 166 could change catalytic efficiency towards
357	small hydrophobic peptides. ^{18, 27, 32} Similar to subtilisin, a suitable substitution at
358	position 215 of KerSMD also could improve the substrate specificity to synthetic
359	tetrapeptide. For example, the mutagenesis Tyr215 \rightarrow Gly obtained the maximum
360	activities to AAPF and AAPL by shortening the side chain and reducing the

361	electrostatic effect to increase the depth of the S1 pocket (Fig. 5). However, further
362	enhancement of hydrophobicity with Ile or Val resulted in a decrease in enzyme
363	activity. This result is similar to the protein engineering of subtilisin BPN' which
364	showed a negative impact on k_{cat}/K_m upon introducing extremely hydrophobic
365	substitutions at position 166. ¹⁸
366	Since feather keratins contain plenty of Val, Phe and Leu that may introduce
367	hydrophobic forces and resist common proteases such as trypsin and pepsin, it is
368	assumed that keratinolytic activity may be related to the hydrophobic substrates. ^{2, 5, 7,}
369	¹⁹ The protease BprB, high homology with KerSMD, increased keratinolytic activity
370	by mutating Asp180 (Ser180 in KerSMD) into glycine. ²⁸ In our study, the mutant
371	S180G also showed an increase in keratinolytic activity. Besides, the short side chain
372	at position 208 enlarged the S1 pocket to accept the Phe at P1 site (Fig. 5), which was
373	positive to keratinolytic activity.
374	Fig.6 showed that hydrogen bonds and electric charge in S1 pocket improved
375	thermophilic characterization and thermostability. The mutants Y215S, and
376	S180G/Y215S enhanced thermostability by increased hydrogen bonds linking to
377	Glu208 (Fig. 6). The Glu (position 208 in KerSMD and BprV, position 156 in
378	subtilisin E and BPN') is always conserved in subtilisin proteases, and it provided
379	electrostatic interactions between substrate and enzyme. ²⁷ So, the substitution of
380	Glu208 decreased its optimal temperature or pH. The semi-hydrophilic and hydroxy
381	Ser215 might enhance its interaction with various substrates through hydrogen
382	bonding (Fig. 6). Except for hydrophobic effect, it seemed that non-covalent

RSC Advances Accepted Manuscript

interactions, such as hydrogen bond and weaker electrostatic interaction, were

important in deciding the substrate specificity of the S1 pocket, but more evidence

should be provided.

386 4 Conclusions

387	In this study, we investigated the substrate specificity of keratinase KerSMD by
388	site-directed mutagenesis. Sequence alignment and homologous modeling allowed an
389	insight into the relationship between the S1 pocket and substrate specificity. We found
390	that enlargement of the S1 pocket by mutating residues Ser180, E208, and Y215
391	improved its catalytic activity to synthetic peptides as well as feather keratin.
392	Reducing steric hindrance at residue 215 was favorable for protease activities on
393	casein and feather. We obtained five mutants (Y215G, Y215S, Y215A, S180G/Y215A,
394	and S180G/Y215S) with improved keratinolytic activities, and two mutants Y215S
395	and S180G/Y215S with improved thermal properties. The results verified that S1
396	pocket was important to decide substrate specificity and thermostability of keratinase,
397	and selecting short side chain or/and hydrophobic substitution for site-directed
398	mutagenesis probably had positive effect. Our work provided a foundation for future
399	protein engineering to enhance substrate specificity of keratinase.

400 Acknowledgements

401 This project was financially supported by the National High Technology Research and

402 Development Program of China (863 Program, 2011AA100905), the Major State

403	Basic Research Develo	pment Program of China (973 Program,	2013CB733902), the
				,,

- 404 National Natural Science Foundation of China (31470160), China Postdoctoral
- 405 Science Foundation funded projects (114957 and 2013M540538), the Natural Science
- 406 Foundation of Jiangsu Province (BK2012553), and the 111 Project (111-2-06).

