

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Joint antisense RNA strategies for regulating isoprene production in
2	Escherichia coli
3	
4	Chun-Li Liu ¹ , Qiang Lv ² , Tian-Wei Tan ^{*1}
5	
6	1.National Energy R&D Center for Biorefinery, Beijing Key Laboratory of
7	Bioprocess, College of Life Science and Technology, Beijing University of Chemical
8	Technology, Beijing 100029. P. R. China, Beijing Chaoyang District North Sanhuan
9	Road no. 15
10	2. Beijing Institute of Microchemistry, Beijing 100091, P. R. China, Beijing
11	Haidian District Xinjiangongmen Road no. 15
12	
13	
14	
15	Corresponding author: Tian-Wei Tan,
16	Email: <u>twtan@mail.buct.edu.cn</u> ,
17	Telephone: +86 10 6441 6691,
18	Fax number: +86 10 6471 5443
19	Address: Beijing University of Chemical Technology, Beijing Chaoyang District
20	North Sanhuan Road no. 15
21 22	
23	

24	Abstract : Isoprene (C_5H_8) is a key chemical ingredient for the production of synthetic
25	rubber and plastic. Isoprene is commonly petro-chemically produced. Enabling a
26	sustainable microbial fermentation for isoprene production from the potential biofuel
27	is an attractive alternative to the original derivation. To this end, antisense RNA
28	strategies, for redirection of weakening genes and control of metabolic pathways,
29	were introduced to regulate the isoprene production. The isoprene titer, the
30	intermediates of the methylerythritol 4-phosphate (MEP) pathway at the metabolic
31	level and mRNA at the transcriptional level were all successfully affected as a
32	consequence of simultaneous weakening of the farnesyl diphosphate synthase (ispA),
33	octaprenyl diphosphate synthase (ispB) and undecaprenyl pyrophosphate synthase
34	(ispU) of the MEP pathway in Escherichia coli BL21 (DE3). The finally obtained
35	strain IAUB accumulated isoprene up to 16 mg/L in a flask culture, which was about
36	eight times of what was achieved by the control strain Idi. Detailed knowledge about
37	the mechanisms of the novel strategies may benefit the development of many other
38	bio-derived products.
39	
40	Keywords: antisense RNA strategies, isoprene, Escherichia coli, MEP pathway
41	
42	

- 43
- 44
- 45

46 **1. Introduction**

Shortage of energy and increasing global environmental concerns are problems 47 48 that require immediate attention. Over the past few decades, many chemicals are still 49 synthesized from petroleum, causing environmental problems. In nature, 50 non-petroleum derived isoprene is synthesized by the enzyme isoprene synthase (IspS), which converts dimethylallyl diphosphate (DMAPP) to isoprene and 51 pyrophosphate¹. A large amount of isoprene is released by woody plants and 52 deciduous broad-leaved trees into the atmosphere ^{2, 3}. Due to an increasing global 53 need for isoprene and a simultaneous environmental concern, many researchers and 54 55 companies have used genetic engineering techniques to develop microorganisms 56 possessing a plant-like isoprene metabolic pathway to enable conversion of sugar into 57 isoprene.

DMAPP and its isomer isopentenyl diphosphate (pyrophosphate; IPP), the 58 59 precursors of isoprene, are basic components of all isoprenoids, and are synthesized 60 using two different pathways: the methylerythritol 4-phosphate (MEP) pathway and the mevalonate (MVA) pathway (Fig.1)⁴. For several decades, the mevalonate 61 62 pathway was believed to be the unique source of isoprenoid building blocks. Later, 63 the inconformity of certain biosynthetic data with the mevalonate paradigm was independently recognized by Rohmer, Arigoni and their respective co-workers ⁵⁻⁷. 64 65 Isoprenoids are highly variable natural compounds, all synthesized using either of 66 these two pathways. The structural diversity of terpenes is also immense, including acyclic, monocyclic and polycyclic compounds⁸, and the numerous terpenoids have 67

RSC Advances Accepted Manuscript

68 important medical aspects. Isoprene is the simplest terpenoid and its production has 69 been assessed after introducing the IspS gene as characterized from poplar species into Escherichia coli BL21 (DE3)⁹. The IspS gene derived from Populus alba was 70 71 chemically synthesized after codon optimization and modification of the native MEP pathway. Some reports show an enhancement of the isoprene production by 72 over-expression of the key genes of the MEP pathway ¹⁰ and by construction of the 73 MVA pathway ¹¹ in *E. coli*. These strategies have proven to be successful redirections 74 ^{12, 13}. However, there are no reports on the regulation of the native MEP pathway for 75 enhancement of the isoprene production using joint antisense RNA strategies to 76 77 down-regulate the lower pathway.

