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Abstract 11 

This work presents a combination of Computational Fluid Dynamics (CFD) and Adaptive 12 

Network-based Fuzzy Inference System (ANFIS) developed for flow characterization inside a 13 

cylindrical bubble column reactor. An attempt has been made to predict the liquid flow pattern 14 

and gas dynamics for various ring sparger diameters (i.e., 0.07-0.16m) and bubble column 15 

heights. Gas hold-up, Turbulent Kinetic Energy (TKE) and axial liquid velocity are the output 16 

parameters predicted by using ANFIS method with respect to sparger diameter, axial 17 

coordination and radial coordination. Various architectures of the ANFIS method were 18 

constructed in order to achieve an accurate prediction model of the liquid flow behavior and gas 19 

dynamics inside the bubble column. ANFIS approaches were trained and tested by using CFD 20 

simulation results. The performance of the ANFIS approaches was examined by comparing the 21 

root mean square error and correlation coefficient values of the prediction models. The CFD 22 

simulation results are validated with existing experimental and numerical data and mathematical 23 

correlations. Both CFD simulation and ANFIS prediction results show that ring sparger diameter 24 

significantly changes the liquid flow pattern and gas dynamics, resulting different amount of the 25 

gas inside the column. Different ANFIS structures were selected for precisely estimation of gas 26 

hold-up, TKE and axial liquid velocity. Eventually, the mathematical correlations of the 27 

proposed ANFIS approaches are presented with correlation coefficients of 0.9717, 0.9917 and 28 

0.9877 for gas hold-up, turbulent kinetic energy and axial liquid velocity prediction models. 29 

Hence, ANFIS approach is able to provide a prediction of the 3D bubble column hydrodynamics 30 

in a continuous domain. 31 

Keywords: Bubble column reactor; Numerical method; Soft computing; CFD; ANFIS; 32 

Multiphase flow  33 
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Nomenclature  34 

�� Drag force coefficient (-) 
��� Turbulent dispersion coefficient (-) 
��� Model parameter in turbulent dissipation energy equation (-) 
��� Model parameter in turbulent dissipation energy equation (-) 
�� Constant in k-ε model (-) 
��,	
 Constant in bubble induced turbulence model (-) 
�	 Bubble diameter (m) 
�� Sparger hole diameter (m) 
 Diameter of the column (m) 
DS  Sparger diameter (m) 
� Gravitational constant (m/s2) 

� Generation term (kg/m s2) 
� Height (m) 
� Turbulent kinetic energy per unit mass (m2/s2) 
�
 Total interfacial force acting between two phases (N/m3) 
�� Drag force (N/m3) 
� Pressure (N/m2) 
� Radial distance (m) 
� Column radius (m) 
��	 Reynolds number (= �	��/�) (-) 
�� Superficial gas velocity (m/s) 
�� Axial liquid velocity (m/s) 
TKE Turbulent kinetic energy  
MF Membership function 
RMSE Root mean square error 
 

Greek Symbols 

 
 

� Turbulent energy dissipation rate per unit mass (m2/s3) 
∈ Fractional phase hold-up (-) 
∈! Average fractional phase hold-up (-)  
" Molecular viscosity (Pa s) 
"	
 Bubble induced viscosity (Pa s) 
"#$$ Effective viscosity (Pa s) 
% Density (kg/m3) 
"� Turbulent viscosity (Pa s) 
& Surface tension (N/m) 
&� Prandtl number for turbulent energy dissipation rate (-) 
&' Prandtl number for turbulent kinetic energy (-) 
(' Shear stress of phase k (Pa) 

)* Air fraction / Gas hold-up 

Subscripts  
 

� Gas phase 
+ Liquid phase 
 35 

 36 

37 
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1 Introduction  38 

Bubble column reactors are extensively used in several multiphase reaction processes within 39 

industrial applications such as chemical, biochemical and wastewater treatment [1-7]. They are 40 

preferred over other reactors due to high energy efficiency, low design costs, simple structure 41 

and operation [1, 3]. Furthermore, they have a good performance in phase mixing characteristics 42 

and heat and mass transfer (large interfacial areas) [1, 3, 8, 9]. They are often cylindrical or 43 

rectangular, including gas sparger (gas distributor) at the bottom. The sparger produces bubbles 44 

in a continuous liquid phase (stationary or flowing) or a liquid–solid suspension [1, 3, 10-15]. 45 

Design, optimization and manufacturing of these reactors highly depend on the complex 46 

dynamics of gas bubble interaction, liquid flow pattern and prevailing gas and liquid regime (i.e., 47 

homogeneous or heterogeneous) [3, 11-13, 16-20]. One of the main challenges in enhancing the 48 

design and manufacturing of the bubble column is to properly predict and measure the 49 

hydrodynamics properties, while the complex behavior of the gas and liquid movement, 50 

including the interaction between bubbles are unavoidable [1, 3, 11, 12, 15, 21, 22]. Several 51 

experimental methods such as Particle Image Velocimetry (PIV), Laser Doppler Anemometry 52 

(LDA) and Radioactive Particle Tracking have been developed in recent years to develop an 53 

insight into this arguably complex and nonlinear behavior of gas and liquid dynamics, 54 

particularly liquid flow pattern and amount of gas inside bubble column reactors [23-26].  55 

Apart from experimental techniques, many CFD approaches and mathematical calculations are 56 

available to predict bubble column hydrodynamics [3, 7, 13-15, 27-29]. Nowadays, high 57 

performance computers have enabled the use of detailed mathematical and computational 58 

approaches to study the liquid flow pattern and gas dynamics on a feasible time span and space. 59 

There are two main CFD approaches i.e., the Eulerian–Eulerian and Eulerian–Lagrangian to 60 

model multiphase fluid flow [3, 6, 10, 13-15, 19, 27-30]. In the Eulerian–Lagrangian approach 61 

(Discrete particle model), each bubble is separately tracked inside the bubble column by solving 62 

forces acting on the bubbles, while continuum description is considered for the liquid phase [6]. 63 

In this approach, the interaction between bubbles i.e., coalescence, break-up and collisions can 64 

be observed. However, this framework is limited for large bubble columns with high number of 65 

bubbles due to solving more equations in large domains. On the other hand, Eulerian–Eulerian 66 

approach (the two fluid model), considers gas bubbles and liquid in the Eulerian framework as 67 

two interpenetrating fluids. Unlike the discrete particle model, the Eulerian framework is an 68 
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appropriate method to solve the large bubble column with high superficial gas velocity, 69 

particularly in industrial bubble column reactors [13-15, 22, 29]. 70 

Although several experimental, numerical and mathematical methods have been used to measure 71 

and estimate the flow pattern and bubbles dynamics [3, 5-7, 9, 31-39], there are some difficulties 72 

to completely predict the liquid flow pattern and gas dynamics (bubble coalescence, break-up, 73 

velocity, shape, size and gas hold-up) at each point of 3D bubble column reactors when the 74 

operation conditions (i.e., superficial gas velocity, column dimensions, gas and liquid properties 75 

and sparger parameters), flow regime and operation time change. For instance, measuring the 76 

fluid flow parameters inside the 3D bubble column reactor during experiment is extremely 77 

expensive and required much measurement equipment. Computation time and computer 78 

capability are the major limitations of the computational approaches in numerically simulation of 79 

the large bubble column and various operation conditions. Because of these limitations, soft 80 

computing methods have been developed to estimate the bubble column hydrodynamics in 81 

various conditions that have not been simulated or experimented at every point of the bubble 82 

column [37].  83 

There are several soft computing techniques (e.g., neural networks, Support vector machines, 84 

evolutionary algorithms, and adaptive neuro fuzzy inference system) proposed in many studies to 85 

estimate phenomena behaviour in the real life applications [37, 40-47]. Among these techniques, 86 

Adaptive Network-based Fuzzy Inference System (ANFIS) has attracted researchers because of 87 

its ability to learn complex relationships and its vast application has been illustrated in numerous 88 

studies [41, 48-50]. The accuracy of the ANFIS approach can be altered by changing prediction 89 

model structure and adapted on the basis of the relationship complexity [40, 41, 51-58]. ANFIS 90 

method can use either simulation or experimental results as training data to learn the phenomena 91 

behavior. An appropriate set of training data is required to successfully train ANFIS model. 92 

Azwadi et al.[41] used CFD results for training ANFIS method to estimate the temperature and 93 

flow fields in a 2D lid-driven cavity. They found that the result of ANFIS method is in good 94 

agreement with temperature and flow field obtained by CFD simulation. Recently, Pourtousi et 95 

al. [37]  employed this methodology to predict multiphase flow inside a bubble column reactor. 96 

They utilized bubble column hydrodynamics data (i.e., liquid velocity components, turbulent 97 

kinetic energy and gas hold-up), obtained by CFD (Eulerian method) simulation, at the bubble 98 

column bulk region for ANFIS learning process. It was found that the combination of CFD and 99 
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ANFIS is a robust methodology to predict the bubble column hydrodynamics properties in a 100 

continuous domain. They showed that ANFIS method can be a favourable replacement with 101 

CFD simulation to predict the complex behaviour of multiphase flow inside the bubble column 102 

reactor when the flow regime is homogeneous. 103 

In this study we develop the recent methodology (Pourtousi et al.’s research [37]) to propose an 104 

intelligent approach which is able to model multiphase flow inside the bubble column reactor for 105 

various sparger diameters. In addition, an attempt has also been made to improve the overall 106 

predictive capabilities of liquid flow pattern and gas hold-up using the combination of CFD and 107 

