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Abstract 25 

 The present study describes the renewable, environment-friendly approach for the 26 

production of biodiesel from low cost, high acid value mahua oil under supercritical ethanol 27 

condition using carbon dioxide (CO2) as a co-solvent. CO2 was employed to decrease the 28 

supercritical temperature and pressure of ethanol. Response surface method (RSM) is the most 29 

preferred method for optimization of biodiesel so far. In last decade, artificial neural network 30 

(ANN) has come up as one of the most efficient method for empirical modeling and 31 

optimization, especially for non-linear systems. This paper presents the comparative studies 32 

between RSM and ANN for their predictive, generalization capabilities, parametric effects and 33 

sensitivity analysis. Experimental data were evaluated by applying RSM integrating with 34 

desirability function approach. The importance of each independent variable on the response was 35 

investigated by using sensitivity analysis. The optimum conditions were found to be temperature 36 

(304 
o
C), ethanol to oil molar ratio (29:1), reaction time (36 min), and initial CO2 pressure (40 37 

bar). For these conditions, experimental fatty acid ethyl ester (FAEE) content of 97.42% was 38 

obtained, which was in reasonable agreement with predicted one. The sensitivity analysis 39 

confirmed that temperature was the main factors affecting the FAEE content with the relative 40 

importance of 39.24%. The lower values of correlation coefficient (R
2
 =0.868), root mean square 41 

error (RMSE =4.185), standard error of prediction (SEP =5.81) and absolute average deviation 42 

(AAD =5.239) for ANN compared to those R
2
 (0.658), RMSE (7.691), SEP (10.67) and AAD 43 

(8.574) for RSM proved better prediction capability of ANN in predicting the FAEE content. 44 

Keywords: Mahua oil, Supercritical ethanol, Biodiesel, Response surface method, Artificial 45 

neural network  46 

 47 

 48 

 49 
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1. Introduction 50 

 To solve the problems of global warming, fluctuating oil prices, CO2 emissions, and 51 

possibly create new job opportunities, extensive research and development programs are in 52 

search of renewable energy sources are actively pursued. Biofuels have become an important 53 

renewable energy source, particularly for the transportation applications. As a renewable energy 54 

source, biomass is one of the superior sources of energy and industrial-scale biomass based 55 

energy production could improve the socioeconomics of many underdeveloped societies and 56 

countries along with the raising awareness of environmental protection. 
1
 Biodiesel composed of 57 

mixture of alkyl esters that mostly produced by esterification and transesterification of various 58 

lipid feedstocks such as vegetable oils and animal fats with methanol or ethanol as the reacting 59 

alcohol. 
2
 One of the major problems for the use of biodiesel is the poor availability the 60 

economic raw material. Therefore, different alternative feedstocks for biodiesel production need 61 

to be explored. In India, with abundance of forest resources, there are number of non-edible tree 62 

borne oilseeds with an estimated annual production of more than 20 million tones, which have 63 

great potential for making biodiesel to supplement other conventional sources. Among the 64 

available feedstocks, mahua (Madhuca indica) is an economically important oilseed tree of the 65 

Sapotaceae family, which grows in several parts of India. Mahua (Madhuca indica) is one such 66 

non-edible tree based seed oil, which has an estimated annual production potential of 181,000 Mt 67 

in India. 
3
 Fatty acid composition of mahua oil has earlier been reported in literature 

4,5
 and is 68 

given in Table S1. The major constituents are palmatic, stearic, oleic, linoleic, arachidic which 69 

contribute about 96% of total fatty acids present in mahua oil. 70 

 The studies about biodiesel production from mahua oil via alkali catalysed 71 

transesterification have been reported in the literatures. 
5,6

 Kumari et al. 
4
 employed lipase 72 

catalyst (Pseudomonas cepacia immobilized on CLEAs and PCMCs) for synthesis of biodiesel 73 

from mahua oil with high free fatty acid content (20%) and reported 92 % conversion in 2.5 h 74 

with (cross-linked enzyme aggregates) CLEAs, 99% conversion in 2.5 h with (protein-coated 75 

microcrystals) PCMCs. However, the catalytic biodiesel production has several drawbacks such 76 

as time-consuming due to low reaction rate and corrosion risk for acid-catalyzed, high sensitivity 77 

to free fatty acid (FFA) and water contents in the oil feedstock and difficulty in the separation of 78 

biodiesel and catalyst from soap for alkaline catalyst, high cost and deactivation risk of the active 79 

sites for both enzyme and heterogeneous catalysts. Moreover, biodiesel production employing 80 
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liquid catalysts requires complex and costly treatments for the acidic or alkaline wastewater.
2 

81 

Recently, supercritical transesterification (SC-TE) has been highlighted as an emerging 82 

technology for the biodiesel synthesis from various feedstocks. This method is able to 83 

completely convert fatty acids in feedstocks to alkyl ester with high purity without involving any 84 

catalysts and offers simple product separation from the mixture. 
7
 Other advantages of this route 85 

include fast reaction kinetics, ease separation of products, and tolerance to FFA and water 86 

contents in the oil feedstock because esterification of free fatty acid (FFA) and transesterification 87 

of triglycerides proceed simultaneously. 
2
 Apart from the advantages, it has some drawbacks like 88 

high equipment cost and high energy consumption due to high temperature and pressure 89 

conditions. This limits the supercritical transesterification process to be viable for large scale 90 

industrial applications. However, the introduction of co-solvents like hexane, carbon dioxide, 91 

propane into the reaction mixture decreases the severity of the reaction parameters and can make 92 

this process practical. The addition of co-solvents can decrease the critical point of alcohol and 93 

allow the supercritical reactions to be carried out at milder temperatures. 
8
 Different alcohols 94 

