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Abstract. This paper demonstrates the effect of donor doping in B sites on the
electrocaloric effect (ECE) in BaTi; x\NbyO3 (x=0~0.01) ferroelectric ceramics. The
Nb substitution on Ti does not affect the formation of perovskite structure, while it
obviously inhabits the grain growth in sintering process. The donor doping of Nb
controls the ferroelectric phase transition more efficiently than the equivalent
substitutions either in A or B sites. It lowers the phase transition temperature about
one order of magnitude faster than the equivalent substitution, so that the ECE AT,
shifts accordingly. Nb doping also diffuses the phase transition, so that the ECE AT,
reduces and the peak becomes much wider. Compared with BaTiOs;, AT, of
BaTig 994Nbg 00603 drops one third, while the full width at half maximum increases

twice, indicating a better refrigeration capacity.
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1. Introduction

High performance and small size are the trends of electronic equipments, which
great accelerate in recent years. However, large amount of high power devices
working in a small space will induce local high temperature, which degrades the
performance of electronic devices and may even lead to complete failure. Recently,
ferroelectric cooling based on electrocaloric effect (ECE) is regarded as the best
solution of solid-state refrigeration for miniaturized electronic products and is
absorbing great attraction, due to the advantages of easy miniaturization, high
efficiency and low cost. Since a giant ECE of 47,,~ 12K was obtained in
PbZr).95Tip 503 thin film in 2006 [1], the researches on ECE boom in various
ferroelectric ceramics [2-21].

ECE is a basic feature of ferroelectric materials and refers to a reversible change in
entropy and temperature caused by the electric field-induced variation of polarization
states. Similar to magnetocaloric effect, ECE is only remarkable in the very vicinity
of a phase transition, so it is thought to be closely related to the feature of ferroelectric
phase transition [4]. BaTiOs with typical first order phase transition (FOPT) has a
sharp ECE peak near Curie temperature with a giant ECE strength |AT/AE| [5-8].
Then many researches are devoted in material design by various substitutions to
widen the temperature window. For example, the substitution of Sr** on Ba®"
increasingly diffuses the phase transition to reduce 47, and widen the peak [9-11].
The substitution of Zr*" on Ti*" also diffuses the phase transition and results in a high

AT in a broad temperature range [12,13]. The substitution of Sn*" on Ti*" leads to a
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high AT at morphotropic phase boundary [14,15]. In addition, the co-substitution of
Ca®" on Ba*" and Zr*" on Ti*" was also studied [16-21]. Up to now, all reports focused
on the effect of various equivalent dopings but the inequivalent doping has not been
researched for ECE, although the inequivalent dopings were reported to improve the
dielectric and piezoelectric properties more efficiently [22,23]. The donor doping of
Nb>* on Ti*" in B sites, a typical soft doping, has a notable effect on modifying the
ferroelectric phase transition. This paper reports its effects on the phase composition,
microstructure, dielectric, ferroelectric and electrocaloric effects of BaTiOs ceramics,

and a better refrigeration capacity is obtained.

2. Experimental procedure
2.1 Sample preparation

The BaTi;xNbsO; (x=0~0.01) ceramics were prepared by the conventional
solid-state reaction method. Analytical reagent grade BaCOs;, TiO; and Nb,Os were
used as raw materials. After the mixed powders were calcined at 1000 °C, they were
grinded by planetary ball mill. The resultant powders were dry-pressed in a
stainless-steel die under a pressure of 3 MPa and the pressed pellets were sintered at
1350 °C for 4 hours in air.
2.2 Characterization

The phase composition of calcined powders were characterized by X-ray
diffraction (XRD) using Cu K, radiation (A=0.15418 nm) with a scanning rate of 2

°/min. The microstructure of the sintered samples was observed by scanning electron
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microscope (SEM, JSM-6510A). The densities of the sintered samples were measured

by Archimedes’ method. The heat flow curve was measured using a differential

scanning calorimeter (DSC, TA Instruments Q2000) under a heating rate of 10 °C/min.

The permittivity was measured between 50 and 150 °C by an HP4192 impedance
analyzer with a temperature chamber. The ferroelectric hysteresis measurements were

carried out at 10 Hz using a TF2000 analyzer in the temperature range of 25~150°C.