ANFIS methods. A new mathematical correlation is proposed to predict the bubble column 108 

hydrodynamics as the ring sparger diameters varied from 0.07 to 0.16m. The effect of ring 109 

sparger diameter on liquid flow velocity, turbulent kinetic energy and gas hold-up is investigated 110 

using ANFIS and CFD results. Various ANFIS structures were constructed to realize the most 111 

accurate structure for each output. The accuracy of all prediction models was compared by two 112 

common error evaluation formulas; root means square error and correlation coefficient. The 113 

results of selected ANFIS models were compared to the CFD simulation results to illustrate the 114 

capability of the ANFIS approach.   115 

 116 

117 

2 Methodologies 118 

2.1 Geometrical structure 119 

In this CFD simulation study, a 3D cylindrical bubble column reactor with 2.6m height 120 

and 0.288m diameter is used to produce the multiphase flow (bubbling process). The bubble 121 

column is filled with stationary water at ambient condition. At the bottom of the column, 20 122 

similar holes (sparger) whose diameter varied from 0.07 to 0.16 m are symmetrically defined a 123 

circle with diameter of 0.7m. The superficial gas velocity for all simulation cases are 0.005m/s, 124 

resulting in homogeneous flow regime with almost uniform bubble sizes, shapes and velocities. 125 

 126 

 127 

 128 

 129 

2.2 Combination of CFD and ANFIS methods 130 
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The prediction of the 3D bubble column hydrodynamics is started by CFD simulation of 131 

10 case studies with different sparger diameters. The CFD simulation results are employed to 132 

train the ANFIS approaches. Fig. 1 portrays the schematic of prediction procedure of bubble 133 

column using the combination of CFD and ANFIS.  134 

2.3 CFD modeling  135 

In the current CFD simulation study, the Euler–Euler approach as incorporated in the 136 

commercial ANSYS CFX-13 software is employed to model the multiphase flow inside the 137 

bubble column. The Eulerian framework of the gas and liquid flow represents a point volume 138 

fraction for the gas and liquid individually. This method is based on the notion of pseudo-139 

continuum. Both the liquid and gas phases (multi-bubbles) are formulated in the Eulerian 140 

framework as interpenetrating continua. The formulations of the Eulerian model, selected in the 141 

present CFD study, are based on ensemble-averaged mass and momentum transport equations 142 

for the gas and liquid separately. The continuity and momentum transfer equations for the Euler–143 

Euler multi-phase framework are represented respectively (solved for the gas and liquid phases 144 

individually) as follows:    145 

The mass conservation equation for both liquid and gas is shown as follows: 146 

( ) ( ) 0
k k k k k

u
t
ρ ρ

∂
∈ +∇ ∈ =

∂
                                                                                                         (1)                                             147 

where k∈ and ku  indicate  the volume fraction and average velocity of phase k respectively. 148 

In the present numerical investigation, the control volume method is used to discretize the 149 

conservation equations. There are several solution methods (such as finite difference [59], 150 

Lattice Boltzmann [60-63], finite volume method [13-15, 27, 28], etc.) in the CFD to solve the 151 

fluid flow problems. The most robust, reliable and the one, on which CFX is based, is called 152 

finite volume discretization method. Based on the finite volume discretization method, the 153 

momentum transfer formulation for multi-bubbles and liquid phases can be described as: 154 

,( ) ( ) ( )
k k k k k k k k k k k k I K

u u u p g M
t
ρ ρ τ ρ

∂
∈ +∇ ∈ = −∇ ∈ −∈ ∇ +∈ +

∂
                                             (2) 155 

The right side of the momentum transfer formulation consists of the stress, pressure 156 

gradient, gravity and the momentum interfacial exchange between gas bubbles and liquid. In this 157 

equation, the stress term of phase k is represented as follows: 158 
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,

2
( ( ) ( )

3
T

K eff k k k k
u u I uτ µ= − ∇ + ∇ − ∇                                                                                                    (3) 159 

where µ indicates the liquid phase effective viscosity, comprising of three terms: molecular 160 

viscosity, turbulence viscosity and viscosity based on bubble induced turbulence. 161 

, , BI,eff l L T L Lµ µ µ µ= + +                                                                                                                             (4) 162 

The effective gas viscosity is formulated based on the effective viscosity of liquid and it can be 163 

described as follows:  164 

, ,L
G

eff G eff

L

ρ
µ µ

ρ
=                                                                                                                                         (5) 165 

In the current CFD simulation study, the model of Sato and Sekoguchi is employed for 166 

the extra term due to bubble induced turbulence, containing a constant value of ��,	
 = 0.6	. The 167 

viscosity due to the turbulence induced by the gas bubble flow has been described by [64, 65]. 168 

They demonstrated a model taking account the turbulence induced by bubble agitation inside the 169 

liquid phase. In general, to predict momentum of bubble flow it is crucial to describe the 170 

turbulent structure of the continuous liquid phase, which may result in how to describe the 171 

contribution of bubble existence to the flow characteristics. Sato and Sekoguchi [64], reported 172 

that the turbulent shear stress in bubble flow is affected by two terms. Firstly, the inherent liquid 173 

turbulence which is independent of relative motion of bubbles in the liquid phase. Secondly, The 174 

additional liquid turbulence term, producing by bubble agitation (bubble motion). 175 

, ,BIBI L L G B G LC d u uµµ ρ= ∈ −                                                                                                        (6)                                                                                                   176 

The last term in the momentum transfer equation is the total interfacial force. This term can be 177 

described as follows:                                                                                                               178 

, ,G D, TD,I L I L LM M M M= − = +                                                                                                                  (7)                                                                                         179 

The total interfacial forces, illustrated above, indicate the drag and turbulent dispersion 180 

force when the lift and virtual mass are neglected. The interphase momentum transfer between 181 

gas bubble and liquid phase due to drag force is shown as follows: 182 

,

3
( )

4
D

D L G L G L G L

B

C
M u u u u

d
ρ= − ∈ − −                                                                                                (8) 183 

where the CD and dB are the drag coefficient and bubble diameter respectively. In general, the 184 

drag coefficient and bubble diameter can be assumed as a constant value due to uniform 185 
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behaviour of bubble size and shape  in homogeneous regime. The drag coefficient and bubble 186 

diameter are selected as 0.44 and 4mm diameter, respectively, based on the literature suggestions 187 

[3, 13, 14, 37], experimental observation and numerical setting of Pfleger and becker’s study 188 

[13]. 189 

Turbulent dispersion force model is used for current CFD investigations based on 190 

literature studies [3, 15, 22, 37, 66] to improve the flow field prediction towards the walls. This 191 

model, formulated by Lopez de Bertodano [67], is on the basis of the analogy with molecular 192 

movement and interaction. It approximates a turbulent diffusion of the bubbles by the liquid 193 

eddies and can be described as: 194 

, ,TD L TD G TD L LM M C Kρ= − = − ∇∈                                                                                                            (9) 195 

where k and CTD indicate the liquid TKE and turbulent dispersion coefficient. Various values of 196 

turbulent dispersion coefficient have been recommended in the previous studies [3, 15, 22, 37, 197 

66]. In our simulation setting, turbulent dispersion coefficient of 0.3 is used based on the 198 

sensitivity study [3, 15, 37, 66]. The sensitivity study has been carried out for turbulent 199 

dispersion coefficients from 0.2 to 0.5 and the result shows a small difference in results of flow 200 

pattern and gas hold-up, while the value of 0.3 results in marginal improvement of flow pattern 201 

results.  202 

In addition to interfacial forces, a proper selection of turbulence model is necessary to 203 

appropriately predict the bubble column hydrodynamics [3, 12-16, 22, 29, 37, 38, 66]. For the 204 

disperse bubbly phase a zero equation turbulence model is used. However, the standard k–ε 205 

model is applied for the continuous phase which have been used and recommended in prior CFD 206 

studies due to obtaining average results, simplicity and low computation time [3, 12-16, 22, 27-207 

29, 37, 66, 68]. As k–ε is employed for turbulence modelling, the turbulent eddy viscosity is 208 

calculated using the standard k–ε turbulence model, where k represents the turbulent kinetic 209 

energy and ε its dissipation rate in the liquid phase. k and ε determine the energy in turbulence 210 

and the scale of the turbulence, respectively. The turbulent eddy viscosity can be defined as 211 

follows: 212 

2

,T L L

K
Cµµ ρ

ε
=                                                                                                                                       (10)    213 

The turbulent kinetic energy (k) and its energy dissipation rate (ε) are calculated based on 214 

the following governing equations:  215 
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                                                   (11)   216 

                                    (12)  217 

 218 

Being k and ε calculated from their conservation equations. The k–ε model is applied, in this 219 

work, with its standard constants values (model parameters): C. = 0.09, 	σ341, σ6 = 1, C6� = 1.44, C6� =220 

1.92. These constants, although not universal, are commonly used in the case of single-phase flow [19, 221 

69]. The selection of these values based on recommendation of prior numerical studies [13, 15, 22, 37, 222 

70]. The term G indicates the production of turbulent kinetic energy and can be represented as: 223 

:L LG uτ= ∇                                                                   (13) 224 

 225 

2.3.1 Grid 226 

For meshing the cylindrical bubble column, the hexahedral grid is used throughout the column 227 

which is almost similar with study of Boutet et al. [71]. The circular cross section of bubble 228 

column is non-uniformly meshed, while the axial length of column is equally divided into 60 229 

grids section. Fig. 2 shows a typical radial and axial grid layout for the 3D bubble column 230 

structure, containing 40500 grids. On average, this grid structure has the orthogonal quality of 231 