such as methanol, ethanol, propanol, butanol and amyl alcohol can be used for the 95 

transesterification. Ethanol is preferred in present study because it is renewable, non-toxic, eco-96 

friendly and can be produced from agricultural resources. Also, fatty acid ethyl ester are better 97 

than fatty acid methyl esters in term of fuel properties, including cetane number, oxidation 98 

stability and cold flow properties. 
1
 99 

 In the last decades the different mathematical tools, useful for modeling and optimization 100 

of biodiesel synthesis, have been progressively developed. For instance, response surface 101 

methodology (RSM) and artificial neural networks (ANN) are powerful mathematical methods 102 

suitable for modeling and simulation of various processes in real applications. Both 103 

methodologies do not need the explicit expressions of the physical meaning of the system or 104 

process under investigation. Therefore, RSM as well as ANN belong to modeling techniques 105 

dealing with the development of non-parametric simulative models. Such models have a wide 106 

applicability in various disciplines of science. In fact, these models approximate the functional 107 

relationships between input variables and the output (response) of the process using experimental 108 

data. Afterwards, the models are used to estimate the optimal settings of input variables to 109 

maximize or minimize the response. 
9
 110 
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 Biodiesel production has been predicted and optimized using several topologies of ANN 111 

in a few studies. 
10-14

 Yuste and Dorado, 
12

 accurately simulated base-catalyzed waste olive oil 112 

transesterification for biodiesel production using an ANN model introducing a tool for making a 113 

decision in the experimental process. They showed that the ANN is a capable alternative tool for 114 

experimentally testing of the process optimization. Ramadhas et al. 
15

 developed different ANN 115 

models based on multi-layer feed forward, radial base, generalized regression and recurrent 116 

network for predicting the cetane number (CN) of biodiesel fuel. The predicted CN of biodiesel 117 

is comparable to that of actual CN of the biodiesel. Rodríguez et al. 
16

 applied multiple linear 118 

regression and artificial neural networks for obtaining a model for predicting cetane number and 119 

validated the model using data from literature. The models based on multiple linear regressions 120 

cannot predict cetane number with similar accuracy as the obtained for the selected neural 121 

network. The biodiesel production from rapeseed soapstock and methanol in the presence of the 122 

candida-rugosa lipase immobilized on chitosan was analyzed by Ying et al. 
17

 using an ANN, 123 

showing desirable correspondence between predicted and experimental values of the FAME 124 

yield. Basri et al. 
18 

has reported the comparison of ANN and RSM in lipase-catalyzed synthesis 125 

of palm-based wax ester, which also suggest the superiority of ANN over RSM for both data 126 

fitting and estimation capabilities. 127 

 RSM and ANN have been widely applied for the modeling and optimization of biodiesel 128 

synthesis from various feedstocks using different methods such as classical base catalyzed 129 

transesterification, 
13,14,19,20

 heterogeneous base catalyzed transesterification, 
21

 conventional two-130 

step acid catalyzed esterification and base catalyzed transesterification, 
22,23

 ultrasound assisted 131 

base catalyzed transesterification, 
24

 ultrasound assisted two-step acid catalyzed esterification 132 

and base catalyzed transesterification, 
25,26

 ultrasound assisted heterogeneous base catalyzed, 
27 

133 

lipase catalyzed, 
18

 Infrared irradiation assisted esterification,
28

. Several papers took advantages 134 

of the genetic algorithm coupled with ANN to generate optimum operating variables for the 135 

studied process. 
11,17, 22

 Most of the reported literatures on comparison of RSM and ANN for 136 

biodiesel synthesis using different feedstocks were based on conventional, ultrasound, and 137 

infrared irradiation assisted techniques. To the best of our knowledge, there are no studies 138 

dealing with comparison of RSM and ANN modeling methods for the optimization of non-139 

catalyzed biodiesel synthesis using non-edible oil. 140 
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 Hence, the objective of the present work is to demonstrate the conversion of high free 141 

acid content crude mahua oil into biodiesel using single step supercritical ethanol process in 142 

presence of carbon dioxide (CO2). In order to assess and understand the effect of each variable 143 

on fatty acid ethyl ester (FAEE) content, statistical analysis was performed using the RSM. 144 

Moreover, the desirability function approach for optimization of FAEE content was employed in 145 

order to develop an efficient method for achieving maximum biodiesel production. In addition, 146 

the present work investigates the predictive and generalization capability of artificial neural 147 

network (ANN) to estimate the FAEE content. Furthermore, the efficiencies of both the models 148 

were statistically compared by the coefficient of determination (R
2
), root mean square error 149 

(RMSE), standard error of prediction (SEP), and absolute average deviation (AAD) based on the 150 

validation data set. 151 

2. Experimental Section 152 

2.1. Materials  153 

 Mahua oil was obtained from local market. Anhydrous ethanol (99.8%) was purchased 154 

from Mars scientific Inc. (Australia). Carbon dioxide (99%) was supplied by Bharti Gases 155 

(Nagpur, India). All chemicals including n-hexane (95%) and Sulfuric acid (99%) of analytical 156 

reagent (AR) grade was purchased from Merck Limited, Mumbai, India. Hexanoic acid (S.D. 157 

Fine Chem. Ltd. India) was used as an internal standard for the gas chromatographic analyses. 158 

The standards required for quantification of esters were procured from Sigma-Aldrich Co. Ltd., 159 

Mumbai, India and were chromatographically pure. All the liquid chemicals were filtered 160 

through 2 µm pore size filter and the gases were passed through silica bed prior to use.  161 

