

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Synthesis of Heterocycles and Fused Heterocycles Catalyzed by Nanomaterials

Ahmed H. M. Elwahy^{a*} and Mohamed R. Shaaban^{a,b}

^aChemistry Department, Faculty of Science, Cairo University, Giza, Egypt ^bChemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia

The application of nanomaterials as heterogeneous catalyst for the synthesis of different heterocyclic systems is reviewed.

Contents	Page
1. Introduction	2
2. Specific synthesis of heterocycles catalyzed by nanomaterials	4
2.1. Synthesis of Five-membered heterocycles	4
2.1.1. Five-membered rings with one heteroatom	4
2.1.2. Five-membered rings with two heteroatoms	15
2.1.3. Five-membered rings with three heteroatoms	27
2.2. Synthesis of six-membered heterocycles	37
2.2.1. Six-membered rings with one heteroatoms	37
2.2.2. Six-membered rings with two heteroatoms	42
2.3. Synthesis of fused bicyclic systems	46
2.3.1. Carbocyclic fused heterocycles	46
2.3.2. Benzo fused heterocycles	55
2.3.3.Two fused heterocycles	70
2.4. Synthesis of fused tricyclic systems	90
2.4.1. Fused [5-6-6] system: one bridgehead heteroatom	90
2.4.2. Fused [5-6-6] system: two bridgehead heteroatoms	91
2.4.3. Fused [6-6-5] system: two heteroatoms [1:1]	94
2.4.4. Fused [6-6-6] systems: one heteroatom	95
2.4.5. Fused [6-6-6] system: two heteroatoms [1:1]	98
2.4.6. Fused [6-6-6] system: three heteroatoms [1:2]	100
2.4.7. Fused [6-6-6] system: five heteroatoms [2:1:2]	101
2.4.8. Fused [6-6-7] system: two heteroatoms	102
2.5. Synthesis of fused tetracyclic systems	103
2.5.1. Fused [6-5-5-6] systems: three heteroatoms [1:2]	103
2.5.2. Fused [6-5-6-6] systems: two bridgehead heteroatoms	104
2.5.3. Fused [6-5-6-6] systems: three heteroatoms [1:2]	107

2.6. Synthesis of fused pentacyclic systems	107
2.6.1. Fused [6-6-6-6] systems: one heteroatom	107
2.6.2. Fused [6-6-6-6] systems: three heteroatoms [1:1:1]	109
2.7. Synthesis of miscellaneous fused systems	110
3. Conclusions	111
Acknowledgements	111
References	112

1. Introduction

Heterocycles are an important class of compounds, making up more than half of all known organic compounds. Heterocycles are present in a wide variety of drugs, most vitamins, many natural products, biomolecules, and biologically active compounds, including antitumor, antibiotic, anti-inflammatory, antidepressant, antimalarial, anti-HIV, antimicrobial, antibacterial, antifungal, antiviral, antidiabetic, herbicidal, fungicidal, and insecticidal agents. They have also been frequently found as a key structural unit in synthetic pharmaceuticals and agrochemicals. Most of the heterocycles possess important applications in materials science such as dyestuff, fluorescent sensor, brightening agents, information storage, plastics, and analytical reagents. Heterocycles are also of considerable interest because of their synthetic utility as intermediates, protecting groups, chiral auxiliaries, organic catalysts, and metal ligands in asymmetric catalysts.¹⁻³

The intellectual challenge to invent concise, elegant and conceptually novel synthetic routes to heterocyclic systems has become a steadily increasing driving force both in academia and industry. Therefore, extensive efforts have been directed to develop new and efficient synthetic strategies for these compounds. Among a variety of synthetic protocols, recent researches have been focused on establishment of catalytic approaches to synthesize heterocycles from easily accessible precursors under mild reaction conditions.

In this respect, chemists have made considerable achievements during the twentieth century in heterogeneous catalysis.⁴ Heterogeneous catalysis have the advantage of easy removal of catalyst materials and possible use of high temperatures. Heterogeneous catalysts of metals are composed of two major components: the active metal particles and the support. Typical supports are Al₂O₃, SiO₂, MgO, Fe₂O₃, TiO₂, CeO₂, and many others.⁵ The most widely used conventional method for preparing metal catalysts is the wet impregnation method.⁶ One area of catalysis that is developing at a rapid pace is nano-catalysis.⁷

Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles (NPs) in order to speed up the catalytic process. Metal nanoparticles have a higher surface area so there is increased catalytic activity because more catalytic reactions can occur at the same time. Nanoparticles catalysts can also be easily separated and recycled with more retention of catalytic activity than their bulk counterparts.⁸ These catalysts can play two different roles in catalytic processes: they can be the site of catalysis or they can act as a

support for catalytic processes.⁹ They are typically used under mild conditions to prevent decomposition of the nanoparticles at extreme conditions.¹⁰

Many experimental studies on nanocatalysts have focused on correlating catalytic activity with particle size. In addition, many other factors such as geometry, composition, oxidation state, and chemical/physical environment can play a role in determining NP reactivity. There are many reviews on the multiple NP synthetic modes¹¹, and here we will not systematically detail this aspect per se.