0.67, skewness of 0.62 and aspect ratio of 3.1. In addition, two denser meshes (i.e., 59000 and 232 

82320 elements) with similar structure are used for grid sensitivity study.  233 

 234 

2.3.2 Boundary conditions 235 

  Instead of modelling the exact ring sparger for inlet condition, the mass source point is 236 

used for each sparger hole, calculating based on superficial gas velocity. At the top surface of the 237 

bubble column (outlet), a degassing boundary condition is treated, resulting in no penetration and 238 

slip condition for the liquid phase and an outlet for bubbles. In this case, the pressure remains 239 

variable on the top of the column, describing the various surface heights at different bubble 240 

column locations. On the walls, a no slip and free slip boundary conditions are used for the liquid 241 

and gas phases respectively. Considering the free slip boundary condition for the gas phase in 242 

Eulerian method describes the interaction between multi-bubbles and solid walls. As bubbles 243 

move towards the walls without fraction, they experience no interaction (freely movement) and 244 

,L( ) ( ) ( ) ( )eff

L L L L L L K L L

K

K u K G
t

µ
ρ ρ ρ ε

σ

∂
∈ +∇ ∈ = −∇ ∈ ∇ +∈ −

∂

,L
1 2( ) ( ) ( ) (C C )eff

L L L L L L L Lu G
t K

ε ε ε

ε

µ ε
ρ ε ρ ε ρ ε

σ

∂
∈ +∇ ∈ = −∇ ∈ ∇ +∈ −

∂
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the direct contacts between multi-bubbles and walls can be considered negligible. In this way, 245 

the velocity component parallel to the wall has a finite value, while both the velocity normal to 246 

the wall and the wall shear stress are set to zero.  247 

   248 

2.3.3 Numerical methods 249 

In order to mathematically discretize the conversation equations, the control volume 250 

technique is implemented throughout the 3D cylindrical bubble column. The velocity–pressure 251 

connection is achieved using SIMPLEC procedure. The high order differencing schemes of total 252 

variation diminishing (TVD) is used to decrease numerical diffusion in current CFD simulation 253 

study. The bubbling process is simulated for 1400s and the results are time averaged over last 254 

1300s.  255 

 256 

2.4 Adaptive-Network-based Fuzzy Inference System (ANFIS) 257 

ANFIS is an inference fuzzy system to accurately predict the behavior of complex and 258 

nonlinear systems [40, 41, 47, 53, 54, 72]. There are three different types of fuzzy reasoning in 259 

which Takagi and Sugeno proposed if-then rules are implemented in ANFIS structure [73]. Fig. 260 

3 shows the structure of the employed ANFIS method on predicting the hydrodynamic 261 

characteristics in the 3D bubble column. In this paper (three inputs, sparger diameter, radial 262 

coordination and axial coordination) are taken to obtain the gas hold up, TKE and axial liquid 263 

velocity as output (see Fig. 3). The inputs are divided into various numbers of membership 264 

functions (MFs) in first layer. The incoming signals from first layer are multiplied according to 265 

AND rule as the node function for the second layer. For instance, the function of the ith rule is as, 266 

( ) ( ) ( )
i i ii A s B Cw D x Hµ µ µ= × ×               (14) 267 

where iw  is out coming signal of second layer’s node and
iAµ ,

iBµ  and 
iCµ are incoming signals 268 

from implemented MFs on inputs, sparger diameter (Ds), axial coordination (H) and radial 269 

coordination (x), to second layer’s node. 270 

In layer three, the relative value of firing strength of each rule is calculated. This value 271 

equals to the weight of each layer over the total amount of all rules’ firing strengths: 272 

( )
1

i
i n

i

i

w
w

w
=

=

∑
                 (15) 273 
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where iw  is called normalized firing strengths. The fourth layer applied the function of a 274 

consequence if-then rule proposed by Takagi and Sugeno [73]. Thus, the node function can be 275 

described as: 276 

( )i i i i s i i iw f w p D q x rH s= + + +   277 

where pi, qi, ri and si are the if-then rules’ parameters and called consequent parameters. All 278 

incoming signals from layer four are aggregated to obtain the model output represents the 279 

estimation result. 280 

A hybrid learning algorithm is utilized to update the parameters in which MFs parameters are 281 

updated by gradient descent method and consequent parameters are updated by Least Square 282 

Estimate (LSE) method. 283 

 284 

2.4.1 Membership function selection 285 

One of the main aspects of this research is the investigation of the best type and number of 286 

MFs for all inputs in terms of the Root Mean Square Error (RMSE) and Correlation Coefficient 287 

(CC). The equation of RMSE can be defined as:  288 

��9: = ;�
<∑ (>?@ABC	DA@EA@ − :G@HIB@��	DA@EA@J�<K4�          (15) 289 

where N is the number of testing sets.  290 

The equation of CC that provides the relationship strength between prediction and CFD 291 

simulation results is as: 292 

�� = ∑ L�MNO	(PJQ�MNO(RJSL�TUV	(PJQ�TUV	(RJSWPXY
;∑ L�MNO	(PJQ�MNO	(RJSZWPXY ∑ L�TUV	(PJQ�TUV(RJSZWPXY

           (16) 293 

where yCFD(i) and yCFD(m) are the CFD result of individual data and the mean value of CFD 294 

results. ypre(i) and ypre(m) are the ANFIS prediction result of each data and the mean value of the 295 

prediction results. 296 

In this aim, Bell-shaped, Gaussian and Sigmoidal MFs, and 27 combinations of number 297 

of MFs are employed to compare the estimation output errors. Table 1 portrays the equation of 298 

utilized MFs in the ANFIS model and Tables 2 and 3 depict the RMSE and CC values of various 299 

employed ANFIS structures. 300 

 301 
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Gaussian MF has two parameters (c and &), Bell-shaped MF has three parameters (a, b, 302 

and c), and Sigmoidal MF has four parameters (a1, a2, c1, and c2). These parameters are called 303 

premise parameters. Numbers of MF are varied from 2 to 4 for each input and ANFIS structures 304 

are configured from 2-2-2 configuration, which means 2 MFs for sparger diameter (Ds), axial 305 

coordination (H) and radial coordination (x), to 4-4-4 configuration. 306 

 307 

As seen in Tables 2 and 3, the most accurate ANFIS structures in terms of RMSE and CC 308 

values are 4-4-4 configuration with Sigmoidal MF for gas hold-up, 4-4-4 configuration with 309 

Bell-shaped MF for TKE and axial liquid velocity. Complexity of the model is another 310 

considerable parameter in selecting best ANFIS structure. In this aim, the total number of 311 

parameters, comprising premise and consequent parameters, is obtained for each model. This 312 

value is varied from 44 to 304 parameters. 313 

Figs. 4, 6 and 8 portray gas hold-up, TKE and axial liquid velocity RMSE values of ANFIS 314 

structures in terms of number of parameters (premise and consequent) while Figs. 5, 7 and 9 315 

show gas hold-up, TKE and axial liquid velocity CC values of ANFIS structures in terms of 316 

number of parameters. As seen in Fig. 4, RMSE results of gas hold-up illustrate an error 317 

reduction when the number of parameters increases. The RMSE results are distributed in two 318 

regions; high and low RMSE values. Different ANFIS configurations may have similar number 319 

of parameters which represents the complexity of the model.  320 

 321 

As instance, ANFIS models with configuration of 2-3-4, 2-4-3, 3-2-4, 3-4-2, 4-2-3, and 4-322 

3-2 have 114, 123, and 132 parameters for Gaussian, Bell-shaped, and Sigmoidal MFs, 323 

respectively. Type of MF has a slight influence on the gas hold-up prediction accuracy of gas 324 

hold-up while the number of parameters has a key role on the model precision. ANFIS models 325 

with configurations of 2-3-4, 2-4-3, 4-2-3, and 3-2-4 are much more accurate than models with 326 

configurations of 3-4-2 and 4-3-2. This comparison shows that radial coordination (x) needs to 327 

be split into more spaces by means of more MFs for x. Hence, ANFIS model with 4-4-4 328 

configuration and Sigmoidal MF is selected as the best model to predict gas hold-up by 329 

comparing the RMSE and CC values and the influence of the ANFIS model configuration on the 330 

prediction accuracy. 331 

 332 
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Fig. 6 depicts the relationship between TKE RMSE values of diverse ANFIS models and 333 

numbers of parameters. In contrast with error result of gas hold-up prediction, TKE RMSE 334 

results are close together and reduction rate is lesser. Thus, a simpler ANFIS structure with less 335 

number of parameters can be chosen due to its simplicity and low RMSE value. ANFIS model 336 

with configuration of 4-4-4 has 280, 292, and 304 parameters for Gaussian, Bell-shaped, and 337 

Sigmoidal MFs while ANFIS model with configuration of 4-4-3 for Bell-shaped MF has 225 338 

parameters. The RMSE values of these ANFIS models are close together. Therefore, the ANFIS 339 

model with lowest number of parameters can be selected as the best model to predict TKE. Fig. 7 340 

illustrates that the ANFIS model with configuration of 4-4-3 and Bell-shaped MF has an 341 

appropriate performance in terms of CC value and is selected as the best ANFIS model for 342 

estimation of TKE. 343 

 344 

Axial liquid velocity is another parameter that has been predicted by ANFIS method. Fig. 8 shows 345 

the RMSE values of diverse ANFIS structures versus number of parameters. As can be seen, the error 346 

result of utilizing Sigmoidal MF is higher than that of utilizing Bell-shaped and Gaussian MFs. The 347 

