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Schematic diagram for in situ monitoring tea oxidation.  
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Abstract: 8 

This work researched on rapid monitoring total polyphenols content during tea extract oxidation 9 

using a portable spectroscopy system. Firstly, an in situ monitoring installation for tea extract 10 

oxidation was developed, including tea extract oxidation system and spectroscopy system for spectra 11 

acquisition. Then, partial least square (PLS) with several variables selection algorithms was used for 12 

modeling. Synergy interval partial least square (Si-PLS), genetic algorithm (GA), competitive 13 

adaptive reweighted sampling (CARS) and ant colony optimization (ACO) algorithm, were used 14 

comparatively for selecting the most effective variables. The performance of the final model was 15 

evaluated according to the correlation coefficient (Rp) in prediction set. Experimental results showed 16 

that the variables selection methods could significantly decrease the number of variables and 17 

improve the model performance, especially for ACO algorithm with least variables. Finally, 28 18 

independent samples were used to test the performance of the spectroscopy system, and the 19 

coefficient of variation (CV) of the final results was used to state the stability and reliability of this 20 

system. Results also showed that the CVs for most of the samples were less than 10%. This study 21 

demonstrated that the tea extract oxidation system combined with spectroscopy system as a 22 

promising tool could be used for in situ monitoring tea fermentation.  23 

Keywords: in situ monitoring; total polyphenols; tea extract oxidation; spectroscopy system; 24 

variables selection 25 
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1. Introduction 27 

Tea plantation is extremely season-specific and climate dependent with different categories all over 28 

the world.
1
 After spring tea leaves harvest, a mass of summer-autumn tea leaves are remained, which 29 

are usually picked for low-end products owing to their bitter flavor, leading to enormous economic 30 

losses of tea enterprises. In order to increase the economic benefits of tea industries, it is in urgent 31 

need to improve the flavor of summer-autumn tea. Currently, summer-autumn tea leaves are prepared 32 

for instant black tea products; firstly, digestion is conducted for original summer-autumn tea leaves, 33 

and the extracted solution is then concentrated, finally the concentrated solution is oxidized under 34 

flowing oxygen. In this process, oxidation is a critical operation, which is a series of biochemical 35 

reactions concentrating on the enzymatic oxidation of tea polyphenols.
2
 Thus total polyphenols 36 

content is considered to be an important quality property during tea oxidation, which is mainly 37 

responsible for characteristic astringent and bitter taste of black tea infusion.
3, 4

  38 

However, it is difficult to determine the oxidation degree. Conventionally, on the one hand, the 39 

degree of tea oxidation usually depends on experienced experts, which is entirely subjective, leading 40 

to inaccurate and inconsistent results owing to adaptation, fatigue and state of mind; on the other 41 

hand, wet chemical analysis is often used for determination of main quality parameters in tea, for 42 

instance, colorimetric measurements and titration method with potassium permanganate have been 43 

employed to measure total polyphenols content in tea,
5
 but the reagents used in this process are 44 

harmful to human bodies. Besides, these conventional methods are all time-consuming and 45 

labor-intensive,
6
 thus cannot feedback tea oxidation information in time, especially in flowing 46 

oxygen condition.  47 

Page 4 of 24RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



In situ monitoring tea extract oxidation by spectroscopy system 

4 

 

On the contrary, near-infrared (NIR) spectroscopy is noninvasive and environmentally friendly, 48 

which provides rapid, reproducible results with minimal sample preparation, thus can be employed 49 

as an alternative to the conventional methods. During the past decade, substantial researches on the 50 

utilization of NIR spectroscopy to determine the tea quality attributes have been performed in 51 

research laboratories,
7-9
 and the current trends in situ monitoring tea quality are to move the 52 

measurements to the whole processing line so as to guarantee high quality and consistency of tea 53 

products for consumers. In addition, these researches were mostly conducted with commercial NIR 54 

instrument that is expensive, enormous and very sensitive to environmental variation, and thus not 55 

suitable for online detection in industrial processing line. Accordingly, it is increasingly demand for 56 

developing a portable, cost-effective, and specific spectroscopy system for in situ monitoring tea 57 

oxidation. Currently, some advanced spectroscopy systems of small size, low-cost, and ease-of-use, 58 

have shown great potential for tea quality assessment.
10, 11

 Nevertheless, these advanced 59 

spectroscopy systems have not been applied in real-time and on-line monitoring. Therefore, an in situ 60 

monitoring installation for tea extract oxidation was developed, including oxidation system and 61 

spectroscopy system to monitor total polyphenols content during tea oxidation. 62 