In continuation of our interest in reviewing the different approaches for the synthesis of heterocyclic systems¹²⁻

¹⁶, this review focuses, on the application of nanomaterials as heterogeneous catalyst for the synthesis of heterocyclic systems. A number of other reviews^{17,18} that have appeared, concerning this matter, did not pay special attention to the specific synthesis of such systems in an organized manner with respect to the type of the heterocyclic systems.

The fused heterocycles mentioned in this review are classified according to the type of the ring system. In order to prevent ambiguity, the fused ring systems are determined according to the following criteria:

a) The presence or the absence of bridgehead nitrogen.

b) Number of atoms in each ring (including carbon and hetero atoms) starting with the number of atoms in the ring taken as a prefix.

c) The number of heteroatoms in each ring. Yields of the target molecules reported in the review are those given in the last step in the reaction except when an overall yield was given.

2. Specific synthesis of heterocycles catalyzed by nanomaterials

2.1. Synthesis of five-membered heterocycles

2.1.1. Five-membered rings with one heteroatom

2.1.1.1. Furan

Cano *et al.* used commercially available nano-powder magnetite as an excellent catalyst for the addition of acid chlorides **1** to internal and terminal alkynes **2**, yielding the corresponding chlorovinyl ketones in good yields. The use of the iridium impregnated on magnetite catalyst permits the integration of the chloroacylation process with a second dehydrochlorination annulation process to yield, in one-pot, 3-aryl-2,5-dialkylfurans **3a-e** in good yields, independently of the nature of the starting reagents, and including the heteroaromatic ones (Scheme 1, Table 1).¹⁹

Table 1

Entry	Ar	R	Product	Yield (%) ^a
1	C_6H_5	ⁿ Pr	3a	88
2	C_6H_5	Ме	3b	91
3	4-CIC ₆ H ₄	ⁿ Pr	3с	76
4	4-MeOC ₆ H ₄	ⁿ Pr	3d	94
5	2-Thienyl	<i>"</i> Pr	3e	74

^a Isolated yield after column chromatography

Cao *et al.* reported the regioselective synthesis of α -carbonylfurans **6a-r** from a range of electron-deficient alkynes **4a-f** and 3-substituted 2-yn-ols **5a-h** The reaction proceeded using 10 mol% nano-Cu₂O in *N*,*N*-dimethylformamide at 50 °C (Scheme 2, Table 2, Method A).²⁰

Furthermore, 2,4,5-trisubstituted 3-ynylfurans **6s-v** were obtained in 42–51% yield by nano-Cu₂O-catalyzed reaction of alkynes **4** and 5-arylpenta-2,4-diyn-1-ols **5** (Scheme 2, Table 2, entries 19-22, Method B).²⁰

Scheme 2

Entry	R ¹	R ²	R ³	Method	Product	Yield (%)
1	OEt	C ₆ H ₅	Н	А	6a	71
2	OEt	C ₆ H ₅	Ме	А	6b	67
3	OEt	C_6H_5	C_6H_5	А	6c	63
4	OEt	C_6H_5	3-MeC ₆ H ₄	А	6d	68
5	OEt	C_6H_5	4-MeOC ₆ H ₄	А	6e	65
6	OEt	C_6H_5	4-O2NC6H4	А	6f	66
7	OEt	C_6H_5	2-Pyridyl	А	6g	69
8	$4-MeC_6H_4$	C_6H_5	2-Thienyl	А	6h	62
9	$4-MeC_6H_4$	$4-MeC_6H_4$	Н	А	6i	67
10	$4-MeC_6H_4$	$4-\text{MeC}_6\text{H}_4$	Ме	А	6j	73
11	OEt	$4-MeC_6H_4$	C_6H_5	А	6k	70
12	C_6H_5	Ме	Me	А	61	60
13	C ₆ H ₅	C_6H_5	Н	А	6m	68
14	C_6H_5	C_6H_5	C_6H_5	А	6n	73
15	C_6H_5	C_6H_5	Me	А	60	71
16	C ₆ H ₅	C_6H_5	4-MeOC ₆ H ₄	А	6р	71
17	C_6H_5	C_6H_5	$4-O_2NC_6H_4$	А	6q	67
18	C_6H_5	C_6H_5	2-Thienyl	А	6r	61
19	OEt	C_6H_5	C≡C-C ₆ H ₅	В	6s	42
20	C_6H_5	C_6H_5	$C \equiv C - C_6 H_5$	В	6t	45
21	OEt	OEt	C≡C-C ₆ H ₄ -5-I	Me B	6u	49
22	OMe	ОМе	$C \equiv C - C_6 H_5$	В	6v	51

Tekale *et al.* have successfully developed an efficient protocol for the one-pot three-component synthesis of 3,4,5-trisubstituted furan-2(5*H*)-ones **10a-I** from aldehydes **7a-h**, amines **9a-e** and dimethylacetylene dicarboxylate (DMAD) **8** using nano-crystalline ZnO as a reusable heterogeneous catalyst. The catalyst can be recycled several times with consistent catalytic activity (Scheme 3, Table 3).²¹