 The acid value of oil was determined by acid base titration technique, 
29

 using the 162 

standard solution of KOH. Mahua oil had an initial acid value of 36 mg of KOH/g of oil. The 163 

critical temperature and pressure of ethanol is 516.2 K and 6.4 MPa. The properties of the 164 

ethanol favor the homogeneous mixing with oil at supercritical condition because they act as acid 165 

catalysts in the supercritical biodiesel synthesis. 
30 

 166 

2.2. Methods 167 

 The supercritical ethanol process was carried out in a 50mL bench top AMAR 2630 high 168 

pressure reactor (SS 316) equipped with a E-3032 controller, magnetic stirrer, pressure gauge, 169 

external electric heater  (Amar Equipments Pvt. Ltd., Mumbai, India). The instrument can be 170 

operated maximum up to 500 
o
C and 400 bars. The complete experimental set-up has been 171 
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shown in Fig. S1. A known amount of mahua oil and ethanol was charged to the reactor to give 172 

the different amount of ethanol to oil molar ratio ranging from 15:1 to 35:1. The reactor was then 173 

purged with known amount of CO2 gas (10 - 50 bars) as co-solvent. Then, the mixture of mahua 174 

oil-ethanol-CO2 was heated at the different temperatures (250 
o
C - 350 

o
C) for which the power 175 

was adjusted to give a heating rate 50 
o
C/ min and is defined as the zero reaction time 176 

(temperature and pressure reached the set value). The temperature was controlled within ± 2 
o
C 177 

and the pressure was monitored by pressure gauge in order to maintained the isothermal and 178 

isobar reaction conditions. After the set value reached, the mixture was stirred with magnetic 179 

stirrer for desired time (10 - 50 min). To stop the reaction after the predetermined reaction time, 180 

the reactor was quenched by immersing the reactor in a cold water bath. The product was 181 

collected, and hexane was used to elute any trace of product left in the reactor. The alcohol and 182 

hexane present with product was evaporated at 90 °C, leaving behind the mixture of unreacted 183 

oil, ester, and glycerol, and then taken for analysis by gas chromatography.  184 

2.3. GC Analysis 185 

 The reaction samples were analyzed by gas chromatography (model GC-2010 plus, 186 

Shimadzu Corp., Tokyo, Japan) using a capillary column, MXT-Biodiesel TG (Restek, USA; 15 187 

m × 0.32 mm × 1µm film thickness of diphenyl dimethyl polysiloxane) and a flame ionization 188 

detector. Nitrogen was used as a carrier gas at a flow rate of 2.75 mL min
-1

. Hexanoic acid was 189 

used as an internal standard. Column oven temperature was initially maintained at 100 
o
C for 3 190 

minutes, then increases to 250 
o
C at the rate of 30 

o
C min

-1
 and

 
held here for 3 minutes. The 191 

injector and detector temperature were maintained at 270 
o
C. A sample volume of 1 µL mahua 192 

oil biodiesel (MOB) in hexane was injected using a split mode, with the split ratio of 1:50. The 193 

GC chromatograph of MOB is shown in Fig. S2.  194 

2.4. Experimental Design 195 

2.4.1. Response surface method 196 

 A five-level four-factor central composite experimental design (CCD) was used in this 197 

study. Reaction temperature (A), ethanol to oil molar ratio (B), time (C), and initial CO2 pressure 198 

(D)  were the input variables, the factor levels were coded as -2 to +2 as shown in Table S2. In 199 

this work, the input variables (factors) and their levels were selected, based on preliminary 200 

experiments carried out in the laboratory. According to the CCD, experiments were performed in 201 

order to find out the optimum combination and study the effect of process parameters on FAEE 202 
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content using the supercritical ethanol (SC-ET) process, and the results are given in Table 1. 203 

Experimental data from the CCD was analysed using regression (Design Expert 
TM

 8.0) and 204 

fitted to a second-order polynomial model in order to identify all possible interactions of selected 205 

factors with response function as follows: 206 � = �� + ∑ ��			�
��� + ���			��
��� + ∑ ∑ ���				�	�
���
��� 	+ 		�                                                  (1) 207 

where, Y is response (FAEE content %), b0, bi, bii and bij are the regression coefficients obtained 208 

for constant, linear, quadratic and interaction terms, respectively. xi and xj are independent 209 

variables, whereas i and j are the linear and quadratic coefficients, respectively. b is the 210 

regression coefficient, k is the number of factors studies and optimized in the experiment and e is 211 

random error. Furthermore, RSM integrated with desirability function approach was used for 212 

simultaneous optimization of FAEE content.  213 

2.4.2. Desirability function approach 214 

The individual desirability (d) for response was calculated by one side transformation method 215 

(Eq. 2), followed by calculation of overall desirability (D) using univariate technique (Eq. 3) as 216 

follows: 
27,31,32

 217 

d�	 =	� 0			Y�	 ≤ Y������ ��		�	������	���� !	�	������"#	0		Y�	 ≥ Y���%&	    Y����� < Y�	 <	Y���%&                                                                        (2) 218 

D = (d�)�d�)�d*)*d+)+d,)�)�/∑)�                                                                                                  (3) 219 

where di is individual response desirability, Yi is the response values, Yi-min is the minimum 220 

acceptable value for response i, Yi-max is the maximum acceptable value for response i, r is a 221 

weight used to determine the scale of desirability, D is the overall desirability, di is individual 222 

response desirability, and wi is a weighted composite desirability.  223 

2.4.3. Artificial neural network 224 

 The design of experiments (DoE), which is used for training the network and respective 225 

experimental response (FAEE content) are given in Table 1. In this work, the network inputs and 226 

target have been normalized before training. To this end, both input variables and target 227 

(experimental response) have been normalized ranging from -1 (minimum level) up to +1 228 