Farnesyl diphosphate synthase (ispA)⁹, octaprenyl diphosphate synthase (ispB) 78 ¹⁴ and undecaprenyl pyrophosphate synthase (ispU) ¹⁵, relating to the isoprenoids 79 synthesis, are essential genes that cannot be knocked out from the lower MEP 80 pathway in E. coli. The joint antisense RNA strategies can down-regulate multi genes 81 82 through antisense RNA molecules hybridizing with complementary mRNA transcripts. Therefore, more precursor DMAPP was transformed to isoprene. Studies have 83 84 focused on either determining the effectiveness of different antisense RNA strategies or on elucidating the role of a structural gene targeted for down regulation ¹⁶⁻¹⁹. 85

In this paper, based on our previous experiments, the efficiency of joint antisense RNA strategies on isoprene production has been improved. Each 620 bps single DNA with the putative ribosome binding sites of the three genes was inversely inserted into the plasmid pRSF-Idi supplied with the T7 promoter, T7 terminator and the native

4

90	ribosome binding site removed. The three weakening cassettes were put into the same								
91	plasmid pRSF-Idi in order to obtain the joint weakening plasmid. The constructed								
92	plasmids were co-transformed into E. coli BL21 (DE3) with the pETD-DXS-IspS								
93	plasmid. The final genetic strain IABU accumulated isoprene up to16 mg/L after flask								
94	shaking, which was approximately an 8-fold increase in isoprene production								
95	compared with the control strain Idi. The strain IABU also displayed favourable								
96	effects both on the transcriptional level and the metabolic level.								
97									
98	Figure 1								
99									
100	2. Materials and methods								
101	2.1 Reagents, strains, plasmids and media								

102 Restriction enzymes and ligase were purchased from New England Bio-labs 103 (Ipswich, MA). Primer STAR HS and Ex Taq DNA Polymerase and other enzymes 104 were obtained from TAKARA (Dalian, China). The genomic DNA isolation kits, 105 plasmid extraction kits and gene retrieval kits were offered by OMEGA (USA). The 106 DNA recovery kit was purchased from Biomed (Beijing, China). Isoprene standard 107 (Sigma-Aldrich) and DMAPP standard (Sigma-Aldrich) were used for qualitative and 108 quantitative analysis. All other chemicals used in this study were of analytical or 109 chromatographic grade and obtained from the Beijing Chemical Company (Beijing, 110 China).

111 LB medium (5 g /L yeast extract powder, 10 g /L tryptone, 10 g /L NaCl) was used

112	for cloning and shake-flask fermentation. Optimized TB medium (1.2% (W/V)
113	tryptone, 2.4% (W/V) yeast extract, 0.4% (V/V) glycerol, 17 mM KH ₂ PO ₄ , 72 mM
114	K ₂ HPO ₄) and M9 media (Na ₂ HPO ₄ 33.7 mM, KH ₂ PO ₄ 22.0 mM, NaCl 8.55 mM,
115	NH ₄ Cl 9.35 mM, MgSO ₄ 1 mM, CaCl ₂ 0.3 mM, biotin 1 µg, thiamin 1 µg, EDTA
116	0.134 mM, FeCl ₃ -6H ₂ O 31 μM, ZnCl ₂ 6.2 μM, CuCl ₂ -2H ₂ O 0.76 μM, CoCl ₂ -2H ₂ O
117	0.42 μ M, H ₃ BO ₃ 1.62 μ M, MnCl ₂ -4H ₂ O 0.081 μ M) were prepared as described ²⁰ .
118	Ampicillin (100 mg /ml) /kanamycin (50 mg /ml) were added into the media as
119	needed.
120	All plasmids listed in Table 1 were sequenced to verify the cloning accuracy.
121	
122	Table 1

123

124 **2.2 Cloning of genes and construction of the plasmids**

The plasmids of the weakening genes were constructed on the previous plasmid 125 pRSF-Idi ⁹. Including the 20 bps upstream of the ispA, ispB and ispU genes ATG start 126 127 codon and the putative ribosome binding site, 620 bps or 635 bps of target sequence 128 were inversely inserted into the pRSF-Idi plasmid after the native ribosome binding 129 site was removed. The PCR was performed in a Mastercycler Personal (Eppendorf) 130 with Primer STAR HS DNA Polymerase. All primers and restriction enzyme cutting 131 sides are listed in Table 2. Every fragmentary antisense DNA of ispA, ispB and ispU 132 was inserted into an expression cassette with T7 promoter and T7 terminator and 133 without ribosome binding site. The constructed plasmids and genotypes of the