Scheme 3

R¹CHO
+
$$R^2NH_2$$
Nano-ZnO (5 mol%),
EtOH : H₂O (1:1), 90 °C, 2.5 h
MeOOC
NHR²

7a-h
8
9a-e
10a-I

Entry	R ¹	R ²	Product	Yield (%)
1	C ₆ H ₅	C_6H_5	10a	94
2	C ₆ H ₅	$4-MeC_6H_4$	10b	95
3	4-MeOC ₆ H ₄	C_6H_5	10c	88
4	C ₆ H ₅	$4-FC_6H_4$	10d	84
5	4-CIC ₆ H ₄	C_6H_5	10e	89
6	2-CIC ₆ H ₄	C_6H_5	10f	87
7	3-MeOC ₆ H ₄	C_6H_5	10g	85
8	$4-MeC_6H_4$	C_6H_5	10h	84
9	C ₆ H ₅	4⁻ ⁱ PrC ₆ H₄	10i	88
10	C_6H_5	$2-FC_6H_4$	10j	84
11	$2,4$ - $Cl_2C_6H_3$	2-FC ₆ H ₄	10k	85
12	2,4-(MeO) ₂ C ₆ H ₃	C_6H_5	101	83

The plausible mechanism for the ZnO nanoparticle catalyzed synthesis of furan 2(5H)-ones **10a-l** suggests initially the formation of enamine from amine **9** and DMAD by ZnO promotion. ZnO polarizes the carbonyl group of aldehyde **7** to form polarized adduct which reacts with the enamine followed by cyclization with the elimination of methanol molecule to afford the corresponding furan-2(5H)-ones **10a-l**.

2.1.1.2. Pyrrole

Hosseini-Sarvari *et al.* reported an environmentally benign method for the preparation of *N*-substituted pyrroles **12a-I** from one-pot condensation reaction of 2,5-dimethoxytetrahydrofuran **11** with amines **9** in the presence of nano sulfated titania (Fig. 1) under solvent-free conditions (Scheme 4, Table 4, Method A).²². As shown in Table 4, aromatic amines with electron-donating groups or electron-withdrawing groups are both effective in the Clauson-Kaas reaction, giving desired pyrroles **12a-I** in high yield.

There are many Lewis and Brønsted acid sites in the sulfated metallic oxides. The superacidity of these materials is attributed to the Brønsted acid sites, created or already existing, whose acidity is increased by the presence of neighboring strong Lewis acid sites. The strength of these Lewis acid sites is due to an inductive effect exercised by sulfate on the metallic cation, which becomes more deficient in electrons²³, as seen in the Fig. 1. Thus, nano sulfated titania represents a novel type of Lewis acid catalyst.

Fig. 1

Polshettiwar and Varma prepared nano-organocatalyst (Fig. 2) by supporting totally benign and naturally abundant glutathione on magnetic nanoparticles. The catalyst showed excellent activity for microwave-assisted synthesis of *N*-substituted pyrroles **12m-ab** by the reaction of a variety of amines **9** with tetrahydro-2,5-

dimethoxyfuran **11** (Scheme 4, Table 4, Method B). The rates were essentially the same for both the aliphatic or aromatic nature of the amines, showing the high activity of the catalyst.²⁴

Fig. 2

Ma *et al.* reported a facile approach to prepare magnetic nanoparticle-supported antimony catalyst $(Fe_2O_3@SiO_2-Sb-IL, Fig. 3)$. This catalyst exhibited excellent catalytic efficiency in Clauson-Kaas reaction of amines **9** to 2,5-dimethoxytetrahydrofuran **11** in aqueous medium to afford the corresponding *N*-substituted pyrroles **12b**, **12f**, **12k**, **12l**, **12u** and **12ac-bm** (Scheme 4, Table 4, Method C).²⁵

γ-Fe₂O₃@SiO₂-Sb-IL

Fig. 3

 $RNH_2 + MeO OMe \xrightarrow{Methods A-C} N R$ 9 11 12a-bm

Method A²²: Nano sulfated TiO₂/ Oil bath/ 120 °C Method B²⁴: Nano organocatalyst / H₂O/ MW/ 140 °C, 20 min Method C²⁵: γ -Fe₂O₃@SiO₂-Sb-IL/ H₂O/ Δ

Table 4

Entry	R	Method	Product	Yield (%)
1	3-MeC ₆ H ₄	А	12a	98
2	$4-MeC_6H_4$	А	12b	90
3	2-EtC ₆ H ₄	А	12c	98
4	3-MeOC ₆ H ₄	А	12d	95
5	2-HOC ₆ H ₄	А	12e	90
6	3-HOC ₆ H ₄	А	12f	95
7	4-HOC ₆ H ₄	А	12g	95
8	2-HO-5-MeC ₆ H	3 A	12h	95
9	4-NCC ₆ H ₄	А	12i	95
10	2-F ₃ CC ₆ H ₄	А	12j	95
11	4-BrC ₆ H ₄	А	12k	95
12	4-H ₂ NC ₆ H ₄	А	121	90
13	$-CH_2C_6H_5$	В	12m	92
14	-CH(Me)C ₆ H ₅ (3	S) B	12n	90
15	-CH(Me)C ₆ H ₅ (<i>I</i>	R) В	12o	90
16	-(CH ₂) ₃ C ₆ H ₅	В	12p	86
17	C ₆ H ₅	В	12q	88
18	3-EtOOCC ₆ H ₄	В	12r	85
19	2-MeOCC ₆ H ₄	В	12s	82
20	Pyridyl-CH ₂ -	В	12t	78
21	NHOCC ₆ H ₅	В	12u	72
22	-OCC ₆ H ₅	В	12v	NR
23	NH-4-O ₂ NC ₆ H ₄	В	12w	NR
24	ⁱ Bu	В	12x	90
25	-+ ₇ _/ ₁₈	В	12y	84
26	-(CH ₂) ₃ OH	В	12z	86
27	-(CH ₂) ₃ NH ₂	В	12aa	85
28	-(CH ₂) ₃ NH ₂	В	12ab	72