In addition, it is obviously essential to develop a simple and robust calibration for this system. 63 

Partial least squares (PLS) is one of the most commonly used multivariate methods,
12, 13

 but the 64 

classic PLS model based on full spectrum has some irrelevant and collinear spectral variables that 65 

may influence the stability and precision of this model. Therefore, variables selection is crucial for 66 

model performance improvement and structural simplification,
14
 and its result is of great significance 67 

for modeling. Synergy interval partial least squares (Si-PLS), genetic algorithm (GA), competitive 68 

adaptive reweighted sampling (CARS) and ant colony optimization (ACO) algorithm were employed 69 
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comparatively in the search for characteristic variables to calibrate models.  70 

The main objective of this work was to study the feasibility of in situ monitoring total 71 

polyphenols content during tea oxidation by our developed spectroscopy system. The specific 72 

procedures were outlined as follows: (1) an in situ monitoring installation for tea extract oxidation 73 

consisting of oxidation system and spectroscopy system was developed; (2) four variables selection 74 

algorithms of Si-PLS, GA-PLS, CARS-PLS and ACO-PLS were comparatively used for modeling; 75 

(3) the independent samples were used for model test. This system will have a very promising 76 

application prospect in tea processing enterprises for tea oxidation monitoring. 77 

2. Materials and methods 78 

2.1. In situ monitoring installation for tea extract oxidation 79 

An in situ monitoring installation for tea extract oxidation, including oxidation system and 80 

spectroscopy system, was shown in Fig. 1, which was developed by the Institution of Agro-Product 81 

Processing in Jiangsu University. The former oxidation system was mainly composed of four parts: 82 

(1) an air pump to supply oxygen; (2) a cycle pipe for gas-lipid mixing; (3) a storage tank; (4) two 83 

lipid pumps; also the latter spectroscopy system was mainly composed of four parts: (1) a light 84 

source (Halogen & LED, OTO Photonics Inc., Taiwan, China); (2) a transmittance module; (3) a 85 

spectrometer (SD1200, OTO Photonics Inc., Taiwan, China); and (4) a computer supported with a 86 

data acquisition and control software (SSDAA V1.00, Jiangsu University, China). Two optical fibers 87 

(Flight Technology Co., Ltd., Hangzhou, China) were used to connect light source and transmittance 88 

module, and also to connect the transmittance module and the spectrometer, respectively. All the 89 

connectors were standard SMA 905. The concentrated solution of summer-autumn tea was stored in 90 

the tank, and then pumped into the cycle pipe to oxidize with flowing oxygen from the air pump (1.1 91 
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L/min of flow rate); the obtained tea infusion then returned to the storage tank under stirring; 92 

meanwhile, tea infusion in the storage tank was pumped by a lipid pump (320 ml/min of flow rate) 93 

through a quartz cuvette of 1 cm optical path length, and then returned to the storage tank for further 94 

oxidation after spectral collection. Other parameters were set as follows: the exposure integration 95 

time of the CCD was set to 3 ms; in order to get a stable database, each spectrum was the average of 96 

15 scanning spectra pretreated with Savitzky-Golay smoothing (17 smoothing points); all spectra 97 

data were saved as light intensity value in *.txt file format, and the spectrum of each sample was the 98 

average of data collection conducted three times. The range of the collected spectra was from 300 to 99 

1000 nm, totally containing 889 variables. While working, the temperature was kept around 25
o
C 100 

and a steady humidity level was maintained in laboratory. 101 

[Here for Fig. 1] 102 

To correct dark current effect of spectrometer and obtain a relative spectrum R, a spectrum B of 103 

dark and a spectrum W of water were obtained respectively, and the R was calculated as the Eq. (1):  104 