407 **References**

- 408 1 M. C. Papadopoulos, A. R. El Boushy, A. E. Roodbeen, E. H. Ketelaars, Anim. Feed
- 409 Sci. Technol., 1986, 14, 279-290.
- 410 2 R. Fraser, T. MacRae, G. E. Rogers, in Keratins: Their Composition, Structure, and
- 411 *Biosynthesis*, ed. Charles C. Thomas, 1972.
- 412 3 A. Onifade, N. Al-Sane, A. Al-Musallam, S. Al-Zarban, *Bioresour. Technol.*, 1998,
- 413 **66**, 1-11.
- 414 4 R. Gupta, P. Ramnani, Appl. Microbiol. Biotechnol., 2006, 70, 21-33.
- 415 5 A. Brandelli, *Food Bioprocess Technol.*, 2008, **1**, 105-116.
- 416 6 J. Wang, J. Garlich, J. Shih, J. Appl. Poultry Res., 2006, 15, 544-550.
- 417 7 A. Brandelli, D. Daroit, A. Riffel, Appl. Microbiol. Biotechnol., 2010, 85,
- 418 1735-1750.
- 419 8 T. Kornillowicz-Kowalska, J. Bohacz, *Waste Manage.*, 2011, **31**, 1689-1701.
- 420 9 R. Gupta, R. Rajput, R. Sharma, N. Gupta, Appl. Microbiol. Biotechnol., 2013, 97,
- 421 9931-9940.
- 422 10 J. Gong, Y. Wang, D. Zhang, R. Zhang, C. Su, H. Li, X. Zhang, Z. Xu, J. Shi, RSC
- 423 *Adv.*, 2015, **5**, 24691.

RSC Advances Accepted Manuscript

- 424 11 R. Gupta, R. Sharma, Q. K. Beg, Crit. Rev. Biotechnol., 2013, 33, 216-228.
- 425 12 D. J. Daroit, A. Brandelli, *Crit. Rev. Biotechnol.*, 2014, **34**, 372-384.
- 426 13 K. L. Evans, J. Crowder, E.S. Miller, Can. J. Microbiol., 2000, 46, 1004-1011.
- 427 14 P. N. Bryan, Biochim. Biophys. Acta (BBA) Protein Structure and Molecular
- 428 *Enzymology*, 2000, **1543**, 203-222.
- 429 15 E. Di Cera, Nat. Chem. Biol., 2008, 4, 270-271.
- 430 16 A. de Kreij, B. van den Burg, O. R. Veltman, G. Vriend, G. Venema, V. G. Eijsink,
- 431 Eur. J. Biochem., 2001, 268, 4985-4991.
- 432 17 H. Takagi, T. Maeda, I. Ohtsu, Y. C. Tsai, S. Nakamori, *FEBS letters*, 1996, **395**,
- 433 127-132.
- 434 18 D. Estell, T. Graycar, J. Miller, D. Powers, J. Wells, J. Burnier, P. Ng, Science,
- 435 1986, **233**, 659-663.
- 436 19 J. Bradbury, Adv. Protein Chem., 1973, 27, 111-211.
- 437 20 Z. Fang, J. Zhang, B. Liu, G. Du, J. Chen, Int. Biodeterior. Biodegrad., 2013, 82,
- 438 166-172.
- 439 21 Z. Fang, J. Zhang, B. Liu, L. Jiang, G. Du, J. Chen, Process Biochem., 2014, 49,
- 440 647**-**654.
- 441 22 B. Liu, J. Zhang, B. Li, X. Liao, G. Du, J. Chen, World J. Microbiol. Biotechnol.,
- 442 2013, **29**, 825-832.
- 443 23 S. Windhorst, E. Frank, D.N. Georgieva, N. Genov, F. Buck, P. Borowski, W.
- 444 Weber, J. Biol. Chem., 2002, 277, 11042-11049.
- 445 24 N. Eswar, B. Webb, M. A. Marti-Renom, M. S. Madhusudhan, D. Eramian, M.