Entry	R I	Method	Product	Yield (%)
29	C ₆ H ₅	С	12ac	95
30	3-HOC ₆ H ₄	С	12f	93
31	2-MeOC ₆ H ₄	С	12ad	85
32	4-MeOC ₆ H ₄	С	12ae	96
33	4-EtOC ₆ H ₄	С	12af	96
34	2-MeC ₆ H ₄	С	12ag	89
35	4-MeC ₆ H ₄	С	12b	94
36	3,4-Me ₂ C ₆ H ₃	С	12ah	96
37	2,5-Me ₂ C ₆ H ₃	С	12ai	90
38	2,6-Me ₂ C ₆ H ₃	С	12aj	87
39	2,6- ^{<i>i</i>} Pr ₂ C ₆ H ₃	С	12ak	75
40	4- ^t BuC ₆ H ₄	С	12al	92
41	2-FC ₆ H ₄	С	12am	81
42	4-FC ₆ H ₄	С	12an	82
43	2,4-F ₂ C ₆ H ₃	С	12ao	85
44	3,4-F ₂ C ₆ H ₃	С	12ap	90
45	3-CIC ₆ H ₄	С	12aq	86
46	4-CIC ₆ H ₄	С	12ar	87
47	3-CI-4-MeC ₆ H ₃	С	12as	92
48	3-CI-4-FC ₆ H ₃	С	12at	89
49	2,4,5-Cl ₃ C ₆ H ₂	С	12au	88
50	2-BrC ₆ H ₄	С	12av	82
51	3-BrC ₆ H ₄	С	12aw	85
52	4-BrC ₆ H ₄	С	12k	88
53	4-IC ₆ H ₄	С	12ax	89
54	2-O ₂ NC ₆ H ₄	С	12ay	80
55	4-O ₂ NC ₆ H ₄	С	12az	85
56	4-AcC ₆ H ₄	С	12ba	89
57	3-F ₃ CC ₆ H ₄	С	12bb	84
58	4-F ₃ CC ₆ H ₄	С	12bc	83
59	4-EtOOCC ₆ H ₄	С	12bd	90
60	2-Naphthyl	С	12be	93
61	2-(4-Bromonaphthyl)	С	12bf	95
62	2-Fluorenyl	С	12bg	93
63	2-Pyridyl	С	12bh	71
64	6-Picolyl	С	12bi	70
65	2-Pyrimidyl	С	12bj	85
66	2-(5-Methylbenzthiazol	yl) C	12bk	80
67	NH-COC ₆ H ₄	С	12u	90
68	CO-4-H ₂ NC ₆ H ₄	С	12bl	92
69	4-NH ₂ C ₆ H ₄	С	121	94
70	2-(5-aminonaphthyl)	С	12bm	100

N-substituted pyrroles **14a-g** have also been prepared from one-pot Paal-Knorr condensation of 2,5-diketone **13** and the appropriate aromatic amine **9** using nano-crystalline sulfated zirconia (SZ) as the catalyst in ethanol at moderate temperature (Scheme 5, Table 5).²⁶

Scheme 5

Table 5

Li *et al.* reported one-pot three-component synthesis of multisubstituted pyrroles **17a-av** by the reaction of amines **9**, nitroolefins **16** and 1,3-dicarbonyl compounds **15** catalyzed by novel magnetic nano-CoFe₂O₄ supported Sb ([CoFe₂O₄@SiO₂-DABCO-Sb], Fig. 4), (Scheme 6, Table 6). The magnetic heterogeneous catalyst could be easily recovered using an external magnet and reused many times without significant loss of catalytic activity.²⁷