3. Results
3.1 Phase composition

Figure 1 shows the XRD pattern of BaTi; \NbsO; (x= 0.001, 0.004, 0.01) powders
calcined at 1000 °C. The results are carefully indexed with the standard XRD pattern
(PDF 05-0626). All sample show a well-defined perovskite phase and there is no
impurity phase in each sample. The lattice parameters of the calcined powders are
about a=4.000~4.004A, whose change for the samples with different Nb doping is as
tiny as comparable to the instrumental error. It is because the doping amount is very
small and the radius difference between Nb>* (0.064nm) and Ti*" (0.061nm) is very
small. In addition, the XRD spectra do not show obvious tetragonal distortion, i.e.
c/a=1, due to the small particle size of powder specimens.
3.2 Microstructure

After all samples are sintered at 1350 °C for 4 hours, they exhibit dense
microstructure similarly. Figure 2 (a)~(d) show the SEM photos of the microstructure

for the x=0.00~0.008 samples as examples. Compared with pure BaTiO; ceramics
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(Figure 2(a)), Nb doped samples exhibit obviously small grain size, less than 1um,
which further decreases with increasing Nb amount (Figure 2 (b)~(d)). It is because
the donor doping of Nb accumulates at grain boundaries, which hinders the motion of
grain boundaries during the sintering process. The densities of all sintered samples are
larger than 5.92 g/em’, i.e. 98% of theoretical density, which well agrees with the
SEM observations.
3.3 Thermal analysis

The thermal characters of tetragonal-cubic (T-C) phase transition are shown in the
heat flow curves in Figure 3. With the rise of Nb amount, the endothermic peak
gradually moves to lower temperature, indicating a linear shift of phase transition
with a fitting equation of T;=-3140x+122 (°C), as shown in the upper inset of Fig. 3.
The slope is much higher than that in previous reports for equivalent substitutions,
such as Sr, Zr and Sn. It implies that the donor doping of Nb is more efficient for
phase transition shift. In addition, the endothermic peak turns flatter and the latent
heat reduces with the rise of Nb amount due to the diffusion of first order phase
transition.
3.4 Temperature dependence of permittivity

Figure 4 shows the temperature dependence of permittivity for the samples with
different Nb amount. The phase transition shifts to lower temperature with the rise of
Nb amount and the peak value of permittivity gradually drops, which agrees with the
DSC results.

The reduction of permittivity maximum at Curie temperature is related to the



RSC Advances

diffused ferroelectric phase transition. Based on Smolenski’ composition fluctuation
theory and Curie-Weiss law, the diffused phase transition was characterized by

diffusion exponent a using the equation of

L v (T-T)"
e(T) ¢, 26,0 (1)

As shown in the inset of Figure 4, a rises with increasing Nb amount, i.e. the phase
transition is diffused gradually.
3.5 Ferroelectric and electrocaloric properties

The sintered BaTi; xNbxO3 samples exhibit good ferroelectric hysteresis loops with
high polarization value. And the ferroelectric hysteresis loops of all samples have
similar variation trend with the rise of temperature. The P-E loop shrinks gradually
and the polarization value decreases, which exhibits a sudden drop at Curie
temperature. Figure 5 (a) (b) and (c) show the typical ferroelectric hysteresis loops of
the x=0.002, 0.006 & 0.01 samples at different temperatures, respectively.

Based on the Maxwell relation of (OP/OT)g=(0S/OE)r, the ECE AT and A4S is

calculated as following

ar=-L{*L Py g
£ OP
AS =— jo (Gp)edE ).

Figure 6 shows the AT-T curves of the x=0.006 samples as an example. There is a
remarkable ECE peak in the vicinity of phase transition. The ECE AT, always
occurs above Curie temperature, compared with the results of DSC and permittivity.

With increasing electric fields, the ECE AT enhances and AT, shifts to higher
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temperatures.

Figure 7 shows the AT, as a function of Nb amount. With the rise of Nb amount,
the ECE AT, moves to lower temperature, which is associated to the electric
field-induced shift of ferroelectric phase transition. At the same time, the ECE AT 4y
drops gradually and the peak turns wider, which is determined by the diffusion of
phase transition. This phenomenon is similar to previous reports on Sr, Zr or Sn doped
BaTiO; [9-14]. Under an E=20kV/cm field, AT, = 0.98 K (48=1.24 J/kg-K) for x=0,
AT ax = 0.89 K (45=1.14 J/kgK) for x=0.002 and AT e = 0.66 K (45=0.86 J/kg'K)
for x=0.006, while the full width at half maxium (FWHM) of ECE peaks is 8°C,
16 °C and 24 °C, respectively. The variations of AT, and FWHM are also shown in

Figure 7.