                                    
BW

BI
R

−

−
=                                (1) 105 

Where I is the original spectrum, B is the dark spectrum recorded by closing completely the 106 

transmittance module, and W is the reference spectrum of water. 107 

2.2. Preparation of samples and spectral collection 108 

First of all, digestion is conducted for original summer-autumn tea leaves, and the extracted solution 109 

is then concentrated, finally the concentrated solution is oxidized under flowing oxygen. In this work, 110 

approximately 1 L summer-autumn concentrated tea was obtained for further oxidation. According to 111 

previous experience, the whole process of tea oxidation needs 4 hours approximately. Therefore, one 112 

sample was collected every 180 seconds, and then immediately under the preservation of liquid 113 

Page 7 of 24 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



In situ monitoring tea extract oxidation by spectroscopy system 

7 

 

nitrogen for subsequent physiochemical analysis; meanwhile, spectral data was also collected in this 114 

process. Finally, 85 tea infusion samples were collected in this work, corresponding to 85 spectra. 115 

Fig. 2(a) presents the raw spectra profile of tea infusion samples. Then standard normal variate 116 

(SNV) preprocessing method, as a mathematical transformation method of spectra, was employed to 117 

remove slope variation and to correct scatter effects due to small particles from tea leaves dissolved 118 

in concentrated solution and differences in the particle sizes.
3, 15 

119 

[Here for Fig. 2] 120 

2.3. Reference analysis 121 

Total polyphenols content in tea infusion was measured by conventional chemical method, referred 122 

to the National Standard of China (GB/T 8313-2008) with slight modification. It was estimated by a 123 

photometric Folin-Ciocalteu assay, and determined in a 1 cm light-path cuvette by a UV-1601 124 

spectrophotometer (Rayleigh Analytical Instrument, Beijing, China) at 765 nm absorbance of the 125 

reaction solution, with its own reagent blank solution for reference. Fig. 3 presents the variation trend 126 

of total polyphenols content during tea oxidation, the total polyphenols content first descended 127 

quickly, and then descended in a gentle way, eventually keeps a stable level. 128 

[Here for Fig. 3] 129 

In addition, all the samples were divided into two subsets, namely calibration set and prediction 130 

set. To avoid bias in subset division, samples in subsets were selected as follows: reference values 131 

were arranged in ascending order, and then one prediction sample was chosen from every three 132 

samples. Samples in calibration set (57 samples) were used for model calibration, whereas samples 133 

in prediction set (28 samples) were used for model verification. Table 1 shows the reference results 134 

of total polyphenols content of samples in calibration and prediction sets. 135 

Page 8 of 24RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



In situ monitoring tea extract oxidation by spectroscopy system 

8 

 

2.4. Multivariate analysis 136 

NIR spectroscopy combined with variables selection methods were used to develop PLS models for 137 

predicting total polyphenols content in samples. First, PLS model was calibrated based on full 138 

spectrum; then, four commonly used variables selection methods, such as Si-PLS, GA-PLS, 139 

CARS-PLS and ACO-PLS, were operated comparatively to eliminate irrelevant variables and extract 140 

efficient variables.  141 

Si-PLS algorithm was developed by Norgaard et al., which is an all possible interval combination 142 

procedure tests based on all possible PLS of all subsets of intervals.
16
 The principle of this algorithm 143 

is to split the data set into a series of intervals (variable-wise) and then to calculate all possible PLS 144 

model combinations of two, three and four intervals.
17
 145 

GA algorithm described by Leardi and Gonzalez, was based on the principles of genetics and 146 

natural selection.
18
 It is a mainly stochastic algorithm, and its result depends very much on the 147 

randomly generated original population, resulting in enormous difference of the final results from 148 

different runs.
19, 20

 Therefore, a single GA run is not enough, and it is worthwhile to conduct a series 149 

of different runs. The information of variables can be obtained from the frequency with which each 150 

variable is selected in the top chromosome of each run. 151 

CARS algorithm first proposed by Hongdong Li et al., employs a simple but effective principle 152 