CoFe₂O₄@SiO₂-DABCO-Sb

CoFe₂O₄@SiO₂

Fig. 4

Entry	R ¹	R ²	R ³	R^4	Ar	Product	Yield (%)
1	C ₆ H ₅	Ме	Ме	Н	CeHe	17a	93
2	C_6H_5	Me	Me	Me	CeH₂	17b	80
3	C_6H_5	Me	Me	Me	4-MeC _o H ₄	17c	87
4	C_6H_5	Me	Me	Me	4-FC-H	17d	86
5	C_6H_5	Me	Me	Me	2-CIC ₂ H ₄	17e	75
6	C_6H_5	Me	Me	Me	2-0106114 3-0106H	17f	78
7	C_6H_5	Me	Me	Me	4-CIC ₀ H ₄	17a	85
8	C ₆ H ₅	Me	Me	Me	4-0-0NCeH4	17ĥ	75
9	C ₆ H ₅	Me	Me	Me	2-Furvl	17i	88
10	C ₆ H ₅	Me	Me	Me	2-Thienvl	1 <i>7</i> i	82
11	C ₆ H ₅	Ме	Ме	Ме	2-Naphthyl	17k	47
12	C_6H_5	Me	Me	Et	C _o H _e	171	80
13	C_6H_5	Me	Me	Et	4-MeC₀H₄	17m	80
14	C_6H_5	Me	Me	Et	2-Furvl	17n	76
15	$C_{6}H_{5}$	Me	Me	Et	2-Thienvl	170	78
16	4 ^{-ł} ̃BuC ₆ H₄	Me	Me	H	C _a H _a	17p	92
17	2-Naphthyl	Me	Me	н		17a	75
18	2-Fluorenyl	Me	Me	н		17r	80
19	4-MeC ₆ H₄	Me	Me	Me		17s	82
20	4-MeOČ _e H₄	Me	Me	Me		17t	88
21	4-FC _e H₄	Mo	Mo	Mo		170	82
22	4-CIC ₆ H₄	Me	Me	Me		170	75
23	2-BrC _e H₄	Mo	Mo	Mo		17w	70
24	3-BrC _e H₄	Mo	Mo	Mo		17x	70
25	4-BrC _e H₄	Mo	Mo	Mo		17x	77
26	4-E-CC-H	Mo	Mo	Mo		177	51
27	4-E-COC-H	Mo	Mo	Mo		172	51
28	2-Furvl-CH	Mo	Mo	Mo	C ₆ H ₅	17aa 17ab	60
29	2-Fluorenvl	Mo	Me	Mo		1720	90 72
30	Allyl	Mo	Mo	Mo	C ₆ H ₅	17ac	73
31	Bn	Mo	Mo	Mo	C ₆ H ₅	17au 17ao	91
32				Ma	C ₆ H ₅	17ae 17af	90
33		ivie Ma	ivie Ma	ivie	C ₆ H ₅	1701	92
34	^c Pr	Me	ivie Mo	Me	C ₆ H ₅	17ag	87
25	⁰ Pn	ivie Ma	IVIE Ma	Me	C ₆ H ₅	17an 17ai	89
36	ⁿ Dr	ivie Ma	ivie Ma	ivie	C ₆ H ₅	1701	72
30	nBu	ivie Ma	ivie Ma	ivie	C ₆ H ₅	17aj	88
20	C _a H _a	ivie Ma		ivie	C ₆ H ₅	17ak	86
30		Me	OMe	ivie	C ₆ H ₅	17ai	82
39		Me		ivie	C ₆ H ₅	1/am	85
40		Me		ivie	C ₆ H ₅	1/an	80
41		41	O-allyl	Me	C ₆ H ₅	1/ao	78
42 12			OMe	Me	C ₆ H ₅	1/ap	76
43		ме	OCMe ₃	Me	C ₆ H ₅	1/aq	83
44 1 F		Ме	$OCH_2CH(CH_3)_2$	Me	C ₆ H ₅	1/ar	81
40	∠-ruiyi-0⊓2 Pn	ме	Me	Et	C ₆ H ₅	17as	89
40		Me	Me	Et	C ₆ H ₅	17at	86
47	n NDr	Ме	Me	Et	C ₆ H ₅	1/au	82
48		Me	Me	Et	C ₆ H ₅	17av	83

Sabbaghan and Ghalaei *et al.* reported a simple procedure for synthesis of polysubstituted pyrroles **20a-m** by the three-component reaction of amines **9**, phenacyl bromide **18** and dialkyl acetylenedicarboxylates **19** under solvent free conditions using nano structures of ZnO as catalyst (Scheme 7, Table 7).²⁸

Scheme 7

Table	7
-------	---

Entry	R ¹	R ²	R ³	Product	Yield (%)
1	Et	C_6H_5	COOMe	20a	90
2	Et	C_6H_5	COOEt	20b	88
3	Bn	C_6H_5	COOMe	20c	90
4	Bn	C_6H_5	COOEt	20d	94
5	4-CIC ₆ H ₂ -CH ₂ -	C_6H_5	COOEt	20e	92
6	4-MeC ₆ H ₂ -CH ₂ -	C_6H_5	COOEt	20f	86
7	ⁿ Hexyl	C_6H_5	COOMe	20g	92
8	ⁿ Hexyl	C_6H_5	COOEt	20h	86
9	Et	$4-\text{MeOC}_6\text{H}_4$	COOEt	20i	75
10	Et	4-CIC ₆ H ₄	COOMe	20j	78
11	C_6H_5	C_6H_5	COOEt	20k	0
12	4-MeOC ₆ H ₅	C_6H_5	COOEt	201	0
13	ⁿ Hexyl	COOEt	COOMe	20m	0

ZnO nano particles catalyze the reaction through its Lewis acid sites (Zn^{2+}) and Lewis basic sites (O^{2-}) .^{29,30} In this reaction, the Zn²⁺ sites are interacting with carbonyl groups in acetylenic compound and phenacyl bromide and Lewis basic sites $[O^{2-}]$ taking up a proton from the generated enamine to give the pyrrole structure.