(maximum level). The normalization in the limits (-1,+1) was carried out since the tangent 229 

sigmoid function (tansig) employed for ANN modeling ranges from -1 and +1. For 230 

normalization target data the following equation was used: 
33

 231 
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Normalized = �/∗(123�1456)(1478�1456)" − 1                                                                                                  (4) 232 

where Xmin, Xmax, and  XAc are the minimum, maximum and actual data, respectively. The 233 

normalization of inputs and target was performed to avoid overflows that may appear due to very 234 

large or very small weights. 
9
 In this study, a three-layered feed-forward neural network with 235 

tangent sigmoid transfer function (tansig) at hidden layer and a linear transfer function (purelin) 236 

at output layer was used. The sigmoid transfer function was given by (Eq. 5). 237 ;(	) = 2	 × ��>?�@A − 1                                                                                                                 (5) 238 

and the linear activation function (Eq. 6) is used as the output layer activation function. 
34

 239 ;(	) = 	                                                                                                                                       (6) 240 

 The back propagation algorithm was used for network training. Sixty percent of the data 241 

was taken for the training set, twenty percent for the validation set and rest of the data for the test 242 

set. Neural Network Toolbox V4.0 of MATLAB mathematical software was used for FAEE 243 

prediction. The performance of ANN was statistically measured by root mean square error 244 

(RMSE), standard error of prediction (SEP), absolute average deviation (AAD), and correlation 245 

coefficients (R
2
) was carried out between experimental and predicted data. The formulas used for 246 

error analyses were calculated by Eq. (7) to Eq. (10) respectively. 
27,35,36

 247 

B� = 1 −	∑ (CD,F�CD,G)@HDIJ∑ (CD,F�CG)@HDIJ                                                                                                                 (7) 248 

BKLM = N∑ (CD,G�CD,F)HDIJ @
O                                                                                                                (8) 249 

LMP = QRSTCG × 100                                                                                                                       (9) 250 

UUV =	 ���O 	∑ W(CD,F�CD,G)WW(CD,G)WO���                                                                                                         (10) 251 

where, ��,? is the experimental data, ��,X is the corresponding data predicted, �? is the mean value 252 

of experimental data and n is the number of the experimental data. 253 

2.4.4. Sensitivity Analysis 254 

 ANN being a black box model, it does not give insights of the system directly. But there 255 

are numerous methods available which gives the sensitivity analysis of the system using inherent 256 

nature of ANN. In order to evaluate the relative importance of each Input variable on the 257 

response, Garson 
37

 proposed an equation based on the partitioning of the connection of the 258 

weights as: 259 
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Y� = ∑ ((Z[\]D^ Z/∑ Z[_]D^ Z)×W[]H^` WaD_IJ )]Ia^]IJ∑ {∑ (]Ia^]IJ W[_]D^ W/ ∑ W[_]D^ WaD_IJ )×W[]H^` W	}_IaD_IJ                                                                                    (11) 260 

where, Y� is the relative significance of the j
th

 input variable on the output variable, Ni and Nh are 261 

the number of input and hidden neurons, respectively. W is connection weight, the superscripts i, 262 

h and o represents the input, hidden, and output layers, respectively. while the subscripts k, m 263 

and n refer to input, hidden, and output neurons, respectively. 
37

  264 

3. Results & Discussion 265 

3.1. RSM modeling and Desirability function approach for Optimization 266 

 The second-order polynomial equation was fitted with the experimental results obtained 267 

on the basis of CCD experimental design. The final equation obtained in terms of coded factors 268 

as follows: 269 

FAEE content (%) = 87.82 + 3.02A + 4.73B + 8.26C + 2.05D + 2AB − 1.46AC − 0.038AD +270 0.085	BC − 1.09BD − 0.036CD − 12.58	A2 − 4.06B2 − 6.89C2 − 0.64D2	                        (12) 271 

 The adequacy and fitness of the model was tested by analysis of variance (ANOVA), 272 

which is shown in Table 2. The regression analysis indicates that all the four parameters had 273 

significant influence on the fatty acid ethyl ester (FAEE) content, which is confirmed by the P-274 

values. The P-value of the lack of fit analysis is 0.0825, which is more than the 0.05 (confidence 275 

level is 95%). The regression model provides accurate description of the experimental data 276 

indicating successful correlation among the four transesterification process parameters that affect 277 

the FAEE content. The value of R
2
 was calculated to be 0.9709, which indicated good agreement 278 

of model value with experiment. The model was then further process to generate response 279 

surface plots using Matlab Version 8.3 (R2014a).  280 

3.2. Effect of process parameters 281 

 Three-dimensional response surface plots are shown in Figs. 1(a-c) revealing the 282 

predicted effects of factors on the response. Fig. 1a shows the influence of reaction temperatures 283 

and ethanol/oil molar ratio on FAEE content for fixed levels of reaction time of 30 min and 284 

initial CO 2 pressure of 30 bar. Fig. 1a shows that FAEE content increased with the increase in 285 

temperature from 275 to 305 
o
C, afterwards the trend is reversed. This may be due to the partial 286 

thermal degradation of mono- and polyunsaturated fatty acids present in mahua oil. 
38

 Imahara et 287 

al. 
39

 reported that unsaturated fatty acids tend to decompose at high temperature and pressure 288 

conditions due to the isomerization of double bond functional group from cis-type carbon 289 
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bonding into trans type carbon bonding which are naturally unstable fatty acids. Similar 290 

observation has been reported by other researchers who investigated the production of biodiesel 291 

from wet algal biomass using methanol 
40

 and ethanol conditions. 
1
 292 

 Fig. 1a also depicts the effect of the ethanol/oil molar ratio on FAEE content. 293 