RSC Advances Accepted Manuscript

134	recombinant strains are shown in Fig 2.
135	
136	Table 2
137	
138	Figure 2
139	
140	2.3 Flask culture of recombinant strains and analysis of isoprene production with
141	GC-MS
142	Single colonies of E. coli BL21 (DE3) harboring different recombinant plasmids
143	were picked from the solid LB culture media into 4 ml liquid LB media. The cultures
144	were inoculated into 20 ml M9 media in flasks after 12-16 h cultivating at 37°C. Then,
145	3 ml cultures were transformed and induced by 0.8 mM isopropyl β -D-thiogalactoside
146	(IPTG) until reaching an OD600 of 0.6 in 20 ml airtight bottles at 30°C. After 20
147	hours, the produced isoprene was examined by GC-MS.
148	Vapor samples from the sealed headspace of the transformed strains were
149	injected with an automatic headspace injector and examined by GC-MS (Thermo
150	Fisher, Trace ISQ). A TG-WAXMS column (30 m \times 0.25 mm; 0.25 μm film thickness)
151	was used, with 1 ml /min helium as the carrier gas. The temperature of the EI detector
152	was 250 $^{\circ}$ C. The samples were incubated at 60 $^{\circ}$ C, shaken for 10 seconds and stirred 10
153	seconds, 10 minutes before injection with the headspace needle at 70 $^\circ$ C. The sample
154	drawn was 0.5 ml and split after the column in a ratio of 1/50. The following oven
155	temperature program was carried out: the initial temperature was 40°C, then increased
156	to 150°C at 20°C/min, and finally remained at that temperature for 1 min. The

RSC Advances Accepted Manuscript

157 injector was maintained at 200° C.

158

159 2.4 Extraction of cellular metabolites and detection of DMAPP and GPP with

160 HPLC-MS

161 LC-MS analysis was used to determine intracellular levels of IPP /DMAPP and 162 GPP in the strains Idi and IAUB. After 0.8 mM IPTG induction, 4 ml cell culture was 163 harvested by centrifugation, and the cell pellets were lysed with 1 ml 50% methanol 164 /water solution at the temperature of -40°C. The combined solutions were kept at 165 -80°C, lyophilized and resuspended in 360 μ l 50% methanol /water and subjected to 166 LC-MS analysis²¹.

167 The extracted cellular metabolites were determined using HPLC-MS. The HPLC 168 system consisted of a Surveyor quaternary gradient pump, a vacuum degasser, a 169 column temperature controller, and an autosampler (Agilent Technologies 1200 170 Series). A 4.6×150 mm Agilent Extend-C18 column with the temperature 171 maintaining at 20 °C was used. The intermediates DMAPP and GPP of the pathway 172 were separated by a linear gradient between solution A (H_2O : NH_3H_2O , 20: 1) and solution B (acetonitrile: H₂O, 4:1). The gradient was as follows 0-3 min, 65% A to 173 174 65% A; 3–10 min, 65% A to 20% A; 10–15 min, 20% A to 65%; equilibration with 175 65% A. The flow rate was set at 0.8 ml /min and 10 μ l of sample was injected onto 176 the column, producing an inlet flow into the tandem mass spectrometer of $100 \,\mu$ l/min. 177 The total analysis time, including the equilibration, was 20 min for each analysis.

178	For the detection of intermediate, a TSQ Quantum AM (Agilent.) was applied,
179	and operated in the negative electrospray ionization mode and with the mass
180	spectrometer in multiple reaction monitoring (MRM) mode. Nitrogen and argon were
181	used as the nebulizing gas and the collision gas, respectively at a pressure of 1.8
182	mTorr. The ion spray voltage was set at -3500 V, and the capillary temperature was
183	300°C. The collision cell energy was optimized for each particular intermediate of the
184	isoprenoid biosynthesis pathway ²² .
185	
186	2.5 Quantification of mRNA and ssRNA levels
187	An RNA sample Total RNA Kit (TianGen) was used to isolate RNA from the
188	IPTG-induced bacterial cells of Idi and IAUB. After the total RNA concentration was
189	measured using the Biophotometer (Eppendorf), cDNA was synthesized with random
190	primers using reverse transcriptase (TianGen) and the above mentioned RNA as
191	template. To quantify the ispA, ispB and ispU relative to the mRNA and ssRNA levels,
192	each gene was designed to two primers listed in Table 2, one for the inversely inserted
193	DNA and the other for the left genome gene. The synthesized cDNA was amplified to
194	quantify the copies using an UV spectrophotometer with primers. The
195	glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as an internal
196	reference to eliminate differences between samples, and the primers for the GAPDH
197	reference are also listed in Table 2. The QPCR reactions were performed with 2 μ l of
198	cDNA product in a 20- μ l reaction system with Sybr Green I (TianGen) in the
199	real-time Analytik Jena fluorescence PCR instrument. Each sample was measured in