RMSE and CC results of ANFIS model with 2-4-4 configuration and Gaussian MF are close to those of 348 

models with higher complexity such as 3-4-4 configuration with Bell-shaped MF, 4-4-4 configuration 349 

with Gaussian and Bell-shaped MFs (see figs. 8 and 9). Hence, the best model in terms of both simplicity 350 

and accuracy is ANFIS model with 2-4-4 configuration and Gaussian MF to predict axial liquid velocity. 351 

 352 

 353 

 354 

3 Results and discussion 355 

3.1 Validation of CFD method 356 

As the first step, it is important to establish the validity of the CFD model for prediction 357 

of the flow pattern and amount of gas inside the bubble column reactor. Therefore, a comparison 358 

has been made with the previous experimental and numerical data (i.e., Pfleger and Becker [13] 359 

and Diaz et al. [19]) and existing mathematical correlations (i.e., Joshi and Sharma [74], Kumar 360 

et al. [75], and Hughmark [76]). Excellent comparison is obtained between the current CFD 361 

estimation and previous studies for overall gas hold-up. For instance, Fig. 10 shows the overall 362 

gas hold-up against different superficial gas velocities for the present CFD simulation and 363 

previous studies. The overall gas hold-up inside the bubble column reactor linearly rises when 364 
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the superficial gas velocity increases. This figure shows that the present finding of gas hold-up is 365 

in satisfactory agreement with experimental and numerical studies of Pfleger and Becker [13] 366 

(especially experimental finding) and Diaz et al. [19] and mathematical correlations of Joshi and 367 

Sharma [74] and Hughmark [76], when the superficial gas velocity alters from  0.0015m/s to 368 

0.01m/s. However, the numerical study of Pfleger and Becker [13] overpredicts the gas hold-up 369 

almost for all superficial gas velocities.  370 

 371 

Fig. 11 shows the planer averaged gas hold-up versus bubble column heights for Grids 1 372 

and 3 and Pfleger and Becker’s investigation [13]. In comparison to Pfleger and Becker’s 373 

numerical study, current numerical results are in excellent agreement with experimental data, 374 

especially near the sparger. The Pfleger and Becker [13] showed an overprediction for gas hold-375 

up at various column heights (particularly near the spargers). The figure shows that, towards the 376 

sparger, the numerical study of Pfleger and Becker [13] could not accurately estimate gas hold-377 

up (over prediction), while the current CFD results are in good agreement with experimental 378 

data. In addition, the figure also illustrates that Grid 1 presents better agreement in comparison 379 

with Grid 3 in all column heights, particularly near the sparger.  380 

        381 

 382 

3.2 Grid dependency  383 

Three types of grids are used; Grid 1, Grid 2 and Grid 3 (mention in grid section), in 384 

order to investigate the effect of the mesh resolution on the results of flow pattern and amount of 385 

gas inside the bubble column.The CFD results of axial liquid velocity, based on three types of 386 

grids, are benchmarked against that from Pfleger and Becker experimental and numerical study 387 

[13]. Fig. 12 portrays the time averaged axial liquid velocity versus the normalized radial 388 

coordinate for Grids 1, 2, and 3 and experimental and numerical results of Pfleger and Becker at 389 

1.6m column height. According to the figure, Grid 1 shows that axial flow is upward in the 390 

central region of column with higher gas hold-up, while a downward counter flow is observed 391 

towards the wall region with low gas hold-up. This hold-up gradient creates the density 392 

difference for liquid circulation to take place. The point of flow reversal is clearly seen at a radial 393 

location of around r/R = 0.6–0.8m. In contrast, the results of Grids 2 and 3 show the asymmetric 394 
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liquid profile in which Grids 2 and 3 tend to move towards the right and left walls respectively. 395 

The results of Grid 1 also are in good agreement with numerical data of Pfleger and Becker [13].  396 

In general, the grid dependency test shows a good agreement when the grid size increases 397 

(coarse mesh), while the numerical results with finer mesh differ more from experimental data of 398 

Pfleger and Becker [13] (see Figs. 11 and 12). Buwa et al. [69] and Pfleger and Becker [13] also 399 

reported that, as the grid size decreases, the agreement between numerical results of time 400 

averaged flow pattern and experimental finding deteriorates. Furthermore, Bech [77]  showed 401 

that transient turbulence models produce new modes of instability in the plume oscillation when 402 

the grid size decreases. Based on results of grid dependency illustrated in Figs. 11 and 12, the 403 

coarse mesh, containing 40500 grids, is used for all simulation cases in this study. 404 

3.3 Time step optimization  405 

The influence of the time-step size on the flow pattern and gas hold-up results is also 406 

studied. In order to investigate the size of time step, the Courant–Friedrichs–Levy (CFL) 407 

number, is used. The CFL order number of one is necessary to resolve the transient bubbling 408 

process inside the column. The CFL number can be described as follows: 409 

 
y

t
v

∆
∆ ≤                  (17) 410 

where v  , y∆  and t∆  are the magnitude of the velocity vector’s vertical component,  411 

characteristic dimension of the cell and time step, respectively. In order to study the effect of 412 

using different time steps on the accuracy of CFD results, time steps, ranging 0.1-0.01 are tested 413 

which results in small differences between results. In this study the time step of 0.1 is used for all 414 

CFD study. The selection of the time step is also evaluated by the CFL that the maximum CFL 415 

number must be less than one. Several investigations showed that when the CFL is smaller than 416 

1, the numerical method can accurately predict the liquid flow pattern and gas dynamics and 417 

further refining of this parameter does not lead to significant changes on the results. However, 418 

using CFL larger than 1 results in inaccurate prediction results [17, 29, 38, 78-81]. 419 

3.4 Prediction evaluations and discussions 420 

In this section, an accuracy evaluation and comparison between CFD and ANFIS results 421 

are discussed. Three different ANFIS models are proposed to predict the gas hold-up, TKE and 422 
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axial liquid velocity individually. The results are divided into three portions: prediction 423 

evaluation, surface rules and mathematical models. 424 

 ANFIS model has been trained by using CFD simulation results. To verify the trained 425 

model, four axial coordinates, 0.867, 1.3, 1.733 and 2.167 m, are employed to examine the 426 

prediction result. Figs. 13-15 depict both CFD simulation and ANFIS prediction results for gas 427 

hold-up, TKE and axial liquid velocity in the bubble column. These figures illustrate the high 428 

capability of ANFIS method to model the characteristics of bubbly flow. 429 

Inside bubble column reactors, the amount of gas depends upon the regime operation 430 

(i.e., homogeneous/heterogeneous) which turn depends upon column dimensions, pressure, 431 

temperature, superficial gas velocity and sparger design parameters. Fig. 13(a-d) shows gas 432 

hold–up results of CFD simulation and ANFIS prediction model at various bubble column 433 

heights (0.867, 1.3, 1.73 and 2.16 m) and sparger diameters (0.08m (Fig. 13(a)), 0.10m (Fig. 434 

13(b)), 0.12 m (Fig. 13(c)) and 0.14 m (Fig. 13(d))). According to this figure, both CFD and 435 

ANFIS methods show that gas bubbles tend to move towards the bubble column center due to 436 

centralized gas movement in the homogeneous regime. An increase in sparger diameter from 437 

0.08 to 0.14m causes a significant decrease in the magnitude of gas hold-up at the column center. 438 

Among all sparger diameters, the sparger diameter 0.14m produces almost flatter gas hold-up 439 

profile inside the bubble column reactor.  Both CFD and ANFIS methods show that the gas hold-440 

up profile is most likely uniform near the bubble column outlet. The figures show that ANFIS 441 

prediction method can estimate gas hold-up profile almost identical with CFD method towards 442 

the column center for various sparger diameters and bubble column heights.  443 

Another important parameter in prediction of bubble column is TKE. When bubbles travel to the 444 

column surface, the pressure energy is converted to turbulent kinetic energy. This parameter 445 

shows the intensity of turbulence inside the bubble column reactor.  Fig. 14 (a-d) compares CFD 446 

simulation and ANFIS prediction of TKE versus radial position in the column. According to the 447 

figure, TKE towards the column center is higher than other region, while near the wall region it 448 

reaches to zero due to higher fluctuations of turbulent fluid velocities at the column center. As 449 

the sparger diameter increases, TKE reduces particularly towards the column center. According 450 

to the figures, for all ring sparger diameters, TKE near the sparger region is much higher than 451 

bubble column outlet.  452 

 453 
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Axial liquid velocity is the last parameter that has been estimated by ANFIS approach. 454 

The ANFIS prediction result is compared with CFD simulation results in Fig. 15(a-d). As the 455 

sparger diameter rises, the liquid centerline velocity reduces and results in flatter liquid velocity 456 

profile. Additionally, the centerline liquid velocity decreases, as the column height increases. 457 