Stoichiometrically, ethanol to oil molar ratio of 3:1 is required to form three moles of fatty acid 294 

ethyl esters (biodiesel) and one mole of glycerol. In supercritical transesterification process, the 295 

molar ratio of ethanol to oil used is significantly higher than the stoichiometric amount. This can 296 

be explained on the basis that a large excess molar ratio of ethanol to oil is required to bring the 297 

reaction system to homogeneous supercritical state. Moreover, a large excess molar ratio of 298 

ethanol to oil was purposely used to drive the chemical equilibrium to the right-hand side based 299 

on Le Chatelier’s principle and ensures high conversion of triglycerides within short time, and 300 

also high amount of ethanol act as a solvent, acid catalyst and reactant for oil to ester conversion. 301 

The conversion of triglycerides into fatty acid ethyl esters takes place sequentially as follows: (i) 302 

the reaction between ethoxide anion and the carbonyl carbon of triglyceride to form ethyl ester 303 

and diglyceride; (ii) the reaction between ethoxide anion and the carbonyl carbon of diglyceride 304 

to form ethyl ester and monoglycerides; and (iii) the reaction between ethoxide anion and the 305 

carbonyl carbon of monoglycerides to form ethyl ester and glycerol. 
2,41

 306 

 Fig. 1a shows that increase in ethanol to oil molar ratio increases the FAEE content up to 307 

30:1 and further increases in ethanol to oil molar ratio decreases the FAEE content. Initially, the 308 

increase in the FAEE content is due to the increased contact area between ethanol and oil and the 309 

increased mutual solubility in the presence of co-solvent CO2. Later, excess ethanol started to 310 

interfere with the glycerin separation due to increased solubility, which resulted in lower FAEE 311 

content. 
8,42

 According to He et al. 
43

, after the mixture of alcohol and oil changes into a 312 

homogenous state, continuing raising the molar ratio of alcohol to oil cannot help to increase the 313 

fatty acid alkyl ester yield, as the reaction is restrained by the reaction equilibrium, which also 314 

makes the increase dosage of alcohol do not lead to any obvious effect on the fatty acid alkyl 315 

ester yield after a certain value of the molar ratio. The maximum FAEE content was achieved at 316 

temperature of 304 
o
C and ethanol to oil molar ratio of 29:1. 317 

 Reaction time plays a crucial role in the economy of the process and productivity. 318 

Conventional transesterification reactions take hours to complete while supercritical alcohol 319 

transesterification can be achieved in much shorter time periods. 
1
 Balat conducted experiments 320 
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under condition 280 
o
C, molar ratio of 40:1 of sunflower to ethanol. The fatty acid ester content 321 

(FAEE) content was 80% after 300 s. 
44

 Muppaneni et al. 
8
 reported 91% of FAEE yield at 300 322 

o
C, 33:1 ethanol to oil molar ratio, and 20 min of reaction time. Fig. 1b shows the influence of 323 

reaction temperatures and time on FAEE content for fixed levels of ethanol/oil molar ratio of 324 

25:1 and initial CO2 pressure of 30 bar. It can be seen from Fig. 1b that reaction time has positive 325 

effects on FAEE content up to 36 min, and thereafter it shows negative impacts on FAEE 326 

content. The optimal residence time in our experiment was somewhat different from those in 327 

other reports, 
8,44

 which may be explained by the difference between their experimental 328 

conditions, and ours as well as varied nature of oil. The major reason for the decrease of the 329 

FAEE content after the critical point of residence time at high reaction temperatures is the loss of 330 

unsaturated FAEE. In the reaction conditions of high reaction temperatures, namely above 304 331 

o
C, there were other side reactions already, such as thermal decomposition reactions and 332 

dehydrogenation reactions 
1,40,43,45

 consuming the unsaturated FAEE, especially the C18:1 and 333 

C18:2. At the beginning of a transesterification reaction, the rate of FAEE production is higher 334 

than that of FAEE consumption, and therefore the content of FAEE increases before reaching the 335 

equilibrium point between the transesterification reaction and the side reactions. However, after 336 

this point, the rate of FAEE consumption is higher than that of FAEE production, and with the 337 

increase of residence time, the FAEE decreases. 338 

 Fig. 1c shows the effects of temperature and initial CO2 pressure on FAEE content, when 339 

ethanol/oil molar ratio and reaction time were maintained constant as 25:1 and 30 min, 340 

respectively. As one can see, with the increment of initial CO2 pressure up to the level of 40 bar, 341 

the FAEE content increases, beyond 40 bar there is no significant effect of initial CO2 pressure 342 

on FAEE content. Han et al. 
46

, in the alcoholysis of soyabean oil in methanol with the addition 343 

of co-solvent CO2, found that significant decrease in the severity of the process conditions 344 

required for supercritical reaction. Yin et al. 
47

 reported that esters yield for the reaction using 345 

supercritical methanol increased when using carbon dioxide as co-solvent. Tsai et al. 
48

 reported 346 

that addition of CO2 in supercritical transesterification of sunflower oil using methanol is 347 

insignificant on FAEE yield at higher pressures above 10 MPa. For stating the significance of 348 

CO2 pressure on the reaction, separate reactions were carried at optimum condition such as by 349 

using CO2 and without using CO2. The FAEE content observed was 97.42% for CO2 pressurized 350 

reaction and 76.83% for without CO2. This experiment analysis shows that CO2 has the 351 
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significant effect on reaction kinetics. The possible reason may be the fact that increasing the 352 

reaction pressure simultaneously increases the density of the reaction mixture. The 353 

transesterification conversion is enhanced with an increased reaction mixture density. 
43

  354 

 The RSM integrated with desirability function approach was used for simultaneous 355 

optimization of FAEE content, owing to its potential over conventional RSM. 
27

 The global 356 

optimized conditions for FAEE content were found to be temperature (A) = 304 
o
C, ethanol to 357 

oil molar ratio (B) = 29:1, reaction time (C) = 36 min, initial CO2 pressure (D) = 40 bar. The 358 

predicted response of FAEE content at optimized conditions was 95.08 % (wt), with D value of 359 