RSC Advances Accepted Manuscript

triplicate, and the results reported herein are the averages of the replicates.
3. Results and discussion
3.1 Analysis of isoprene production and functions of weakening genes
From the titer of isoprene as shown in the Fig. 3, we can see that it enhanced a
little when the separate gene was weakened while the three genes joint weakening

Isoprene titer of the recombinant strain IAUB was up to 16 mg/ L, about 8 times higher than that of Idi.

strain IAUB achieved a significant increase in comparison with the strain Idi.

209

206

210 Figure 3

211

3.2 The effect of joint weakening genes on transcription level

213 The relative mRNA levels in both the control E. coli BL21 (DE3) Idi and the E. 214 coli BL21 (DE3) ABU recombinant are listed in Fig. 4. The mRNA levels of ispA, 215 ispB ispU engineered strains normalized and in the were by 216 glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the normalized mRNA 217 levels of ispA, ispB and ispU in the E. coli BL21 (DE3) Idi were assumed to be 1.0. 218 As shown in Fig. 4, the total relative mRNA and ssRNA were much higher than those 219 in the control strain Idi. Obviously, the mRNA relative levels of ispA, ispB and ispU 220 in E. coli BL21 (DE3) ABU were almost 35%, 42% and 49% lower than those in the 221 control strain E. coli BL21 (DE3) Idi, respectively. Every weakening gene's 222 transcription was quantified by QPCR with two pairs of primers: one is used to

223	quantify mRNA transcribed by the native gene, and the other is used to quantify the
224	total of the mRNA and ssRNA transcribed by the inverse target fragments of the
225	plasmid pRSF-ispA-ispU-ispB-Idi. In fact, the mRNA+ssRNA levels of Idi were the
226	mRNA levels because there were no inverse target fragments in the strain Idi. Also,
227	ssRNA levels of AUBI increase significantly relating with the copies of the plasmid
228	pRSF-ispA-ispU-ispB-Idi and the strong T7 promoter.
229	From quantification of the mRNA level, there was a distinct effect of weakening
230	the genes at the transcriptional level. The decrease in mRNA content resulted in an
231	effective decrease in the expression of the target genes.
232	
233	Figure 4
234	
235	3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPP
235 236	3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPP To judge from quantitative analysis of the intermediates IPP/DMAPP and GPP,
235 236 237	3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPPTo judge from quantitative analysis of the intermediates IPP/DMAPP and GPP,there were an obvious accumulation of IPP/DMAPP and a significant decrease of GPP
235236237238	 3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPP. To judge from quantitative analysis of the intermediates IPP/DMAPP and GPP, there were an obvious accumulation of IPP/DMAPP and a significant decrease of GPP after the genes ispA, ispB and ispU had been weakened. There should hence be more
 235 236 237 238 239 	 3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPP. To judge from quantitative analysis of the intermediates IPP/DMAPP and GPP, there were an obvious accumulation of IPP/DMAPP and a significant decrease of GPP after the genes ispA, ispB and ispU had been weakened. There should hence be more DMAPP to be transformed into isoprene by the gene IspS: the improvements
 235 236 237 238 239 240 	 3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPP. To judge from quantitative analysis of the intermediates IPP/DMAPP and GPP, there were an obvious accumulation of IPP/DMAPP and a significant decrease of GPP after the genes ispA, ispB and ispU had been weakened. There should hence be more DMAPP to be transformed into isoprene by the gene IspS: the improvements observed were due in part to carbon flux redirection as designed. We can conclude
 235 236 237 238 239 240 241 	3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPP, To judge from quantitative analysis of the intermediates IPP/DMAPP and GPP, there were an obvious accumulation of IPP/DMAPP and a significant decrease of GPP after the genes ispA, ispB and ispU had been weakened. There should hence be more DMAPP to be transformed into isoprene by the gene IspS: the improvements observed were due in part to carbon flux redirection as designed. We can conclude that the antisense RNA strategies successfully induced the disturbance of the
 235 236 237 238 239 240 241 242 	3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPP. To judge from quantitative analysis of the intermediates IPP/DMAPP and GPP, there were an obvious accumulation of IPP/DMAPP and a significant decrease of GPP after the genes ispA, ispB and ispU had been weakened. There should hence be more DMAPP to be transformed into isoprene by the gene IspS: the improvements observed were due in part to carbon flux redirection as designed. We can conclude that the antisense RNA strategies successfully induced the disturbance of the intermediates.
 235 236 237 238 239 240 241 242 243 	3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPP . To judge from quantitative analysis of the intermediates IPP/DMAPP and GPP, there were an obvious accumulation of IPP/DMAPP and a significant decrease of GPP after the genes ispA, ispB and ispU had been weakened. There should hence be more DMAPP to be transformed into isoprene by the gene IspS: the improvements observed were due in part to carbon flux redirection as designed. We can conclude that the antisense RNA strategies successfully induced the disturbance of the intermediates.
 235 236 237 238 239 240 241 242 243 244 	3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPP, To judge from quantitative analysis of the intermediates IPP/DMAPP and GPP, there were an obvious accumulation of IPP/DMAPP and a significant decrease of GPP after the genes ispA, ispB and ispU had been weakened. There should hence be more DMAPP to be transformed into isoprene by the gene IspS: the improvements observed were due in part to carbon flux redirection as designed. We can conclude that the antisense RNA strategies successfully induced the disturbance of the intermediates.
 235 236 237 238 239 240 241 242 243 244 245 	3.3. The effect of joint weakening genes on intermediates IPP/DMAPP and GPP, To judge from quantitative analysis of the intermediates IPP/DMAPP and GPP, there were an obvious accumulation of IPP/DMAPP and a significant decrease of GPP after the genes ispA, ispB and ispU had been weakened. There should hence be more DMAPP to be transformed into isoprene by the gene IspS: the improvements observed were due in part to carbon flux redirection as designed. We can conclude that the antisense RNA strategies successfully induced the disturbance of the intermediates.