This is attributed to the fact that, near the sparger region, swarm bubbles supply higher energy to 458 

the liquid than bulk region, and resulting in higher turbulent dissipation energy. This energy 459 

transferring shows the critical bubble column location where bubble plume breaks and bubbles 460 

split to smaller bubbles (break-up). In summary, the results show that ANFIS approach beside 461 

the CFD method is a capable prediction methodology to estimate the local hydrodynamics 462 

parameters at various column locations and operation conditions. 463 

This section provides information about 3D bubble column hydrodynamics surface plots 464 

in order to understand the flow pattern and gas dynamics throughout the bubble column for all 465 

column heights and sparger diameters. The predicted gas hold-up contour has been presented for 466 

various column heights and sparger diameters in Fig. 16. This figure shows the predicted gas 467 

hold-up for sparger diameters of 0.085m (16(a)), 0.115m (16(b)) and 0.145m (16(c)). According 468 

to the figure, the gas hold-up profile has a non-uniform behavior towards the sparger, while at 469 

the middle and surface region (e.g., 1.3 and 2.5m) gas phase disperses uniformly. In general, the 470 

gas hold-up has a maximum value at the central region while the amount of gas decreases as 471 

sparger diameter increases around this region (see Fig. 16). Fig. 17 portrays the predicted axial 472 

liquid velocity in different column heights and sparger diameters. As seen, maximum liquid 473 

velocity occurs near the sparger region at almost every column height, while the liquid direction 474 

changes and results in two recirculation area near walls. Fig. 18 depicts the predicted TKE for 475 

various column heights and sparger diameters (0.085m (18(a)), 0.115m (18(b)) and 0.145m 476 

(18(c))). According to this figure, TKE towards the sparger is significantly higher than other 477 

regions. The figure shows that, with an increase in sparger diameter, TKE decreases.  478 

The ANFIS method can predict the BCR hydrodynamics with different operational conditions in 479 

less computational time and provide continuous results. In order to examine the prediction 480 

ability, the BCR hydrodynamics are predicted for different column heights. All predicted results 481 

are compared with CFD results which are not used in training process.   482 

The ANFIS method is used to predict the results of ϵg at column heights (Y mesh coordinate) of 483 

0.43, 0.86, 1.3, 1.73, 2.16 and 2.56 m. The number of prediction data in X and Z mesh 484 
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coordinate is increased from 705 (CFD data) to 4800 nodes. For ANFIS training and model 485 

development, 70% of the actual data, which is the CFD results from benchmark case, at column 486 

heights of 0.217, 0.47, 0.73, 0.997, 1.3, 1.56, 1.8, 2.08, 2.3 and 2.6 m is given as an input. In 487 

addition, the number of data in X and Z mesh coordinate for the input is reduced to three quarter 488 

or to only 490 nodes. Please take note, the prediction is for the column heights that is not given 489 

as an input data to ANFIS model and hence the ability of the model is tested. Figure 19 shows 490 

the predicted contour plot of gas hold-up at various column heights (i.e., 0.432, 0.86, 1.3, 1.73, 491 

2.17 and 2.56 m) for ANFIS and CFD method. According to the figure, the ANFIS results are in 492 

good agreement with CFD results almost for all column heights. The ANFIS method predicts the 493 

circular gas hold-up distribution almost for all column heights, which is similar with CFD 494 

results. Both CFD and ANFIS show the higher gas hold-up at the center region of column, 495 

ranging 0.02-0.03, while this parameter reaches to zero value near the walls. Towards the sparger 496 

region (h=0.432m), the sparger has influence on the gas distribution, resulting ring shape gas 497 

fraction (with 0.0012m inner and 0.09m outer diameter). As the column height increases, this 498 

influence diminishes and results in uniform distribution of gas. In comparison to CFD results, 499 

ANFIS method slightly over predicts the gas hold-up towards the walls at 2.56m. This may 500 

attribute to the fact that, ANFIS method cannot accurately recognize gas behaviour near the BCR 501 

boundary (particularly outlet). In order to enhance this over prediction, different ANFIS setting 502 

parameters or data filtering are required. 503 

In summary, the combination of ANFIS and CFD prediction framework shows that, in case of a 504 

proper ANFIS learning process with CFD results, ANFIS approach can adequately predict 505 

bubble column hydrodynamics. In comparison to the CFD simulation, ANFIS approach provides 506 

the approximated bubble column hydrodynamics in a continuous domain. When the specific 507 

range of ring sparger diameters and column heights are trained in the ANFIS method, it can 508 

smartly approximate the flow pattern and gas dynamics within these particular ranges. On the 509 

other hand, in CFD simulation, the CFD simulation needs to be implemented for any changes in 510 

operation conditions due to production of discrete results. Therefore, providing a complete set of 511 

result for various conditions such as different sparger diameter requires computational efforts, 512 

resulting in large computational time. 513 

In the last portion of this section, we propose the mathematical models of the liquid flow pattern 514 

and gas dynamics that have been estimated by selected ANFIS models. These mathematical 515 
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correlations show the axial liquid velocity, gas hold-up and TKE at different column heights, 516 

radiuses and sparger diameters. The method of gaining mathematical models from ANFIS 517 

approach was described in section 2.4. The formula of the relationship between gas hold-up and 518 

effective variables, which are sparger diameter, axial coordination and radial coordination, can 519 

be written as, 520 

ε
g
=

µ1i ×µ2 j ×µ3k( )× pmDs + qmH + rmx + sm( )
k=1

4

∑
j=1

4

∑
i=1

4

∑

µ1i ×µ2 j ×µ3k( )
k=1

4

∑
j=1

4

∑
i=1

4

∑
       (18) 

521 

 
522 

in which 
523 

  
524 

 
525 

First subscription of µ shows the input number and the second subscription depicts the MF 526 

number. The values of MFs’ parameters (premise parameters) are shown in Table 4. Subscription 527 

of m represents the rule number ranged from 1 to 64. Table 5 shows the values of pm, qm, rm, and 528 

sm (consequent parameters). Each MF has four parameters and linear portion of every rule has 529 

four parameters. As seen in Table 4, the values of a1 and a2 for all MFs of individual input are 530 

approximately equal. 531 

 532 

ANFIS model with 4-4-3 configuration and Bell-shaped MF is select among 81 ANFIS 533 

structures for prediction of turbulent kinetic energy. This model can be represented 534 

mathematically as, 535 

µ1i =
1

1+ e
−a1i x−c1i( )

−
1

1+ e
−a2i x−c2i( )

µ2 j
=

1

1+ e
−a1 j x−c1 j( )

−
1

1+ e
−a2 j x−c2 j( )

µ3k =
1

1+ e
−a1k x−c1k( )

−
1

1+ e
−a2k x−c2k( )
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TKE =

µ1i
×µ2 j

×µ3k( )× p
m

D
s
+ q

m
H + r

m
x+ s

m( )
k=1

3

∑
j=1

4

∑
i=1

4

∑

µ1i
×µ2 j

×µ3k( )
k=1

3

∑
j=1

4

∑
i=1

4

∑
           (19)

 536 

in which 
537 

µ1i =
1

1+
x − ci

a
i

2bi
and µ1 j =

1

1+
x − c j

a j

2b j
and µ1k =

1

1+
x − ck

a
k

2bk
  

538 

Table 6 depicts premise parameters and illustrates that the values of b for all MFs are pretty close 539 

to each other while a and c values are different. Forty-eight rules were constructed on the basis 540 

of the selected ANFIS structure and the values of pm, qm, rm, and sm parameters in these rules are 541 

portrayed in Table 7. 542 

 543 

Axial liquid velocity is another element predicted by ANFIS approach. The selected ANFIS 544 

model to estimate the axial liquid velocity has the highest simplicity among chosen ANFIS 545 

models for prediction of gas hold-up and TKE. The equation of this model as follows: 546 

V
y
=

µ1i
×µ2 j

×µ3k( )× p
m

D
s
+ q

m
H + r

m
x + s

m( )
k=1

4

∑
j=1

4

∑
i=1

2

∑

µ1i
×µ2 j

×µ3k( )
k=1

4

∑
j=1

4

∑
i=1

2

∑
           (20)

 
547 

in which 
548 

µ1i
= e

− x−ci( )
2

2σ i
2

and µ1 j
= e

− x−c j( )
2

2σ j
2

and µ1k
= e

− x−ck( )
2

2σk
2

  
549 
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The values of premise and consequent parameters are shown in Tables 6 and 7. Overall, there are 550 

20 premise parameters and 128 consequent parameters that have been refined by using CFD 551 

simulation axial liquid velocity results. Providing these types of mathematical models assists in 552 

improving the knowledge of flow pattern (flow field) and gas dynamics for various operation 553 

conditions. In addition, this model can predict much smarter when the number of trained data 554 

increases as input parameters (i.e., bubble column dimension in X, Y and Z direction, superficial 555 

gas velocity, gas and liquid properties). 556 

 557 

 558 

 559 

 560 

4. Conclusions  561 

This paper presents the combination of CFD and ANFIS to predict the 3D bubble column 562 

hydrodynamics for various ring sparger diameters at different bubble column heights. The 563 

Eulerian approach is used to simulate the liquid flow pattern and gas dynamics inside the 3D 564 

cylindrical bubble column reactor. The CFD simulation results are validated with existing 565 

numerical, experimental and mathematical correlations. After validation process, the CFD 566 

simulation results are used to train ANFIS approximation approach. The proper architectures of 567 

the ANFIS prediction models, in terms of number and type of MFs, are investigated to find the 568 

most accurate prediction model. Based on this model, the mathematical correlations for bubble 569 

column hydrodynamics are developed, as the sparger diameter and bubble column height change. 570 

The conclusions of this study are as follows: 571 

• Both CFD and ANFIS prediction method show that the axial liquid velocity, turbulent 572 

kinetic energy and gas hold-up rise towards the column centre, while these parameters 573 

reach to zero value near the column walls for various gas sparger diameters and bubble 574 

column heights. The larger ring sparger diameter produces flatter gas hold-up profile in 575 

the bubble column cross-section. In addition, for all sparger diameters, the centreline 576 

velocity, gas hold-up and turbulent kinetic energy are higher near the sparger region.  577 
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• ANFIS approach can predict the bubble column hydrodynamics in a very short time and 578 

provide a non-discrete result, while the CFD simulation needs to be employed for any 579 

changes in operation condition. 580 

• Evaluation of different ANFIS structures illustrates that the type and number of 581 

membership function significantly affect the precision of the prediction model. 582 