0.9316. The maximum FAEE content of 97.42% (wt) was obtained at optimized conditions, 360 

representing only 2.34% difference between estimated and actual FAEE content. Results 361 

suggested that the optimal conditions attained had the least error and can be practically applied to 362 

produce biodiesel from mahua oil. 363 

3.3. Artificial Neural Network modeling 364 

  The optimum architecture of ANN model was determined based on three steps: (1) 365 

optimum number of neurons (2) selection of the best backpropagation training algorithm and (3) 366 

testing and validation of the model. 
27

 A number neural network architecture and topologies were 367 

selected and investigated for the estimation and prediction of FAEE content. This is due to the 368 

fact that the choice of an optimal neural network and architecture and topology is critical for 369 

successful application of ANN. 
49

 370 

 The optimum number of neurons was determined based on the minimum value of mean 371 

square error (MSE) of the training and prediction set. 
50

 In optimization of the neural network, 372 

two neurons were used in hidden layer as an initial estimate. The training stops with MSE of 373 

0.00017 at 48 epoch, which are close to the acceptable limit for MSE to 0.001. The relation 374 

between MSE and number of neurons in the hidden layer is given in Fig. S3. As it can be seen, 375 

the MSE of was minimum just about 10 neurons. The best backpropagation algorithm was 376 

determined by studying ten different backpropagation algorithms using tansig transfer function at 377 

hidden layer and purelin transfer function at output layer and results are given in Table 3. Polak-378 

Ribiere conjugate gradient backpropagation (CGPA) with smaller MSE was found to be the best 379 

of ten backpropagation algorithms. So, CGPA was considered as the training algorithm in this 380 

study. Hence, we used feed-forward CGPA with 10 artificial neurons in hidden layer for 381 

modeling of FAEE content. The optimum architecture of ANN (4:10:1) model in this case is 382 
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shown in Fig. 2. Fig. 2 consists of three layers as input layer with four input variables, hidden 383 

layer with ten hidden neurons, and output layer with single output variable. All neurons from 384 

hidden layer have tan-sigmoid transfer function (tansig) and the output layer neuron has linear 385 

transfer function (purelin). As can be seen from Fig. 2, the connections consist of weights and 386 

biases between inputs and neurons as well as between neurons from different layers. 387 

 The scatter diagrams that compare the experimental data versus the computed neural 388 

network data in both training, testing and validation networks are shown in Fig. 3. Fig. 3 shows 389 

the NN model with training, validation, test and all prediction set with very good values of R 390 

(0.9989, 0.9998, 0.9999, and 0.9994 respectively). Almost all data scatter around the 45
o
 line that 391 

is the indication of excellent compatibility between the experimental results and ANN predicted 392 

data. These values of R between experimental response and ANN predicted response in all the 393 

cases suggests that the developed ANN model, which was trained using experimental data, was 394 

precise predicting FAEE content.   395 

3.4. Sensitivity Analysis 396 

 The ANN used in this study provided with weights listed in Table 4a. The relative 397 

significance of the four input variables calculated by Garson Eq. (11) shown in Table 4b. As may 398 

be seen from Table 4b, all of the four variables (temperature, ethanol/oil molar ratio, time, and 399 

initial CO2 pressure with relative importance of 39.24, 19.61, 28.57 and 12.58 respectively) have 400 

strong effects on the FAEE content. Therefore, none of the variables studied in this work could 401 

have been neglected in the present analysis. The degree of effectiveness of variables was found 402 

in the order of.  403 

temperature > reaction time > ethanol/oil molar ratio > initial CO2 pressure 404 

3.5. Comparison between RSM and ANN models 405 

 The ANN and RSM model were compared for DoE, using which both the models were 406 

trained. The comparison was made on the basis of various parameters such as root mean square 407 

error (RMSE), standard error of prediction (SEP), absolute average deviation (AAD), and 408 

correlation coefficients (R
2
). The predicted values by ANN as well RSM model are tabulated in 409 

Table 1. ANN model had fitted the experimental data with an excellent accuracy. The 410 

generalization ability of both the models were judged only with unseen dataset. Thus, it was 411 

decided to test both the models using the separate unseen data (six runs) which does not belong 412 

to the training data sets. The experimental and predicted FAEE content are summarized in Table 413 
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5. The comparative values of RMSE, SEP, AAD and R
2 

are given in Table 6. The R
2
 for RSM 414 

and ANN was 0.658 and 0.868, and RMSE was 7.691 and 4.185, respectively. Table 6 indicates 415 

that both the models performed reasonably well, but ANN performed consistently better than 416 

RSM. The prediction performance of the ANN model for the validation data set confirmed its 417 

superior generalization capacity for the given case over the RSM. In addition, Fig. 4 shows the 418 

experimental and predicted values for each experimental run to obtained the FAEE content. 419 

From the Fig. 4, it is evident that the trained neural network has efficient approximated 420 

experimental values. The ANN model predictions lie much closer to the line of perfect prediction 421 

than the RSM model. Thus, the ANN model shows a significantly higher generalization capacity 422 

than the RSM model. This higher predictive accuracy of the ANN can be attributed to its 423 

universal ability to approximate the nonlinearity of the system, whereas the RSM is restricted to 424 

a second-order polynomial. 
51

 However, when using the ANN technique one must have in mind 425 

that its predictions are restricted on the process factors inside the ranges applied in the training 426 

process. 
14

 427 

3.6. Fuel properties of Mahua oil Biodiesel 428 

  A comparison of fuel properties are made between mahua oil, mahua oil ethyl ester, 429 

ASTM and DIN EN 14214 Biodiesel standard which are given in Table 7. The various properties 430 

of mahua oil biodiesel (MOB) are found to be comparable with that of the Diesel, American 431 