A magnetic nanoparticle $CoFe_2O_4$ supported molybdenum catalyst ([$CoFe_2O_4@SiO_2$ -PrNH₂-Mo(acac)_2]), (Fig. 5), was prepared and found to be a highly active and efficient catalyst for a one-pot synthesis of polysubstituted pyrroles **22a-aq** *via* a four-component reaction of aldehydes **7**, amines **9**, 1,3-dicarbonyl compounds **15** and nitromethane **21** (Scheme 8, Table 8). The catalyst could be easily recovered by simple magnetic decantation and reused five times without significant loss of activity.³¹

Table 8

Entry	R ¹	R ²	R ³	R ⁴	Product	Yield (%)
1	C ₆ H ₅	Me	Ме	C ₆ H ₅	22a	90
2	4-MeOC ₆ H ₄	Ме	Ме	C_6H_5	22b	86
3	4-MeC ₆ H ₄	Me	Me	C_6H_5	22c	92
4	4-FC ₆ H ₄	Me	Me	C_6H_5	22d	90
5	4-CIC ₆ H ₄	Ме	Ме	C_6H_5	22e	80
6	4-BrC ₆ H₄	Ме	Ме	C_6H_5	22f	82
7	$4 - O_2 NC_6 H_4$	Me	Me	C_6H_5	22g	50
8	$4-F_3COC_6H_4$	Ме	Ме	C_6H_5	22h	80
9	1-Naphthyl	Me	Me	C_6H_5	22i	48
10	2-Fluorenyl	Me	Me	C_6H_5	22j	83
11	Allyl	Ме	Ме	C_6H_5	22k	88
12	Bn	Ме	Ме	C_6H_5	221	90
13	4-MeC ₆ H ₄ -CH ₂ -	Ме	Ме	$C_{6}H_{5}$	22m	91
14	4-FC ₆ H ₄ -CH ₂ -	Ме	Ме	$C_{6}H_{5}$	22n	87
15	C ₆ H ₄ -CH ₂ -CH ₂ -	Ме	Ме	$C_{6}H_{5}$	220	91
16	4-HOC ₆ H ₄ -CH ₂ -CH ₂ -	Ме	Ме	C_6H_5	22p	90
17	°Pr	Ме	Ме	C ₆ H ₅	22q	90
18	^с Рп	Ме	Ме	C_6H_5	22r	86
19	ⁿ Pr	Ме	Ме	4-FC ₆ H₄	22s	90
20	C ₆ H ₅	Ме	Ме	4-(Me ₂)ĊHOC ₆ H ₄	22t	81
21	C _e H ₅	Ме	Ме	4-FC ₆ H₄	22u	87
22	C ₆ H ₅	Ме	Ме	4-CIČ ₆ H₄	22v	86
23	C ₆ H ₅	Ме	Ме	$4-BrC_{6}H_{4}$	22w	85
24	C _e H ₅	Ме	Ме	4-O ₂ NČ ₆ H₄	22x	83
25	C ₆ H ₅	Ме	Ме	$4-F_3CC_6H_4$	22y	85
26	C ₆ H ₅	Ме	Ме	2-Furyl	22z	60
27	C ₆ H ₅	Ме	Ме	2-Thienyl	22aa	71
28	C _e H ₅	Ме	Me	1-Naphthyl	22ab	80
29	4-MeC ₆ H₄-CH₂-	Ме	Ме	2-Thienyl	22ac	80
30	4-FC ₆ H₄	Ме	Me	2-Thienyl	22ad	75
31	4-FC ₆ H ₄	Me	Me	2-(5-Methylthienyl) 22ae	78
32	4-CIC ₆ H ₄	Me	Me	2-(5-Methylthienyl) 22af	70
33	2-Fluorenyl	Me	Me	2-(5-Methylthienyl) 22ag	80
34	Bn	Me	Me	2-Thienyl	22ah	80
35	C ₆ H ₄ -CH ₂ -CH ₂ -	Me	Me	4-MeC ₆ H ₄	22ai	88
36	C_6H_4 - CH_2 - CH_2 -	Me	Me	4-FC ₆ H ₄	22aj	89
37	C_6H_4 - CH_2 - CH_2 -	Me	Me	3-F ₃ CC ₆ H ₄	22ak	85
38	°Pr	Ме	Ме	4 ^{-t} BuC ₆ H ₄	22al	88
39	C ₆ H ₅	Me	OMe	C ₆ H ₅	22am	80
40	C ₆ H ₅	Me	OEt	C_6H_5	22an	82
41	C ₆ H ₅	Ме	O(CH ₂) ₂ OMe	C_6H_5	22ao	80
42	C ₆ H ₅	Me	O-allyl	C_6H_5	22ap	78
43	C ₆ H ₅	Et	OMe	C ₆ H ₅	22aq	80

2.1.2. Five-membered rings with two heteroatoms

2.1.2.1. Pyrazole

Emtiazi *et al.* developed a convenient and direct approach for the preparation of pyrazole derivatives **24a-q** in good yields by condensing 1,3-diketones **15** and hydrazines **23** in the presence of nano-silica sulfuric acid. Investigation was made of a series of aromatic hydrazines bearing either electron-donating or electron-withdrawing groups on the aromatic ring (Scheme 9, Table 9, Method A). The substitution group on the phenyl ring did not affect the reaction significantly neither in the product yield nor in the reaction rate.³²