- 446 Shen, U. Pieper, A. Sali, in Comparative Protein Structure Modeling Using Modeller,
- 447 *in: Current Protocols in Bioinformatics*, ed. John Wiley & Sons, Inc., 2002.
- 448 25 M. Häckel, H. Hinz, G. R. Hedwig, *Biophys. Chem.*, 1999, 82, 35-50.
- 449 26 J. Kyte, R. F. Doolittle, J. Mol. Biol., 1982, 157, 105-132.
- 450 27 J. A. Wells, D. B. Powers, R. R. Bott, T. P. Graycar, D.A. Estell, Proc. Natl. Acad.
- 451 *Sci. U. S. A.*, 1987, **84**, 1219-1223.
- 452 28 W. Wong, L. C. Wijeyewickrema, R. M. Kennan, S. B. Reeve, D. L. Steer, C.
- 453 Reboul, A. I. Smith, R. N. Pike, J. I. Rood, J. C. Whisstock, J. Biol. Chem., 2011, 286,
- 454 42180-42187.
- 455 29 D. Georgieva, S. Stoeva, W. Voelter, N. Genov, C. Betzel, Arch. Biochem. Biophys.,
- 456 2001, **387**, 197-201.
- 457 30 C. Betzel, S. Klupsch, G. Papendorf, S. Hastrup, S. Branner, K. S. Wilson, J. Mol.
- 458 *Biol.* 1992, **223**, 427-445.
- 459 31 M. Takahashi, Y. Hasuura, S. Nakamori, H. Takagi, J. Biochem., 2001, 130,
- 460 **99-106**.
- 461 32 M. D. Ballinger, J. Tom, J. A. Wells, *Biochem.*, 1995, **34**, 13312-13319.
- 462 33 C. Gao, D. Lan, L. Liu, H. Zhang, B. Yang, Y. Wang, *Biochimie*, 2014, **102**, 29-36.
- 463 34 Z. Fang, J. Zhang, B. Liu, G. Du, J. Chen, Microb. Biotechnol., 2015,
- 464 doi:10.1111/1751-7915.12300.
- 465

466

	т		Caseinolytic Keratinolytic		$k_{cat}/K_m (\mathrm{mM \ s}^{-1})$			
Mutant	(°C)	pH _{opt}	activity (U activity (U mg ⁻¹) mg ⁻¹)	AAPF	AAPL	AAPV	AAPA	
WT	60	8	3379±68	3409±73	71	33	3.2	25
S180G	55	7	2250±54	3668±70	87	36	3.4	28
E208N	60	7	3290±46	3506±54	84	42	3.8	28
E208S	70	9	2690±68	3612±58	126	46	4.2	22
Y215G	60	8	7200±123	4320±23	365	84	3.4	12
Y215T	65	9	3360±64	3821±36	142	65	3.4	18
Y215Q	55	7	3012±58	1430±122	48	11	1.8	23
R216W	60	8	3420±48	3458±242	74	34	3.2	26
R216Y	60	8	3450±52	3500±48	72	33	3.2	25
169								
170								
471								
172								
173								
174								
175								
76								
177								

468	Table 1 Biochemical	properties of the	wild type and its mutant
408	Table I Diochemical	properties of the	which type and its mutan

- 478 **Table 2.** Effect of hydrophobicity at position 215 on caseinolytic and keratinolytic
- 479 activities of different mutants.