(ASTM) and Europian (DIN EN 14214) biodiesel standard. Cetane number is high, favorable for 432 

combustion. Flash point and Fire point are high, which is an advantage for fuel transportation.  433 
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4. Conclusions 434 

 The production of biodiesel from crude mahua oil with high content of free fatty acid by 435 

ethanolysis reaction at supercritical condition using CO2 as co-solvent has been investigated in 436 

this work. Experimental results demonstrated that use of co-solvent helps to increase FAEE 437 

content at lower process conditions, which facilitates less energy consumption for biodiesel 438 

conversion. In this work, RSM and ANN were applied for modeling and optimization of the 439 

supercritical biodiesel production process. Response surface method (RSM) integrated with 440 

desirability function approach was successfully applied for designing and optimizing the 441 

experiments with respect to the dependent variables. The regression equations in coded and 442 

actual terms were calculated by RSM to describe the empirical functional relationship between 443 

input variables and response (FAEE content). The biodiesel was found to content more than 97% 444 

FAEE content, which is well above EN 14214 limits of 96.4%. The sensitivity analysis of ANN 445 

confirmed that all the four variables have significant effects on FAEE content with the degree of 446 

effectiveness in order of temperature > reaction time > ethanol/oil molar ratio > initial CO2 447 

pressure. Based on the values of R
2
, RMSE, SEP, AAD for validation data sets, ANN model was 448 

demonstrated to be more efficient than RSM model both in data fitting and prediction 449 

capabilities. This renewable, eco-friendly process has the potential to provide a sustainable route 450 

for the production of high-quality biodiesel using low cost, high acid value, crude mahua oil. 451 

However, further exploration on this technology is necessary for scale up of process design, 452 

reaction kinetics and thermodynamics, storage stability, fuel analysis using the biodiesel fuel 453 

engine. 454 

 455 

 456 

Appendix A. Supplementary Material 457 

 458 

 459 

 460 

 461 

 462 
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Tables: 

Table 1. CCD matrix of four independent variables along with experimental and predicted 

response 

 

 

 

 

Temperature 

(
o 
C) 

Molar 

ratio 

Reaction Time 

(min.) 

Initial CO2 

pressure 
 FAEE content (%) 

   
(bar) Experimental RSM ANN 

275 20:1 20 20 48.48 47.24 48.48 

325 20:1 20 20 51.79 52.27 52.29 

275 30:1 20 20 53.04 50.35 53.04 

325 30:1 20 20 67.71 63.4 67.71 

275 20:1 40 20 66.59 66.57 66.59 

325 20:1 40 20 65.91 65.76 65.91 

275 30:1 40 20 73.84 70.03 74.04 

325 30:1 40 20 79.12 77.23 79.13 

275 20:1 20 40 49.14 49.31 48.85 

325 20:1 20 40 53.44 54.19 53.69 

275 30:1 20 40 59.69 56.78 59.69 

325 30:1 20 40 71.37 69.67 71.37 

275 20:1 40 40 67.25 68.5 67.24 

325 20:1 40 40 66.57 67.54 66.39 

275 30:1 40 40 78.5 76.31 78.5 

325 30:1 40 40 85.18 83.37 85.18 

250 25:1 30 30 28.12 31.46 28.55 

350 25:1 30 30 42.11 43.55 42.28 

300 15:1 30 30 65.62 62.12 65.63 

300 35:1 30 30 72.79 81.06 72.79 

300 25:1 10 30 40.41 43.75 40.4 

300 25:1 50 30 75.34 76.78 75.35 

300 25:1 30 10 76.74 81.17 76.94 

300 25:1 30 50 89.03 89.38 89.44 

300 25:1 30 30 88.56 87.82 87.46 

300 25:1 30 30 86.32 87.82 87.46 

300 25:1 30 30 88.59 87.82 87.46 
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Table 2. Analysis of Variance (ANOVA) for the fitted polynomial quadratic model of FAEE 

content 

  Sum of 
 

Mean F p-value   

Source Squares df Square Value Prob > F   

Model 6620.61 14 472.9 28.5929 < 0.0001 significant 

A:Catalyst Concentration 219.252 1 219.252 13.2566 0.0034  

B:Methanol/oil molar ratio 537.896 1 537.896 32.5227 < 0.0001  

C:Temperature 1636.14 1 1636.14 98.9258 < 0.0001  

D:time 101.024 1 101.024 6.1082 0.0294  

AB 64.2402 1 64.2402 3.88415 0.0723  

AC 34.1056 1 34.1056 2.06212 0.1766  

AD 0.0225 1 0.0225 0.00136 0.9712  

BC 0.1156 1 0.1156 0.00699 0.9348  

BD 18.9225 1 18.9225 1.14411 0.3058  

CD 0.02103 1 0.02103 0.00127 0.9721  

A
2
 3376.25 1 3376.25 204.138 < 0.0001  

B
2
 351.253 1 351.253 21.2378 0.0006  

C
2
 1012.8 1 1012.8 61.2367 < 0.0001  

D
2
 8.67567 1 8.67567 0.52456 0.4828  

Residual 198.469 12 16.5391  

Lack of Fit 195.079 10 19.5079 11.5075 0.0825 not significant 

Pure Error 3.39047 2 1.69523  

Cor Total 
6819.07 26 

 

       

 

R
2
 = 0.9709           Adj. R

2
 = 0.9369 

 

Pred. R
2
 = 0.8341 

 

CV = 6.13   S = 4.07 
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Table 3. Comparison of 10 backpropagation (BP) algorithm with 10 neurons in hidden layer 

 

 

 

 

 

 

 

 

Backpropagation (BP) algorithms  Function Mean squared 

error (MSE) 