247 down regulation for a better yield of IPP. When there was only one of the three genes 248 weaken, the isoprene accumulation was enhanced a little or almost no enhancement, 249 while it was significantly enhanced when they were weakened at the same time. 250 Genes weakening just makes the genes expression and metabolism slow down and 251 down-regulated. If the down pathway of consumption IPP is down-regulated four 252 times, the IPP accumulates more than that of only ispA down regulation. If the gene 253 ispA was knockout, ispA down regulation itself would be enough to block IPP 254 consumption. Therefore, only the three genes were simultaneously weakened, the 255 consequence was significantly achieved.

256 Metabolic engineering of various pathways is a common strategy to improve the production of high value-added metabolites. It has been suggested that 257 258 over-expression and deletion of some genes are the traditional strategies. The 259 antisense RNA strategies applying the repression strategy have rarely been used in 260 metabolic engineering. This study can provide a basis for further fine tuning of the native MEP pathway in E. coli aiming at more efficient production of isoprenoids. 261 262 Comparing the differences between the MVA and MEP pathways, the MEP pathway 263 shows a significant superiority regarding stoichiometry, energy consumption, and the 264 equilibrium between oxidation and reduction of glucose to IPP/DMAPP conversion²³. 265 Therefore, we continued to choose manipulating the native MEP pathway to enhance 266 the isoprene production. In this work, as a follow-up to our previous systematic study 267 of over-expression the three key genes, we have focused on decreasing the 268 consumption of the precusor DMAPP to other isoprenoids in order to enhance the 269 isoprene production. It showed the push trends to isoprene from the two directions, 270 with the key genes' over-expression of up pathway and the reductases' repression of

the low pathway. Therefore, we applied two strategies to enhance the isoprene production. The three genes ispA, ispB and ispU were weakened by inverting a contiguous sequence inversely, separately and jointly.

274 Recently, the antisense RNA strategies were used in metabolically engineered strains of *Clostridium acetobutylicum*¹² and *Klebsiella pneumonia*²⁴. Wang 275 Miaomiao et.al²⁴ successfully applied the strategies to produce 1-butanol and 276 277 down-regulated by-products in K. pneumonia fermentation, with the resulting titer of 1, 3-propanediol and 2, 3-butanediol reduced by 81% and 15%, respectively. Desal 278 Ruchir P. et.al ¹² obtained the strain ATCC 824(pRD4) exhibiting 85 to 90% lower 279 280 butyrate kinase (BK) and acetate kinase specific activities, strain ATCC 824(pRD1) 281 exhibiting 70 and 80% lower phosphotransbutyrylase (PTB) and BK activities than 282 the control strain. In this report, it is shown that they can also be used to regulate the 283 isoprenoids pathway in E. coli.