‘survival of the fittest’ on which Darwin’s Evolution Theory is based, and realizes to some extent the 153 

selection of an optimal subset of wavelength.
21, 22

 It selects N subsets of variables by N sampling 154 

runs in an iterative manner and finally chooses the subset with the lowest RMSECV value as the 155 

optimal subset. 156 

ACO algorithm was first proposed as a cooperative learning approach to the traveling salesman 157 
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problem by Dorigo et al. in the early 1990s.
23, 24

 At present, it has been employed by some 158 

researchers for spectral variables selection. This algorithm is aim to choose from a large number of 159 

available spectral variables, those relevant to the estimation of analyte concentrations or sample 160 

properties when spectroscopic analysis is associated with multivariate calibrations. It resembles the 161 

behavior of ant colonies in the search for the best path to food sources, which employs the concept of 162 

cooperative pheromone accumulation, and optimizes models using a pre-defined number of variables, 163 

occupying a Monte Carlo approach to discard irrelevant variables.
25
 164 

The performance of the final model was evaluated according to correlation coefficient of 165 

calibration (Rc) and root mean square error (RMSEC) in calibration set, and tested on the basis of 166 

correlation coefficient of prediction (Rp) and root mean square error (RMSEP) in prediction set, and 167 

the detail descriptions about them can be referred.
26-27

 In addition, in order to develop a concise 168 

model with high precision for this in situ monitoring installation, the number of variables should be 169 

as low as possible in order to reduce the complexity of the developed model and improve the 170 

detection efficiency of this system. All data processing and analysis were performed in Matlab 171 

Version 7.11.0 (Mathworks, Natick, USA) under Windows 7.  172 

3. Results and discussion 173 

As can be seen from Fig. 1, an in situ monitoring installation for tea extract oxidation was developed 174 

to simulate industrial production. While working, the concentrated solution of summer-autumn tea 175 

stored in tank was pumped into the cycle pipe to oxidize with flowing oxygen from the air pump. 176 

The obtained tea infusion then returned to the storage tank under stirring. Meanwhile, tea infusion in 177 

the storage tank was pumped by a lipid pump through a quartz cuvette of 1 cm optical path length, 178 

and then returned to the storage tank for further oxidation after spectral collection. Fig. 2(a) presents 179 
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the original spectra obtained in this process, and then SNV preprocessing method was performed to 180 

remove slope variation and to correct scatter effects due to small particles from tea leaves dissolved 181 

in concentrated solution and differences in the particle sizes, as shown in Fig. 2(b). Each spectrum is 182 

corrected individually by first centering the spectral values, and then the centered spectrum is scaled 183 

by the standard deviation calculated from individual spectral values. Thereafter, multivariate analysis 184 

methods were applied in this work, and results were described as follows. 185 

3.1. The result of Si-PLS model  186 

In this work, the full spectrum (300-1000 nm) was divided into 11, 12, … , 25 intervals, and each 187 

was performed with PLS combined with two, three and four subintervals. The optimum result was 188 

obtained when full spectrum was split into 17 intervals and the combined intervals were the 5
rd
, 9

th
, 189 

14
th
 and 15

th
 interval, thus totally containing 212 spectral variables corresponding to 440.976 – 190 

478.431, 597.815 – 638.529, and 814.239 – 905.448 nm in the full-spectrum region, which is shown 191 

in Fig. 4(a).  192 

3.2. The result of GA-PLS model 193 

In this research, GA runs ten times, and the best running result with the lowest RMSECV value was 194 

selected to build the final PLS model; other parameters for running GA were set as follows based on 195 

experience: the initial population was set to 80; the crossover probability was set to 0.5; the mutation 196 

probability was set to 0.01; and the number of genetic iterations was set to 50. Fig. 4(b) shows the 197 

histogram of frequency selected for the variables in the final model with a dashed line indicating that 198 

frequencies of variables that were not lower than 3 could be selected, and the best result of GA-PLS 199 

model was obtained when 145 variables were involved. 200 

3.3. The result of CARS-PLS model 201 
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Fig. 4(c) shows the variation trend of the number of sampled variables (plot 1), 8-fold RMSECV 202 

values (plot 2) and the regression coefficient path of each variable (plot 3) with the increasing of 203 

sampling runs from one CARS running. Seen from this figure, the number of sampled variables 204 

decreases fast at the first stage of exponentially decreasing function, and then very slowly at the 205 

second stage of exponentially decreasing function, demonstrating that the proposed two phase 206 

selection, fast selection and refined selection, are indeed implemented in CARS. The RMSECV 207 

values first descend quickly from sampling runs 1 to 10, which may be ascribed to the elimination of 208 

redundant variables; then descend in a gentle way from sampling runs 20 to 30, corresponding to the 209 

phase that the sampled variables reduce slowly; and finally increase fast owing to the loss of 210 

information induced by eliminating some key variables from the optimal subset (denoted by asterisk). 211 