Various hydrazines and hydrazides reacted also efficiently with 1,3-diketones in the presence of supported glutathione on magnetic nanoparticles (Fig. 2) under microwave irradiation to give the pyrazoles **24r-y** in good yields (Scheme 9, Table 9, Method B).²⁴

Scheme 9

Table 9

Entry	R ¹	R ²	R ³	R^4	Product	Method	Yield (%)
1	2,4-(O ₂ N) ₂ -C ₆ H ₃	Me	Н	Ме	24a	А	85
2	2,4-(O ₂ N) ₂ -C ₆ H ₃	C_6H_5	н	Me	24b	А	92
3	2,4-(O ₂ N) ₂ -C ₆ H ₃	C_6H_5	н	C_6H_5	24c	А	92
4	2,4-(O ₂ N) ₂ -C ₆ H ₃	Ме	CI	Ме	24d	А	89
5	C_6H_5	C_6H_5	н	C_6H_5	24e	А	93
6	C_6H_5	Ме	CI	Me	24f	А	93
7	Н	C_6H_5	н	Me	24g	А	87
8	4-BrC ₆ H ₄	Me	CI	Me	24h	А	94
9	4-BrC ₆ H ₄	C_6H_5	н	C_6H_5	24i	А	90
10	4-BrC ₆ H ₄	C_6H_5	Н	Me	24j	А	92
11	4-MeC ₆ H ₄	C_6H_5	н	C_6H_5	24k	А	87
12	4-MeC ₆ H ₄	C_6H_5	н	Me	241	А	89
13	4-MeOC ₆ H ₄	C_6H_5	н	C_6H_5	24m	А	74
14	4-MeOC ₆ H ₄	C_6H_5	н	Me	24n	А	88
15	4-MeC ₆ H ₄ SO ₂	Ме	н	Me	240	А	83
16	4-MeC ₆ H ₄ SO ₂	C_6H_5	н	C_6H_5	24p	А	83
17	$4-MeC_6H_4SO_2$	C_6H_5	Н	Me	24q	А	84
18	C_6H_5	Ме	н	Me	24r	В	96
19	C_6H_5	Ме	CI	Me	24s	В	80
20	C_6H_5	Ме	Et	Me	24t	В	84
21	4-CIC ₆ H ₄	Ме	н	Me	24u	В	82
22	4-CIC ₆ H ₄	Ме	CI	Me	24v	В	78
23	4-CIC ₆ H ₄	Ме	Et	Me	24w	В	84
24	C ₆ H ₅ CO	Ме	Н	Me	24x	В	88
25	2-Furoyl	Ме	Н	Me	24y	В	84

2.1.2.2. Imidazole

Nano-SnCl₄·SiO₂ as a solid Lewis acid has been synthesized by the reaction of nano-SiO₂ and SnCl₄. The catalyst has been found to be an extremely efficient catalyst for the preparation of 2,4,5-trisubstituted

imidazoles **26** *via* three-component reactions of benzyl **25**, aldehydes **7** and ammonium acetate under mild conditions (Scheme 10, Table 10, Method A). Furthermore, the catalyst could be recovered conveniently and reused for at least three times.³³

Safari and Zarnegar also synthesized trisubstituted imidazoles **26** in high yield in the presence of sulphamic acid functionalized magnetic Fe_3O_4 nanoparticles (SA–MNPs, Fig. 6) as a novel solid acid catalyst. The reaction proceeds *via* a three component reaction of benzil **25**, aromatic aldehyde **7** and ammonium acetate under solvent-free classical heating conditions or using microwave irradiation (Scheme 10, Table 10, Method B). The heterogeneous catalyst could be recovered easily and reused many times without significant loss of catalytic activity.³⁴

Fig.6

Nano-TiCl₄·SiO₂ has been found to be an extremely efficient catalyst for the preparation of 2,4,5-trisubstituted imidazoles **26** *via* similar three-component reactions (Scheme 10, Table 10, Method C). Nano-TiCl₄·SiO₂ as a solid Lewis acid has been synthesized by reaction of nano-SiO₂ and TiCl₄.³⁵

Zarnegar and Safari prepared chitosan-coated Fe₃O₄ nanoparticles (Fe₃O₄@CS, Fig. 7) through in *situ* coprecipitation of Fe²⁺ and Fe³⁺ ions *via* NH₄OH in an aqueous solution of chitosan and investigated their catalytic activity in the synthesis of 2,4,5-trisubstituted imidazoles **26** by a similar one-pot reaction (Scheme 10, Table 10, Method D).³⁶

Fig. 7

Teimouri and Chermahini reported a synthesis of 2,4,5-trisubstituted imidazoles **26** by a similar three components cyclocondensation reaction using nano-crystalline sulfated zirconia (SZ) as catalyst in ethanol at moderate temperature (Scheme 10, Table 10, Method E). It can be seen that electron donating and electron withdrawing groups does not show any difference on the reaction yields.³⁷