The antisense RNA strategies are very useful and effective for weakening and 284 285 silencing of the normal expression of some specific genes, thus down regulating the 286 concentration of related metabolites, particularly the products of the essential genes that cannot be knocked out. Kevin et.al¹³ exogenously manipulated glucokinase (Glk) 287 288 through engineered antisense RNA by inverting a contiguous sequence stretch of the 289 glk operon, and they also detected the effect of different lengths of complementarity 290 of objective genes. It was shown that the longer complementarity has a better effect 291 than the shorter ones. Several possible mechanisms have been suggested, for example 292 inhibition of translation because the duplex RNA structure prevents accessing to the

RSC Advances Accepted Manuscript

ribosome binding site, rapid degradation of the mRNA, possibly by duplex RNA-specific RNases, and inhibition of transcription of mRNA due to premature termination ²⁵⁻²⁷. Although the mechanism of an antisense RNA action is not completely understood, the antisense RNA strategies have been used to down-regulate levels of targeted gene products in prokaryotes ¹⁶⁻¹⁹. These joint antisense RNA strategies are however generally useful and effective in the isoprene production.

299

300 **4. Conclusion**

301 The isoprene production can be regulated using the engineered antisense RNA 302 strategies in E. coli based on our previous experiments. Quantification of the 303 produced isoprene was performed by GC-MS with an automatic headspace injector 304 from the previously established SPME-GC determination. From the data obtained, we 305 can conclude that the isoprene production is greatly enhanced when three genes are 306 weakened jointly. The isoprene production of the recombinant strain IAUB was 16 307 mg/L, about 8 times higher than that of the recombinant strain Idi. The joint antisense 308 RNA strategy is a useful and effective method to accumulate metabolites of particular 309 interest and to decrease the production of certain by-products by control and 310 regulation of the metabolism.

311

312 **Conflict of interest** All the authors declare that they have no conflict of interest.

313

314	Ethical Statement This article does not contain any studies with human
315	participants or animals performed by any of the authors.
316	
317	Acknowledgments
318	This work was supported by the State key laboratory of organic-inorganic
319	composites, the National Basic Research Program of China (973 program),
320	(2013CB733600, 2012CB725200), the National Nature Science Foundation of China
321	(21390202, 21476017).
322	
323	
324	
325	
326	
327	
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	

340 Referen

- S. S. Mahmoud and R. B. Croteau, *Proceedings of the National Academy of Sciences*, 2001, **98**, 8915-8920.
- 343 2. T. D. Sharkey, X. Chen and S. Yeh, *Plant Physiology*, 2001, **125**.
- 3. J. Kesselmeier and M. Staudt, *Journal of atmospheric chemistry*, 1999, 33,
 23-88.
- 346 4. K.-P. Adam and J. Zapp, *Phytochemistry*, 1998, **48**, 953-959.
- 347 5. M. Rohmer, M. Knani, P. Simonin, B. Sutter and H. Sahm, *Biochemistry*348 *journal*, 1993, **295**, 517-524.
- 349 6. M. K. Schwarz, Diss. Naturwiss. ETH Zürich, Nr. 10951, 1994. Ref.: D.
- 350 Arigoni; Korref.: B. Jaun, 1994.
- 351 7. S. T. J. Broers, 1994.
- 352 8. J. C. Sacchettini and C. D. Poulter, *Science*, 1997, 277, 1788-1789.
- 353 9. C.-L. Liu, L.-H. Fan, L. Liu and T.-W. Tan, *Process Biochemistry*, 2014, **49**,
- 354 2078**-**2085.
- Y. Zhao, J. Yang, B. Qin, Y. Li, Y. Sun, S. Su and M. Xian, *Applied microbiology and biotechnology*, 2011, 90, 1915-1922.
- 11. A. Zurbriggen, H. Kirst and A. Melis, *BioEnergy Research*, 2012, 5, 814-828.
- 358 12. R. P. Desai and E. T. Papoutsakis, Applied and Environmental Microbiology,
- 359 1999, **65**, 936-945.
- 360 13. K. V. Solomon, T. M. Sanders and K. L. Prather, *Metabolic engineering*, 2012,
- **14**, 661-671.