Therefore, the best result of CARS-PLS model was obtained when 65 variables were involved. 212 

3.4. The result of ACO-PLS model 213 

In this work, the required parameters for running ACO algorithm were set as follows according to 214 

experience based on substantial trials: the initial population was set to 80; the maximum number of 215 

iterations was set to 50; the maximum number of cycles was set to 20; the probability threshold of 216 

variable selection was set to 0.3; and the pheromone attenuation coefficient was set to 0.65. Fig. 4(d) 217 

presents the spectral variables selected by ACO algorithm, totally containing 20 variables. As seen 218 

from this figure, some of the selected variables assemble together, and the clustering tendency is 219 

similar to the intervals previously selected by Si-PLS and GA but not the same.  220 

[Here for Fig. 4] 221 

3.5. Discussion of the results 222 

In this work, we systemically studied the multivariate calibrations in order to seek an optimum model 223 
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for the in situ monitoring installation of tea extract oxidation. In order to highlight the superiority of 224 

variables selection methods, four different methods of spectral variables selection such as Si-PLS, 225 

GA-PLS, CARS-PLS and ACO-PLS were attempted in contrast to the classical PLS model, and to 226 

seek the most efficient variables, these variables selection methods were also compared with each 227 

other. The overall results can be seen from Table 2, and each model only presents its optimum result. 228 

Fig. 5 are the scatter plots showing high correlation between reference measured and NIR predicted 229 

values both in calibration and prediction sets, wherein (a) for Si-PLS, (b) for GA-PLS, (c) for 230 

CARS-PLS, and (d) for ACO-PLS. Investigated from Table 2 and Fig. 5, the results show that it is 231 

feasible to measure total polyphenols content during tea oxidation using our developed in situ 232 

monitoring installation; and then, all the variables selection methods have improved model 233 

performance in contrast to the classical PLS model, which indicated that variables selection methods 234 

can not only reduce the number of variables but also improve the performance of model, especially 235 

for the approach of ACO-PLS with least variables. Main reasons could be summarized as follows. 236 

The commonly used PLS algorithm was implemented to calibrate model based on full spectrum 237 

including 889 variables in this work. However, there are many collinear variables or irrelevant 238 

variables that are unrelated to tea polyphenols compositions, namely unwanted variables. If too many 239 

unwanted variables were included in PLS model, the performance of PLS model would be inevitably 240 

weakened. Si-PLS divides the full spectrum into a series of equidistant intervals and searches for 241 

all-possible-interval-combinations to select the optimum model, so it can remove unwanted spectral 242 

information and retain some interesting information as much as possible for modeling. The optimal 243 

spectra region selected for tea polyphenols was corresponding to 440.976 – 478.431, 597.815 – 244 

638.529, and 814.239 – 905.448 nm. Tea polyphenols is a complex of over 30 polyphenolic 245 
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compounds, generally including flavanols, anthocyanins, flavonoids, flavonols and phenolic acids,
28
 246 

involving lots of Ar-OH (phenolic hydroxyl group) groups and other groups like Ar-CH, CH3, and 247 

CH2. Thus the variables related to tea polyphenols may be discontinuous and disperse over the whole 248 

spectral region, indicating that there were still collinear variables in the subintervals, or some other 249 

relevant variables may be omitted in Si-PLS model. Thus other variables selection methods such as 250 

GA, CARS and ACO were attempted and all of them achieved good performances. However, GA 251 

and CARS searches variables among the whole spectral region in order to avoid local minima, 252 

leading to a potential problem: a tendency to include irrelevant variables in the final solutions 253 

together with those which are relevant to tea polyphenols.
21, 25

 This may be the reason that the 254 

variables selected by GA and CARS were much more than that by ACO. Meanwhile, the larger 255 

number of ants can decrease the probability of convergence of ACO to the local optimum. As a result, 256 