4. Discussions

The donor doping, such as Nb*", is soft doping for ferroelectric materials and can
improve the dielectric and piezoelectric properties [22,23]. It increases the dielectric
permittivity and reduce the coercive force because easy polarization under external
fields. The change of polarization under the couple effect of external electric field and
temperature plays a key role for ECE, including ferroelectric phase transition and
domain switching.

Our work shows that the donor doping of Nb is efficient to modify the ferroelectric
phase transition, including shifting transition point and diffusing transition, so does

the ECE. When Nb>* ion with a bit larger radius (0.064nm) substitutes for Ti**
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(0.061nm) ion in B site, Nb>* locates at the center site of oxygen octahedrons same as
Ti*" but the band of Nb-O is weakened. On the other hand, the valence state of Nb>" is
higher than that of Ti*", which further weakens the crystalline field. In addition, some
cation vacancies form at the same time which can ease the domain switching. Because
the doping amount is too small (x<0.01) to induce obvious lattice distortion, which is
confirmed by the XRD results, different valence state affects the crystalline field
dominantly. That is different from the effect of equivalent dopings, such as Sr*"in A
site and Zr*" in B site, where the lattice distortion is the key. Our results show that the
phase transition changes more rapid with the donor doping of Nb than the equivalent
substitutions. For example, the shift of Curie temperature is about one order of
magnitude faster than that of Sr substitution [9]. Each 1% Nb doping lowers T, about
31 °C, while each 1% Sr doping only lowers T, 3 °C. In addition, the composition
fluctuation and local inhomogeneous internal stress destroy the phase transition

consistency, so the phase transition is obviously diffused with Nb amount.

5. Conclusions

This paper investigated the ECE of BaTi;.\NbsO3 ceramics prepared by the solid
state reaction method. The sintered Nb doped ceramics has fine-grained
microstructures. Nb doping has more efficient to modify the ferroelectric phase
transition. With the rise of Nb amount, the phase transition shifts to lower temperature
more rapidly than that for equivalent substitutions, and the transition is diffused at the

same time. As a result, the ECE AT,,,. reduces and shifts to lower temperature with
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increasing Nb amount, and the ECE peak becomes much wider. BaTig 994Nbg 90603 has
AT o = 0.66 K (@E=20kV/cm) and FWHM=24 °C, where AT, drops one third of
that in BaTiO; and FWHM increases twice, i.e. a better refrigeration capacity. This
work implies that inequivalent substitution is a more efficient method to adjust the
ECE in ferroelectric ceramics, which can great enrich the material design for

ferroelectric refrigeration.
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Figure captions.

Figure 1. The XRD spectra of BaTi; xNbsO; (x=0.001-0.01) calcined at 1000°C.

Figure 2. The microstructure of the samples (x=0.0, 0.004, 0.006 & 0.008) sintered at

1350°C.

Figure 3. Heat flow curves of BaTi;xNbxO;3 ceramics in a heating process. The inset

shows the variation of Curie temperature.

Figure 4. Temperature dependence of permittivity of BaTi;<NbsO3; ceramics. The

inset show the composition dependence of a.

Figure 5. Ferroelectric hysteresis loops of BaTi;xNbxO; ceramics at different

temperatures. (a) x=0.002; (b) x=0.006; (c) x=0.01.

Figure 6. Temperature dependence of ECE AT of BaTi;«NbxOs (x=0.006) under

different applied electric fields.

Figure 7. The ECE A4T,,,. and FWHM as a function of Nb amount (x=0~0.01).
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Figure 1. The XRD spectra of BaTi; xNbsO3 (x=0.001-0.01) calcined at 1000°C.
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Figure 2. The microstructure of the samples (x=0.004 & 0.008) sintered at 1350°C.
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Figure 3. Heat flow curves of BaTi; \NbO; ceramics in a heating process. The inset

shows the variation of Curie temperature.
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