• The ANFIS method contains a good ability to predict hydrodynamics parameters of 583 

bubble column reactor which are not used in the training process. This will show that, 584 

this method can be used as assistance tools together with CFD methodology to predict 585 

parameters and minimize computational efforts, and numerical repetition. 586 

 587 
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Table 1 the equations of MFs used in the ANFIS model 810 

Membership Function Equation 

Bell-shaped 
1

1 + \] − ?B \�^
 

Gaussian �Q(_Q`J
Z

�aZ  

Sigmoidal 
1

1 + �QbY(_Q`YJ −
1

1 + �QbZ(_Q`ZJ 
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Table 2 RMSE of utilized ANFIS structures 813 

Number 
of MF 

Output 

RMSE for  
Number 
of MF 

Output 

RMSE for  

Ds H x 
Bell-

Shaped 
MF 

Gaussian 
MF 

Sigmoidal 
MF Ds H x 

Bell-
Shaped 

MF 

Gaussian 
MF 

Sigmoidal 
MF 

2 2 2 
ϵg 0.0059 0.0060 0.0060 

3 3 4 
ϵg 0.0041 0.0042 0.0040 

TKE 0.0025 0.0026 0.0030 TKE 0.0016 0.0017 0.0017 
Vy 0.0261 0.0263 0.0278 Vy 0.0131 0.0146 0.0162 

2 2 3 
ϵg 0.0049 0.0049 0.0051 

3 4 2 
ϵg 0.0056 0.0057 0.0057 

TKE 0.0021 0.0019 0.0022 TKE 0.0017 0.0021 0.0020 
Vy 0.0201 0.0207 0.0226 Vy 0.0189 0.0210 0.0225 

2 2 4 
ϵg 0.0046 0.0048 0.0048 

3 4 3 
ϵg 0.0041 0.0043 0.0043 

TKE 0.0022 0.0018 0.0022 TKE 0.0015 0.0016 0.0016 
Vy 0.0187 0.0182 0.0213 Vy 0.0131 0.0143 0.0174 

2 3 2 
ϵg 0.0059 0.0060 0.0059 

3 4 4 
ϵg 0.0039 0.0038 0.0039 

TKE 0.0022 0.0023 0.0024 TKE 0.0015 0.0015 0.0016 
Vy 0.0223 0.0237 0.0239 Vy 0.0111 0.0122 0.0137 

2 3 3 
ϵg 0.0047 0.0048 0.0047 

4 2 2 
ϵg 0.0057 0.0058 0.0058 

TKE 0.0019 0.0019 0.0018 TKE 0.0024 0.0026 0.0027 
Vy 0.0166 0.0178 0.0194 Vy 0.0255 0.0254 0.0265 

2 3 4 
ϵg 0.0046 0.0046 0.0044 

4 2 3 
ϵg 0.0045 0.0047 0.0047 

TKE 0.0019 0.0018 0.0018 TKE 0.0023 0.0023 0.0023 
Vy 0.0149 0.0152 0.0172 Vy 0.0192 0.0196 0.0216 

2 4 2 
ϵg 0.0058 0.0059 0.0059 

4 2 4 
ϵg 0.0044 0.0045 0.0044 

TKE 0.0020 0.0020 0.0026 TKE 0.0022 0.0018 0.0020 
Vy 0.0205 0.0222 0.0217 Vy 0.0168 0.0176 0.0198 

2 4 3 
ϵg 0.0044 0.0045 0.0047 

4 3 2 
ϵg 0.0057 0.0057 0.0057 

TKE 0.0017 0.0018 0.0018 TKE 0.0017 0.0020 0.0023 
Vy 0.0139 0.0163 0.0177 Vy 0.0218 0.0226 0.0225 

2 4 4 
ϵg 0.0043 0.0044 0.0040 

4 3 3 
ϵg 0.0042 0.0045 0.0043 

TKE 0.0017 0.0017 0.0018 TKE 0.0016 0.0017 0.0016 
Vy 0.0127 0.0109 0.0152 Vy 0.0153 0.0163 0.0180 

3 2 2 
ϵg 0.0057 0.0058 0.0058 

4 3 4 
ϵg 0.0037 0.0040 0.0039 

TKE 0.0024 0.0026 0.0029 TKE 0.0015 0.0016 0.0014 
Vy 0.0255 0.0255 0.0280 Vy 0.0124 0.0144 0.0148 

3 2 3 
ϵg 0.0045 0.0047 0.0047 

4 4 2 
ϵg 0.0055 0.0057 0.0056 

TKE 0.0024 0.0024 0.0020 TKE 0.0016 0.0018 0.0022 
Vy 0.0193 0.0196 0.0223 Vy 0.0204 0.0209 0.0203 

3 2 4 
ϵg 0.0044 0.0044 0.0045 

4 4 3 
ϵg 0.0040 0.0043 0.0042 

TKE 0.0024 0.0024 0.0019 TKE 0.0013 0.0015 0.0015 
Vy 0.0173 0.0179 0.0203 Vy 0.0130 0.0144 0.0163 

3 3 2 
ϵg 0.0057 0.0058 0.0058 

4 4 4 
ϵg 0.0037 0.0034 0.0032 

TKE 0.0018 0.0022 0.0021 TKE 0.0013 0.0013 0.0013 
Vy 0.0223 0.0224 0.0232 Vy 0.0094 0.0104 0.0127 

3 3 3 
ϵg 0.0043 0.0044 0.0043 

   
    

TKE 0.0017 0.0019 0.0017     
Vy 0.0157 0.0164 0.0189     
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Table 3 CC of utilized ANFIS structures 816 

Number 
of MF 

Output 

CC for  
Number 
of MF 

Output 

CC for  

Ds H x 
Bell-

Shaped 
MF 

Gaussian 
MF 

Sigmoidal 
MF Ds H x 

Bell-
Shaped 

MF 

Gaussian 
MF 

Sigmoidal 
MF 

2 2 2 
ϵg 0.8997 0.8973 0.8984 

3 3 4 
ϵg 0.9524 0.9499 0.9552 

TKE 0.9598 0.9414 0.9124 TKE 0.9845 0.9776 0.9838 
Vy 0.9272 0.9265 0.9171 Vy 0.9821 0.9778 0.9728 

2 2 3 
ϵg 0.9331 0.9311 0.9282 

3 4 2 
ϵg 0.9110 0.9063 0.9088 

TKE 0.9771 0.9499 0.9750 TKE 0.9767 0.9653 0.9639 
Vy 0.9576 0.9548 0.9459 Vy 0.9627 0.9536 0.9465 

2 2 4 
ϵg 0.9399 0.9357 0.9342 

3 4 3 
ϵg 0.9531 0.9487 0.9486 

TKE 0.9775 0.9505 0.9752 TKE 0.9840 0.9831 0.9830 
Vy 0.9635 0.9655 0.9522 Vy 0.9823 0.9786 0.9682 

2 3 2 
ϵg 0.9008 0.8982 0.8993 

3 4 4 
ϵg 0.9582 0.9601 0.9572 

TKE 0.9704 0.9673 0.9533 TKE 0.9850 0.9826 0.9852 
Vy 0.9473 0.9406 0.9398 Vy 0.9874 0.9847 0.9804 

2 3 3 
ϵg 0.9379 0.9347 0.9373 

4 2 2 
ϵg 0.9080 0.9047 0.9043 

TKE 0.9798 0.9800 0.9770 TKE 0.9596 0.9237 0.9309 
Vy 0.9711 0.9669 0.9605 Vy 0.9310 0.9315 0.9252 

2 3 4 
ϵg 0.9413 0.9404 0.9460 

4 2 3 
ϵg 0.9422 0.9378 0.9386 

TKE 0.9813 0.9798 0.9796 TKE 0.9422 0.9401 0.9339 
Vy 0.9770 0.9759 0.9691 Vy 0.9616 0.9599 0.9507 

2 4 2 
ϵg 0.9025 0.8997 0.9016 

4 2 4 
ϵg 0.9459 0.9437 0.9455 

TKE 0.9749 0.9680 0.9586 TKE 0.9780 0.9490 0.9441 
Vy 0.9558 0.9480 0.9504 Vy 0.9707 0.9677 0.9589 

2 4 3 
ϵg 0.9460 0.9432 0.9386 

4 3 2 
ϵg 0.9081 0.9092 0.9064 

TKE 0.9811 0.9803 0.9783 TKE 0.9772 0.9740 0.9424 
Vy 0.9798 0.9724 0.9672 Vy 0.9498 0.9462 0.9465 

2 4 4 
ϵg 0.9493 0.9465 0.9556 

4 3 3 
ϵg 0.9511 0.9430 0.9491 

TKE 0.9822 0.9814 0.9801 TKE 0.9843 0.9812 0.9818 
Vy 0.9832 0.9877 0.9760 Vy 0.9757 0.9723 0.9660 

3 2 2 
ϵg 0.9067 0.9026 0.9037 

4 3 4 
ϵg 0.9611 0.9547 0.9573 

TKE 0.9537 0.9217 0.9281 TKE 0.9915 0.9832 0.9900 
Vy 0.9306 0.9308 0.9157 Vy 0.9840 0.9785 0.9774 

3 2 3 
ϵg 0.9422 0.9374 0.9372 

4 4 2 
ϵg 0.9126 0.9080 0.9096 

TKE 0.9651 0.9499 0.9762 TKE 0.9802 0.9708 0.9475 
Vy 0.9611 0.9596 0.9477 Vy 0.9564 0.9542 0.9567 