362	14.	K. Okada, M. Minehira, X. Zhu, K. Suzuki, T. Nakagawa, H. Matsuda and M.
363		Kawamukai, Journal of bacteriology, 1997, 179, 3058-3060.
364	15.	M. El Ghachi, A. Derbise, A. Bouhss and D. Mengin-Lecreulx, Journal of
365		Biological Chemistry, 2005, 280, 18689-18695.
366	16.	J. Coleman, P. J. Green and M. Inouye, Cell, 1984, 37, 429-436.
367	17.	M. Ellison, R. Kelleher and A. Rich, Journal of Biological Chemistry, 1985,
368		260 , 9085-9087.
369	18.	H. M. Engdahl, T. Å. Hjalt and E. G. H. Wagner, Nucleic acids research, 1997,
370		25 , 3218-3227.
371	19.	S. Pestka, B. L. Daugherty, V. Jung, K. Hotta and R. K. Pestka, Proceedings of
372		the National Academy of Sciences, 1984, 81, 7525-7528.
373	20.	K. Tartof and C. Hobbs, <i>Focus</i> , 1987, 9 , 12.
374	21.	R. H. Dahl, F. Zhang, J. Alonso-Gutierrez, E. Baidoo, T. S. Batth, A. M.
375		Redding-Johanson, C. J. Petzold, A. Mukhopadhyay, T. S. Lee and P. D.
376		Adams, <i>Nature biotechnology</i> , 2013, 31 , 1039-1046.
377	22.	L. Henneman, A. G. van Cruchten, S. W. Denis, M. W. Amolins, A. T. Placzek,
378		R. A. Gibbs, W. Kulik and H. R. Waterham, Analytical biochemistry, 2008,
379		383 , 18-24.
380	23.	A. Steinbüchel, Current Opinion in Microbiology, 2003, 6, 261-270.
381	24.	M. Wang, L. Fan and T. Tan, RSC Advances, 2014, 4, 57791-57798.
382	25.	N. Delihas, Molecular microbiology, 1995, 15, 411-414.
383	26.	R. W. Simons, Gene, 1988, 72, 35-44.
		17

- 384 27. E. G. H. Wagner and R. W. Simons, Annual Reviews in Microbiology, 1994, 48,
- 385 713-742.

386

387

Fig. 1

Fig.1 The two isoprenoid pathways to central metabolism, MEP pathway and MVA pathway.

Abreviation		Abreviation	
G6P	glucose 6-phosphate	DXS	1-deoxy-D-xylulose-5-phosphate synthase
F6P	fructose-6-phosphate	DXR	1-deoxy-D-xylulose-5-phosphate reductoisomerase
F16BP	fructose 1,6 diphosphate	IspD	4-diphosphocytidyl-2-C-methyl-D-erythritol synthase
G3P	glyceraldehyde-3-phosphate	ipk	4-diphosphocytidyl-2-C-methyl-D-erythritol kinase
DXP	1-deoxy-D-xylulose 5-phosphate	IspF	2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
MEP	2-C-methyl-D-erythritol4-phosphate	IspG	1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase
CDP-ME	4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol	IspH	1-hydroxy-2-methyl-butenyl 4-diphosphate reductase
CDP-MEP	2-Phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol	Idi	isopentenyl pyrophosphate isomerase
MEC	2-C-methyl-D-erythritol-2,4-cyclo-diphosphate	IspA	farnesyl diphosphate synthase
HMBPP	(E)-4-hydroxy-3-methylbut-2-enyl-diphosphate	IspS	isoprene synthase
DMAPP	dimethylallyl pyrophosphate	MvaE	3-hydroxy-3-methylglutaryl-coenzyme A reductase
GPP	geranyl diphosphate	MvaS	mevalonate synthase
AcCoA	acetyl coenzyme A (acetyl-CoA)	MVK	mevalonate kinase
AACoA	acetoacetyl-CoA	PMK	phosphomevalonate kinase
HMG-CoA	hydroxymethylglutaryl-CoA	mvaD	diphosphomevalonate decarboxylase
MVA	mevalonate	ispA	geranyltranstransferase
MVAP	mevalonate-5-phosphate	ispB	octaprenyl diphosphate synthase
MVAPP	mevalonate-5-diphosphate	ispU	undecaprenyl pyrophosphate synthase

Fig. 2

Fig. 3

Fig. 3 Production of isoprene of different strains harboring different plasmids.

Fig. 4

Fig. 4 Characterization at the relative mRNA level and ssRNA of the control strain Idi and joint weakening strain IAUB.

Fig. 5

Fig. 5 Relative quantification of extracted cellular metabolites DMAPP and GPP in the control strain Idi and joint weakening strain IAUB.