Iteration 

number  

Correlation 

coefficient 

(R
2
)  

Best linear 

equation  

Resilient backpropagation  trainrp 6.5245 35 0.981 y = 0.983x + 0.240 

Fletcher-Reeves conjugate gradient backpropagation  traincgf 0.8231 64 0.927 y = 0.962x + 2.325 

Polak-Ribiere conjugate gradient backpropagation  traincgp 0.00017 48 0.999 y = 0.994x + 0.409 

Powell-Beale conjugate gradient backpropagation  traincgb 0.5166 26 0.979 y = 0.978x + 1.384 

Levenberg-Marquardt backpropagation  trainlm 0.00527 15 0.998 y = 0.992x + 0.403 

Scaled conjugate gradient backpropagation trainscg 0.06355 63 0.989 y = 0.989x + 0.791 

BFGS quasi-Newton backpropagation  trainbfg 0.0272 10 0.998 y = 0.998x + 0.174 

One step secant backpropagation trainoss 0.4323 103 0.977 y = 0.985x + 1.117 

Variable learning rate backpropagation  traingdx 0.0667 55 0.976 y = 0.979x + 1.425 

Gradient Descent with adaptive learning rate traingda 0.0886 73 0.980 y = 0.987x + 1.704 
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Table 4a. Matrix of weights, W1: weights between input and hidden layers; W2: weights between 

hidden and output layers 

W1       W2  

Neuron Variable Bias Neuron Weight 

Temp. Molar ratio Time CO2 pressure 

         

1 0.44089 -0.302 1.3715 -1.6845 -2.7861  1 -0.18261 

2 1.6029 -1.8237 1.0114 0.12937 -1.7488  2 -0.55982 

3 1.6085 1.2886 -1.2555 0.08211 -2.0685  3 1.2491 

4 -1.4374 0.36731 -1.9491 -0.238 1.2039  4 0.03047 

5 -0.433 -1.4371 0.83634 1.3732 -1.0401  5 -0.09378 

6 2.6774 1.5293 -2.2877 -0.1141 -1.5536  6 -1.1185 

7 2.3905 0.1609 -0.6757 1.2321 0.52144  7 0.35442 

8 2.1526 0.28323 1.0811 -0.1826 1.8328  8 1.194 

9 0.15168 0.14845 0.55727 1.6455 2.8863  9 -0.40243 

10 -0.7973 -0.333 1.22 1.469 -3.0539  10 0.22069 

       Bias -0.35551 

 

 

 

 

 

 

 

Table 4b. Relative importance of input variables on the output variable   

Input variable % Importance 

Temperature 39.24 

Methanol/oil molar ratio  19.61 

Reaction time 28.57 

Initial CO2 pressure 12.58 

Total  100.00 

 

Page 23 of 30 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

24 

 

Table 5. Unseen validation data set for developed model 

Sr. 

No. 

Temperature 

(
o
C) 

Molar 

ratio 

(v/v) 

Reaction 

Time (min) 

CO2 

pressure 

(bar) 

FAEE content (%) 

     Experimental RSM ANN 

1. 275 25 20 40 54.38 57.1 56.37 

2. 325 25 40 20 78.12 75.55 79.66 

3. 300 30 30 30 86.5 88.5 84.11 

4. 300 20 40 40 71.43 80.6 75.48 

5. 275 30 35 40 72.16 76.59 77.65 

6. 325 30 35 40 69.54 85.11 76.66 
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Table 6. Comparison between predictive capabilities of RSM and ANN models  

Performance parameters DoE data  Validation data 

 RSM ANN  RSM ANN 

      

Correlation coefficient (R
2
) 0.971 0.999  0.658 0.868 

Root mean square Error (RMSE) 2.711 0.416  7.691 4.185 

Standard predicted deviation (SEP %) 4.087 0.627  10.67 5.81 

Absolute average deviation (AAD %) 3.398 0.338  8.574 5.239 
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Table 7. Fuel properties of Mahua oil, Mahua oil biodiesel, Diesel, ASTM and DIN EN 14214 

 

Sr. 

No. 

Properties  Mahua 

oil 

Mahua oil  

Biodiesel 

Diesel ASTM standard 

D-6751 

DIN-EN 14214 

1. Density at 15 
o
C     (Kg/L) 0.954 0.871 0.846 - 0.86-0.9 

2. Viscosity at 40 
o
C  (mm

2
/s) 43.8 4.6 2.68 1.9-6.0 3.5-5.0 

3. Flash Point             (
o
C) 231 186 70 >130 >120 

4. Fire Point (
o
C) 239 197 76   

5. Pour Point              (
o
C) 15 3 -20 - - 

6. Acid value             (mg of KOH/g) 38 0.29 - <0.8 <0.5 

7. Calorific value       (MJ/Kg) 36 41 42.96 - - 

8. Cetane number  48.57 50 47 Min. 47 Min. 51 

9. Cloud Point (
o
C) 1 3 -13 - - 

10. Water content volume% 1.32 0.017 0.02 Max. 0.05 Max. 0.05 

11. Carbon Residue Mass % 0.57 0.21 0.17 Max. 0.05 Max. 0.05 

12. Sulphur  Wt % - < 0.005 0.001 Max. 0.05 Max. 0.05 

13. Total Glycerin ppm - 47 - - - 
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Figure 1. 3D response surface plots showing the relative effect of process variables on FAEE content (%) 

(a) effect of temperature and ethanol/oil molar ratio; (b) effect of temperature and reaction time; (c) effect of 

temperature and initial CO2 pressure 
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Fig. 2. Typical architecture of ANN with three layers 
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Fig. 3. Neural Network model with training, validation, test and all prediction set 
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Fig. 4. Comparison between experimental and predicted values by RSM and ANN for each 

experimental run to obtained the FAEE content 
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