3 2 4 
ϵg 0.9457 0.9447 0.9440 

4 4 3 
ϵg 0.9553 0.9489 0.9508 

TKE 0.9440 0.9463 0.9824 TKE 0.9917 0.9893 0.9870 
Vy 0.9687 0.9664 0.9568 Vy 0.9824 0.9786 0.9722 

3 3 2 
ϵg 0.9082 0.9035 0.9056 

4 4 4 
ϵg 0.9612 0.9687 0.9717 

TKE 0.9695 0.9574 0.9601 TKE 0.9936 0.9930 0.9915 
Vy 0.9476 0.9470 0.9433 Vy 0.9909 0.9888 0.9834 

3 3 3 
ϵg 0.9494 0.9470 0.9473 

   
    

TKE 0.9824 0.9791 0.9816     

Vy 0.9742 0.9720 0.9625     
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 818 

Table 4 Premise parameters of gas hold-up’s ANFIS prediction model 819 

Input MF a1 c1 a2 c2 

Sparger 1 4.444e+02 5.495e-02 4.444e+02 7.955e-02 
Diameter 2 4.444e+02 9.655e-02 4.444e+02 1.161e-01 

 
3 4.444e+02 1.067e-01 4.444e+02 1.333e-01 

 
4 4.444e+02 1.571e-01 4.444e+02 1.750e-01 

Axial 1 1.538e+01 -4.332e-01 1.539e+01 -6.853e-02 
Coordination 2 1.539e+01 1.943e-01 1.538e+01 1.286e+00 

 
3 1.538e+01 1.197e+00 1.538e+01 2.172e+00 

 
4 1.538e+01 2.160e+00 1.538e+01 3.033e+00 

Radial 1 1.390e+02 -1.919e-01 1.390e+02 -4.025e-02 
Coordination 2 1.390e+02 -5.078e-02 1.390e+02 3.719e-02 

 
3 1.390e+02 3.270e-02 1.390e+02 6.373e-02 

 
4 1.390e+02 5.365e-02 1.390e+02 1.918e-01 

 820 

 821 

  822 

Page 33 of 55 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



34 

 

Table 5 Consequent parameters of gas hold-up’s ANFIS prediction model 823 

Rule p q r s Rule p q r s 

1 2.06e-01 -9.83e-02 -3.13e-01 -4.81e-02 33 3.82e-01 2.60e-01 8.93e-01 4.96e-02 

2 -5.34e-01 1.29e+00 -1.77e+00 4.37e-02 34 -6.72e-01 -1.27e-02 6.73e-01 8.78e-02 

3 1.55e+00 8.96e-01 -1.35e+01 6.23e-01 35 -1.65e+00 8.76e-01 6.47e+00 -5.24e-02 

4 -5.06e-01 -1.17e-01 -4.00e-01 9.51e-02 36 2.24e-01 2.53e-02 1.13e-01 -4.47e-02 

5 -5.94e-01 3.96e-03 1.23e-01 5.75e-02 37 -2.40e-02 1.98e-03 3.64e-01 4.88e-02 

6 -3.63e-01 7.86e-03 3.59e-01 7.16e-02 38 -4.16e-01 -1.05e-02 8.52e-02 9.34e-02 

7 2.50e+00 2.43e-02 6.92e-01 -1.90e-01 39 8.82e-01 6.61e-03 1.75e-01 -9.68e-02 

8 -6.96e-02 8.56e-03 -1.13e-01 1.52e-02 40 -1.48e-01 5.68e-03 -2.07e-01 4.29e-02 

9 -3.33e-01 3.06e-03 2.04e-01 4.73e-02 41 -9.09e-02 1.57e-03 2.63e-01 4.72e-02 

10 5.32e-01 -5.28e-03 1.87e-01 1.17e-02 42 -2.72e-01 -4.60e-03 3.95e-02 7.16e-02 

11 1.43e+00 3.94e-03 3.02e-01 -9.52e-02 43 2.12e-01 -7.98e-04 7.83e-02 -5.00e-03 

12 2.25e-01 4.51e-03 -2.32e-01 8.20e-03 44 2.08e-02 3.11e-03 -2.27e-01 2.46e-02 

13 -2.26e-01 9.50e-03 2.00e-01 2.31e-02 45 -3.84e-02 5.75e-03 2.29e-01 2.65e-02 

14 2.48e-01 3.12e-03 1.37e-01 1.05e-02 46 -2.20e-01 -5.82e-03 5.25e-02 6.97e-02 

15 9.01e-01 -3.44e-03 2.06e-01 -3.86e-02 47 9.88e-02 3.85e-03 5.65e-02 -1.62e-03 

16 1.43e-01 5.88e-03 -2.23e-01 8.75e-03 48 4.17e-02 6.62e-03 -2.09e-01 1.09e-02 

17 5.02e-01 1.48e-02 4.36e-02 -4.27e-02 49 -6.29e-02 2.26e-01 9.12e-01 1.15e-01 

18 -1.14e+00 6.72e-01 -1.65e+00 9.57e-02 50 -3.45e-01 8.55e-02 6.66e-01 3.97e-02 

19 -2.40e+00 4.16e-01 -1.50e+00 4.44e-01 51 -4.37e-01 -5.38e-02 -5.82e-01 5.43e-02 

20 2.88e-01 1.11e-02 3.96e-01 -7.65e-02 52 -3.72e-02 1.73e-01 -9.34e-01 1.23e-01 

21 -1.99e-01 5.30e-03 2.05e-01 4.28e-02 53 1.17e-02 5.71e-03 3.95e-01 4.61e-02 

22 -6.42e-01 -4.30e-03 1.13e-01 1.10e-01 54 -5.77e-01 -1.10e-02 -1.41e-01 1.14e-01 

23 9.91e-01 6.76e-03 7.56e-01 -1.05e-01 55 -1.13e+00 -3.36e-03 -2.71e-02 2.05e-01 

24 6.10e-03 7.05e-04 -1.77e-01 2.19e-02 56 3.13e-01 6.17e-04 -3.96e-01 3.84e-03 

25 -2.00e-01 2.86e-03 2.33e-01 4.68e-02 57 6.16e-02 2.01e-03 2.95e-01 3.02e-02 

26 -1.51e-01 -6.19e-03 6.05e-02 6.00e-02 58 -3.37e-01 -2.57e-03 -4.69e-02 7.39e-02 

27 4.69e-01 -2.02e-04 1.72e-01 -2.64e-02 59 -2.38e-01 -3.14e-03 -1.39e-01 7.15e-02 

28 8.65e-02 1.51e-03 -2.22e-01 2.04e-02 60 1.64e-01 1.06e-03 -2.82e-01 1.50e-02 

29 -1.21e-01 6.74e-03 2.17e-01 2.77e-02 61 6.03e-02 5.18e-03 2.35e-01 1.60e-02 

30 -1.56e-01 1.43e-03 5.58e-02 4.38e-02 62 -2.50e-01 -6.52e-03 -2.41e-02 7.24e-02 

31 2.01e-01 5.99e-03 1.40e-01 -1.50e-02 63 -1.22e-01 -5.83e-03 -1.27e-01 5.98e-02 

32 4.97e-02 4.99e-03 -2.05e-01 1.43e-02 64 1.08E-01 4.57E-03 -2.37E-01 1.05E-02 
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Table 6 Premise parameters of turbulent kinetic energy’s ANFIS prediction model 826 

Input MF a b c 

Sparger 1 3.393e-03 2.000e+00 8.292e-02 
Diameter 2 6.082e-03 2.001e+00 1.227e-01 

 
3 1.200e-02 2.000e+00 1.804e-01 

 
4 3.643e-03 2.000e+00 1.551e-01 

Axial 1 4.189e-01 1.996e+00 -2.915e-02 
Coordination 2 4.684e-01 2.001e+00 8.275e-01 

 3 4.452e-01 2.000e+00 1.731e+00 
 4 4.316e-01 2.000e+00 2.604e+00 

Radial 1 1.028e-01 2.000e+00 -1.210e-01 
Coordination 2 1.036e-01 1.999e+00 9.861e-03 

 
3 1.078e-01 1.999e+00 1.299e-01 

 827 
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Table 7 Consequent parameters of turbulent kinetic energy’s ANFIS prediction model 829 

Rule p q r s Rule p q r s 

1 2.80e-01 -1.33e-02 6.51e-02 -1.84e-02 25 -1.19e+00 -1.45e-01 -7.61e-01 5.80e-02 

2 -4.17e-01 1.94e-01 -1.85e-01 2.40e-02 26 2.03e+00 7.35e-02 -6.50e-01 -2.77e-01 

3 1.07e-01 -4.24e-02 -2.82e-01 4.06e-02 27 -8.98e-01 6.99e-02 -7.17e-01 2.47e-01 

4 1.60e-01 2.09e-04 6.26e-01 8.82e-02 28 -1.18e+00 -2.83e-03 -1.10e-01 1.56e-01 

5 -8.39e-02 2.38e-03 3.88e-01 4.28e-04 29 -2.52e+00 1.10e-02 -1.51e-01 3.12e-01 

6 -1.53e-01 -5.04e-03 -2.20e-01 3.61e-02 30 1.79e+00 -7.02e-03 -1.02e+00 -8.78e-02 