Table 1	Strains	and	plasmids	used	in	this	study.
---------	---------	-----	----------	------	----	------	--------

Strains or plasmids	Relevant characteristics Reference or source	
Strains		
Escherichia coli TOP10	Applied for harvesting plasmid	Purchased from Biomed
Escherichia coli BL21 (DE3)	Applied for expression genes	Purchased from Biomed
E. coli Idi	pETD-DXS-IspS, pRSF-Idi DXS-Idi-IspS ^(Liu et al., 2014)	
E. coli I-A	pETD-DXS-IspS, pRSF-ispA-Idi DXS-Idi-IspS-ispA ^(Liu et al., 2014)	
E. coli I-B	pETD-DXS-IspS, pRSF-ispB-Idi This study	
E. coli I-U	pETD-DXS-IspS, pRSF-ispU-Idi This study	
E. coli I-A-U	pETD-DXS-IspS, pRSF-ispA-ispU-Idi This study	
E. coli I-A-B-U	pETD-DXS-IspS, pRSF-ispA-ispB-ispU-Idi	This study
plasmids		
pETDUET-1	pBR322 Ori Amp ^r	This study
pRSFDUET-1	RSF Ori Kana ^r	This study
pETD-DXS-IspP	pBR322 Ori Amp ^r DXS, IspS pETDuet-1-Dxs-IspS ^{(Liu et al., 2}	
pRSF-Idi	RSF Ori Kana ^r Idi	pRSFDuet-1-Idi ^(Liu et al., 2014)
pRSF-ispA-Idi	RSF Ori Kana ^r Idi, ispA ^a	pRSFDuet-1-IDI-ispA ^(Liu et al., 2014)
pRSF-ispB-Idi	RSF Ori Kana ^r Idi, ispB ^a	This study
pRSF-ispU-Idi	RSF Ori Kana ^r Idi, ispU ^a	This study
pRSF-ispA-ispU-Idi	-ispA-ispU-Idi RSF Ori Kana ^r Idi, ispA a,ispU ^a This study	
pRSF-ispA-ispB-ispU-Idi	B-ispU-Idi RSF Ori Kana ^r Idi, ispA a,ispB a,ispU ^a This study	

A^a, the reverse complement of the truncated gene ORF and 20 bps upstream of the start codon. Kana^r, Kanamycin resistance; Amp^r, Ampicillin resistance.

Table 2. Primers used in this study.

Genes	Primers	Sequences of oligonucleotides
ispB ^a	ispBa- <i>Bam</i> H I -F	cgcggatccg CCCATAATCCTGCAGGCCTT
	ispBa-Sal I -R	acgc <u>gtcgac</u> CGAAAAGCCCGGCTTTTGCGATG
ispU ^a	ispU-BamH I -F	cgcggatccg TCAGGCTGTTTCATCACCG
	ispU-Pst I -R	aa <mark>ctgcag</mark> TGTCAGGGAATAAAAAACGC
T7 Ter	T7R-Sal I -F	acgc <u>gtcgac</u> TCTACTAGCGCAGCTTAAT
	T7R -Hind III-R	ccc <u>aagctt</u> ATTGACTACCGGAAGCAGTGTGA
T7-IspB-T7R	T7IspBT7R-Hind III-F	ccc <u>aagctt</u> CGGGATCTCGACGCTCTC
	T7IspBT7R-NotI -R	ataagaatgcggccgcATTGACTACCGGAAGCAGTGTGA
T7-ispU-T7R	T7ispUT7R-NotI –F	ataagaatgcggccgcCGGGATCTCGACGCTCTC
	T7ispUT7R- <i>Afl</i> II -R	aatg cttaag ATTGACTACCGGAAGCAGTGTGA
GAPDH	Qpcr-GAPDH-F	TATGACTCCACTCACGGC
	Qpcr-GAPDH-R	AACCACTTTCTTCGCACC
ispA ^a	Qpcr-ispA-F	GCCTGACCACCGCACATT
	Qpcr-ispA-R	GCTGGCGACGCTTTACAA
ispA	mRNA-ispA-F	GATGTGGTGGGAGATAC
	mRNA-ispA-R	CTGTTCAGCCAGTTGTT
ispB ^a	Qpcr-ispB-F	CAGCACTTTGAGCGAACC
	Qpcr-ispB-R	TTTATCCACACGGCGACT
ispB	mRNA-ispB-F	CGAACAGGGTAACGGTC
	mRNA-ispB-R	CTTCTCGCCAAGGGGTG
ispU ^a	Qpcr-ispU-F	CCTTTTCAGCCAGTTGCCT
	Qpcr-ispU-R	CGTGCGTCTGCGTATTATT
ispU	mRNA-UPPS-F	GTAACTTTTTGCTTTGGC
	mRNA-UPPS-R	TCAGGCTGTTTCATCA