ACO was adopted as the optimal variables selection method, which greatly improved the model 257 

precision with least variables. Once the model was developed, the computation time for each 258 

prediction model is less than 50 ms, which totally meets the demand for in situ monitoring tea 259 

oxidation in industrial usage. 260 

[Here for Fig. 5] 261 

In addition, in order to verify the stability and reliability of this developed VIS-NIR spectroscopy 262 

system, the three times spectra of one sample were respectively taken into the optimal model. 263 

Generally, coefficient of variation (CV) is defined as the “relative standard deviation” and a concept 264 

that can directly compare uncertainties of different variables given in different dimensions. It is 265 

defined as CV = SD/MV, where SD is the standard deviation and MV is the mean value.
29
 Thus, CV 266 

of the three times NIR predicted values was employed to test the stability and reliability of this 267 
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system. Fig. 6 shows CV of the three times NIR predicted values, we could see that the very low CV 268 

values were obtained for all the three times NIR predicted values, and most of them were less than 269 

10%. CV results indicated that the measurements by this portable spectroscopy system have good 270 

stability and reliability in our work.  271 

[Here for Fig. 6] 272 

4. Conclusions  273 

In this work, an in situ monitoring installation for tea extract oxidation including oxidation system 274 

and spectroscopy system was developed. Combined with variables selection methods, it was 275 

successfully used for monitoring total polyphenols content during tea oxidation. Results showed that 276 

the ACO-PLS algorithm was extremely suitable for this system. This research provides an important 277 

tool for in situ monitoring tea oxidation. 278 
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Figures Captions 329 

Figure 1 Schematic diagram for in situ monitoring tea oxidation. 330 

Figure 2 Raw spectra (a) and SNV preprocessed spectra (b) of tea infusion samples. 331 

Figure 3 Variation trend of total polyphenols content during tea oxidation. 332 

Figure 4 Spectral variables selected by Si-PLS (a), GA (b), CARS (c), and ACO (d). 333 

Figure 5 Scatter plots of reference values versus NIR predicted values in calibration and prediction 334 

sets for Si-PLS (a), GA-PLS (b), CARS-PLS (c), and ACO-PLS (d). 335 

Figure 6 CV (%) value of three times NIR predicted values for total polyphenols content. 336 

 337 

338 
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Table 1 Reference results of total polyphenols content of samples in calibration and prediction sets. 339 

Subsets Unit S.N.
a
 Range Mean S.D.

b
 

Calibration set % 57 6.73~72.58 22.95 12.85 

Prediction set % 28 7.91~53.40 22.12 11.12 

a 
S.N.: sample number. 340 

b 
S.D.: standard deviation. 341 

 342 

Table 2 Results of different regression models for predicting total polyphenols content in tea 343 

infusion. 344 

Methods Variables 

Calibration set Prediction set 

Rc RMSEC Rp RMSEP 

PLS 889 8 0.8358 0.07 0.7659 

Si-PLS 212 10 0.9751 0.0283 0.8766 

GA-PLS 145 7 0.9651 0.0334 0.8993 

CARS-PLS 65 9 0.9751 0.0283 0.8897 

ACO-PLS 20 9 0.9148 0.0515 0.8853 

 345 

 346 

 347 

Page 18 of 24RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



  

 

 

Figure 1 Schematic diagram for in situ monitoring tea oxidation.  
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Figure 2 Raw spectra (a) and SNV preprocessed spectra (b) of tea infusion samples.  
333x123mm (96 x 96 DPI)  
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Figure 3 Variation trend of total polyphenols content during tea oxidation.  
60x35mm (300 x 300 DPI)  
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Figure 4 Spectral variables selected by Si-PLS (a), GA (b), CARS (c), and ACO (d).  
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Figure 5 Scatter plots of reference values versus NIR predicted values in calibration and prediction sets for 
Si-PLS (a), GA-PLS (b), CARS-PLS (c), and ACO-PLS (d).  
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Figure 6 CV (%) value of three times NIR predicted values for total polyphenols content.  
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