7 7.07e-02 -1.14e-03 5.45e-01 8.36e-02 31 -1.05e-01 2.31e-03 1.94e-01 5.19e-02 

8 2.65e-01 2.77e-03 2.38e-01 -3.78e-02 32 -3.10e+00 1.05e-02 4.82e-01 4.13e-01 

9 -2.50e-01 -4.47e-03 -2.82e-01 6.38e-02 33 1.11e+00 -1.03e-02 -2.47e-01 -1.15e-01 

10 -1.36e-02 -6.68e-04 3.57e-01 6.19e-02 34 1.80e-01 1.41e-02 1.36e-01 -3.22e-02 

11 -2.73e-02 -1.92e-03 1.88e-01 3.26e-03 35 -6.42e-01 1.17e-02 1.98e-01 6.21e-02 

12 -5.67e-02 7.82e-03 -1.84e-01 7.49e-03 36 8.92e-02 -2.20e-02 -1.53e-01 5.87e-02 

13 1.78e-01 6.15e-03 3.50e-01 3.15e-02 37 8.98e-01 5.27e-02 6.83e-01 -3.04e-02 

14 -7.65e-02 1.20e-01 1.18e-01 -1.25e-02 38 -1.75e+00 5.31e-02 3.79e-01 2.31e-01 

15 3.50e-02 -1.32e-02 -2.33e-01 2.75e-02 39 1.27e+00 -1.36e-02 -1.27e-01 -1.84e-01 

16 1.65e-01 -1.60e-03 7.61e-01 1.04e-01 40 9.84e-01 -4.15e-03 9.44e-01 1.32e-02 

17 -2.55e-01 3.30e-03 3.92e-01 -3.91e-04 41 1.59e+00 3.29e-03 5.41e-01 -2.92e-01 

18 9.51e-03 -3.17e-03 -3.84e-01 4.86e-02 42 -1.44e+00 -9.89e-03 -3.76e-01 2.67e-01 

19 7.87e-02 -1.26e-03 5.14e-01 7.51e-02 43 9.84e-02 -3.64e-03 4.83e-01 7.11e-02 

20 -1.78e-01 -2.31e-03 1.73e-01 3.81e-03 44 2.00e+00 9.41e-04 1.84e-01 -3.23e-01 

21 -6.91e-02 -6.62e-04 -3.70e-01 6.18e-02 45 -9.52e-01 -4.91e-03 -2.55e-01 1.87e-01 

22 2.01e-02 -2.73e-03 3.56e-01 6.24e-02 46 -3.14e-01 -1.11e-02 3.23e-01 1.28e-01 

23 -2.22e-01 -1.68e-03 1.36e-01 1.70e-02 47 1.22e-01 9.00e-03 1.33e-01 -5.63e-02 

24 3.18e-02 -1.55e-03 -2.62e-01 3.70e-02 48 6.67e-02 -5.35e-03 -1.83e-01 2.88e-02 
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Table 8 Premise parameters of axial liquid velocity’s ANFIS prediction model 833 

Input MF σ c 

Sparger 1 3.107e-02 8.611e-02 
Diameter 2 1.996e-02 1.526e-01 

Axial 1 2.215e-01 -1.589e-01 
Coordination 2 4.978e-01 8.053e-01 

 3 4.685e-01 1.798e+00 
 4 9.646e-02 2.793e+00 

Radial 1 5.538e-03 -1.434e-01 
Coordination 2 8.356e-02 -7.177e-02 

 3 6.069e-02 4.728e-02 
 4 9.647e-02 3.347e-01 

 834 
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Table 9 Consequent parameters of axial liquid velocity’s ANFIS prediction model 836 

rule p q r s rule p q r s 

1 7.86e-01 -2.80e-02 5.72e+00 7.48e-01 17 4.05e+00 -2.13e-01 -7.61e+00 -1.70e+00 

2 -1.31e+00 -2.58e-02 -9.81e-01 -1.61e-02 18 -6.29e+00 2.47e-01 1.38e-01 9.77e-01 

3 5.63e-01 3.97e-01 -1.06e+00 2.45e-02 19 6.33e+00 1.36e-03 8.17e-01 -1.04e+00 

4 1.44e+00 -1.61e+00 -1.14e+01 1.80e+00 20 -3.41e+00 -2.88e-01 -2.54e+00 8.45e-01 

5 5.01e-02 -1.27e-02 -5.08e+00 -6.45e-01 21 1.01e+00 -8.13e-03 -4.67e+00 -6.91e-01 

6 -3.00e-02 1.28e-02 1.71e+00 1.16e-01 22 -1.41e+00 1.74e-02 4.10e+00 6.10e-01 

7 1.17e-01 7.43e-03 -2.49e+00 2.31e-01 23 1.46e+00 -2.23e-03 2.36e+00 -3.01e-01 

8 1.71e+00 -7.45e-02 2.01e+01 -2.85e+00 24 2.63e+00 1.01e-01 7.99e+01 -1.27e+01 

9 -6.69e-02 -7.13e-03 -1.14e+01 -1.54e+00 25 5.03e-01 -1.76e-03 -1.08e+01 -1.53e+00 

10 1.34e-01 6.32e-03 1.89e+00 1.33e-01 26 -6.83e-01 5.31e-03 2.87e+00 3.74e-01 

11 -1.31e-01 -3.75e-03 -1.18e+00 1.71e-01 27 5.11e-01 3.22e-03 1.15e+00 -9.72e-02 

12 1.13e+00 -2.02e-02 2.77e+01 -4.11e+00 28 2.05e+00 4.98e-02 5.42e+01 -8.72e+00 

13 3.08e-01 1.54e+00 6.78e+00 -3.15e+00 29 -1.40e+00 5.06e-01 7.71e+00 -1.30e-01 

14 -1.05e-01 -1.78e+00 -2.62e+00 4.44e+00 30 1.50e+00 -4.56e-01 -3.53e+00 6.58e-01 

15 -1.95e-01 -2.42e+00 2.93e+00 6.00e+00 31 -2.47e+00 1.35e-01 2.20e+00 -1.69e-01 

16 -4.68e-01 1.01e+01 -2.75e+01 -2.23e+01 32 -1.12E+00 -6.44E-01 -3.55E+01 6.94E+00 
 837 
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Figures 853 

 854 

Figure 1 Schematic of prediction procedure of bubble column using the combination of CFD and ANFIS. 855 

 856 

Figure 2 Grid intensity of the present CFD study containing 40500 structural elements. 857 
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 858 

Figure 3 Schematic of the ANFIS structure 859 

 860 

Figure 4 Gas hold-up RMSE values of ANFIS methods versus number of parameters. 861 
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 862 

Figure 5 Gas hold-up CC of ANFIS methods versus number of parameters. 863 

 864 

Figure 6 TKE RMSE values of ANFIS methods versus number of parameters. 865 
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 866 

Figure 7 TKE CC of ANFIS methods versus number of parameters. 867 

 868 

Figure 8 Axial velocity RMSE values of ANFIS methods versus number of parameters. 869 
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 870 

Figure 9 Axial velocity CC of ANFIS methods versus number of parameters. 871 

 872 

Figure 10 Overall gas hold up for current simulation. 873 
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 874 

Figure 11 Overall averaged gas hold up for CFD results, Grids 1,3 and those from experiment 875 

and simulation in Pfleger and Becker at various heights. 876 

 877 

Figure 12 Average axial liquid velocity for CFD, Grids 1-3 and those from experiment and 878 

simulation in Pfleger and Becker at height 1.6m. 879 
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 880 

Figure 13(a) Gas hold-up predicted and CFD values in sparger diameter of 0.08m. 881 

 882 

Figure 13(b) Gas hold-up predicted and CFD values in sparger diameter of 0.10m. 883 

 884 
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 885 

Figure 13 (c) Gas hold-up predicted and CFD values in sparger diameter of 0.12m. 886 

 887 

Figure 13 (d) Gas hold-up predicted and CFD values in sparger diameter of 0.14m. 888 
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 889 

Figure 14 (a) Turbulent kinetic energy predicted and CFD values in sparger diameter of 0.08m. 890 

 891 

Figure 14 (b) Turbulent kinetic energy predicted and CFD values in sparger diameter of 0.10m. 892 

 893 
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 894 

Figure 14 (c) Turbulent kinetic energy predicted and CFD values in sparger diameter of 0.12m. 895 

 896 

Figure 14 (d) Turbulent kinetic energy predicted and CFD values in sparger diameter of 0.14m. 897 
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 898 

Figure 15(a) Axial velocity predicted and CFD values in sparger diameter of 0.08m. 899 

 900 

Figure 15(b) Axial velocity predicted and CFD values in sparger diameter of 0.10m. 901 
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 902 

Figure 15(c) Axial velocity predicted and CFD values in sparger diameter of 0.12m. 903 

 904 

Figure 15(d) Axial velocity predicted and CFD values in sparger diameter of 0.14m. 905 

 906 
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Figure 16 Surface rules of selected ANFIS method in gas hold-up at sparger diameters of (a) 907 

0.085 (b) 0.115 and (c) 0.145. 908 

  909 

  

(a) (b) 

 

(c) 
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 910 

  

(a) (b) 

 

(c) 

Figure 17 Surface rules of selected ANFIS method in axial velocity at sparger diameters of (a) 911 

0.085 (b) 0.115 and (c) 0.145. 912 

  913 
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 914 

  

(a) (b) 

 

(c) 

Figure 18 Surface rules of selected ANFIS method in turbulent kinetic energy at sparger 915 

diameters of (a) 0.085 (b) 0.115 and (c) 0.145. 916 

 917 

 918 
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 919 

Figure 19 Contour of gas hold-up at various column heights for ANFIS and CFD method. 920 

. 921 

 922 

 923 

 924 
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