Mutant	Hydrophobicity	Caseinolytic	Keratinlytic
		activity (U mg ⁻¹)	activity (U mg ⁻¹)
Y215N	-3.5	1760±45	1210±78
Y215P	-1.6	250±80	762±56
WT	-1.3	3379±68	3409±73
Y215W	-0.9	510±105	2630±120
Y215S	-0.8	3890±20	4029±152
Y215T	-0.7	3360±46	3821±45
Y215G	-0.4	7200±85	4320±120
Y215A	1.8	960±28	4120±105
Y215M	1.9	790±24	1350±78
Y215C	2.5	3672±36	1120±30
Y215F	2.8	3290±60	3700±80
Y215L	3.8	1042±25	790±80
Y215V	4.2	1260±45	1104±62
Y215I	4.5	790±28	1220±110

480

481

482

Table 3. The catalytic parameters and protease activities of the wild type and different

Mutant	AAPF			
	$K_m (\mathrm{mM}^{-1})$	k_{cat} (s ⁻¹)	$k_{cat}/K_m (\mathrm{mM \ s}^{-1})$	
WT	0.66±0.04	46.0±0.4	71.0	
S180G/Y215G	0.34±0.05	32.0±1.2	94.1	
S180G/Y215A	0.30±0.02	45.0±2.0	150.0	
S180G/Y215S	0.33±0.02	78±2.4	236.4	
S180G/Y215F	0.52±0.10	43±0.5	82.7	
E208S/Y215G	0.52±0.12	65±0.8	125.0	
E208S/Y215A	0.36±0.02	40±1.2	111.1	
E208S/Y215S	0.83±0.02	28±0.8	33.7	
E208S/Y215F	0.68±0.08	46±1.8	67.6	
S180G/E208S	0.50±0.10	57±2.0	114.0	
S180G/E208S/Y215G	0.22±0.01	38±0.8	172.7	
S180G/E208S/Y215A	0.41±0.01	67±4.0	163.4	
S180G/E208S/Y215S	1.2±0.01	46±2.5	38.3	
S180G/E208S/Y215F	0.62±0.02	50±1.8	80.6	

486

487

489

Figure captions:

RSC Advances

490	Fig. 1. Homology model of KerSMD (A and B) and alignment of amino acid
491	sequences around the S1 pockets (C). (A) Green residues are the catalytic triad while
492	the predicted S1 pocket is yellow residues and loop. (B) The S1 pocket is showed on
493	the model surface, the nitrogen, oxygen, and carbon atoms are shown in blue, red, and
494	yellow. (C) Sequence alignment of BprV (3TI7), Fervidolysin (1R6V), subtilisin E
495	(1SCJ), subtilisin BPN' (1SBT), and KerA (AAB34259). The amino acids of the S1
496	pockets are in box. Vertical arrows indicate the mutation sites. Line stands for loops, S
497	for helices, and H for strands.
498	Fig. 2. Effect of different volume side chains of amino acids at position 215 on
499	catalytic efficiency for the P1 substrates of AAPF, AAPL, and AAPA. The amino
500	acids are written in capital letters. The standard error of k_{cat}/K_m values were all below
501	5%.
502	Fig. 3. Specific activities of the wild type and mutants to casein and feather keratin.
503	Fig. 4. Effect of temperature on the activity (A) and stability at 50 °C (B) of the wild
504	type keratinase and mutants Y215G, Y215S, Y215A, S180G/Y215A, and
505	S180G/Y215S.
506	Fig. 5. Structure models of keratinase KerSMD mutants, generated with PyMol
507	software. The amino acids of catalytic triad are shown in sticks and the S1 pocket is
508	the colored region. The carbon, nitrogen, and oxygen atoms are shown in yellow, blue,
509	and red, respectively. (A) wild type; (B) Y215A; (C) Y215S; (D) Y215G; (E)
510	S180G/Y215A; (F) S180G/Y215S.

511	Fig. 6. Changes in S1 pocket structure and hydrogen bond of wild type, Y215S, and
512	S180G/Y215S. The residues are showed in yellow sticks with red hydroxy. Hydrogen
513	bond is drawn with green dash and the distance is calculated by PyMol software.
514	
515	
516	
517	
518	
519	
520	
521	
522	
523	
524	
525	
526	
527	
528	
529	
530	
531	
532	

541			
542			
543			
544			
545			
546			

547

RSC Advances Accepted Manuscript

572 A

588