Sulfonic acid functionalized SBA-15 nanoporous material (SBA-Pr-SO₃H) with a pore size of 6 nm was found to be a green and effective solid acid catalyst in the one-pot synthesis of 2,4,5-trisubstituted imidazoles **26** under solvent-free conditions (Scheme 10, Table 10, Method F).³⁸

Keivanloo *et al.* used boehmite nanoparticles (AlOOH NPs) as a highly active and green catalyst for the synthesis of highly substituted imidazoles **26** under solvent-free conditions (Scheme 10, Table 10, Method G).³⁹

Scheme 10

Entry	R ¹	R ²	Product	Method	Yield (%)
1	C ₆ H ₅	Н	26a	А	95
2	4-MeC ₆ H ₄	Н	26b	А	83
3	$4-O_2NC_6H_4$	Н	26c	А	96
4	4-CIC ₆ H ₄	Н	26d	А	95
5	2-MeOC ₆ H ₄	Н	26e	А	80
6	4-MeOC ₆ H ₄	Н	26f	А	85
7	2-CIC ₆ H ₄	Н	26g	А	89
8	$2,4\text{-}Cl_2C_6H_4$	Н	26h	А	91
9	4-BrC ₆ H ₄	Н	26i	А	92
10	2-O ₂ NC ₆ H ₄	Н	26j	А	87
11	3-02NC6H4	Н	26k	А	93
12	2-BrC ₆ H ₄	Н	261	А	90
13	C_6H_5	Н	26a	В	85 (96)
14	4-MeC ₆ H ₄	Н	26b	В	87 (99)
15	3-MeC ₆ H ₄	Н	26m	В	76(95)
16	4-MeC ₆ H ₄	Н	26b	В	82(98)
17	4-CIC ₆ H ₄	Н	26d	В	78(95)
18	3-CIC ₆ H ₄	Н	26n	В	83(95)
19	4-BrC ₆ H ₄	Н	26i	В	88(93)
20	3-BrC ₆ H ₄	Н	260	В	78(95)
21	2-Naphthyl	Н	26p	В	77(94)
22	$2,4$ - $Cl_2C_6H_3$	Н	26q	В	79(94)
23	2-Thienyl	Н	26r	В	75(95)
24	3-0 ₂ NC ₆ H ₄	Н	26k	В	85(93)
25	$4-\text{Me}_2\text{NC}_6\text{H}_4$	Н	26s	В	77(96)
26	2-HOC ₆ H ₄	Н	26t	В	85(93)
27	3-HOC ₆ H ₄	Н	26u	В	90(93)
28	C_6H_5	Н	26a	С	90
29	$4-Me_2NC_6H_4$	Н	26s	С	91
30	4-MeOC ₆ H ₄	Н	26f	С	92
31	2-MeOC ₆ H ₄	Н	26e	С	89
32	2-CIC ₆ H ₄	Н	26g	С	88
33	4-CIC ₆ H ₄	Н	26d	С	89
34	$2,4\text{-}\text{Cl}_2\text{C}_6\text{H}_3$	Н	26q	С	84
35	4-BrC ₆ H ₄	Н	26i	С	89
36	2-O ₂ NC ₆ H ₄	Н	26j	С	85
37	3-0 ₂ NC ₆ H ₄	Н	26k	С	87
38	4-O ₂ NC ₆ H ₄	Н	26c	С	89
39	4-MeC ₆ H ₄	Н	26b	С	-

* In Method B MW yields % were indicated between paranthes

Entry	R ¹	R ²	Product	Method	Yield (%)
40	C ₆ H ₅	н	26a	D	95
41	4-MeOC ₆ H ₄	н	26f	D	90
42	3-MeOC ₆ H ₄	н	26v	D	92
43	4-CIC ₆ H ₄	н	26d	D	96
44	3-MeOC ₆ H ₄	н	26v	D	98
45	2-Naphthyl	н	26 p	D	98
46	3-MeOC ₆ H ₄	н	26v	D	98
47	C ₆ H ₅	OMe	26w	D	95
48	4-MeOC ₆ H ₄	OMe	26x	D	90
49	2-Naphthyl	OMe	26y	D	95
50	3-MeOC ₆ H ₄	F	26vz	D	98
51	2-Naphthyl	F	26aa	D	98
52	C ₆ H ₅	н	26a	Е	87
53	4-CIC ₆ H ₄	н	26d	Е	92
14	4-BrC ₆ H ₄	н	26 i	Е	81
55	$4-O_2NC_6H_4$	н	26c	Е	80
56	4-HOC ₆ H ₄	н	26ab	Е	82
57	4-MeC ₆ H ₄	н	26a	Е	93
58	4-MeOC ₆ H ₄	н	26f	Е	85
59	C ₆ H ₅	н	26a	F	100
60	4-CIC ₆ H ₄	н	26d	F	99
61	4-MeOC ₆ H ₄	н	26f	F	98
62	4-HOC ₆ H ₄	н	26a c	F	80
63	$4-Me_2NC_6H_4$	н	26s	F	93
64	3-O ₂ NC ₆ H ₄	Н	26k	F	87
65	2-HOC ₆ H ₄	н	26t	F	80
66	C ₆ H ₅	Н	26a	G	98
67	3-O ₂ NC ₆ H ₄	Н	26k	G	79
68	4-MeC ₆ H ₄	н	26b	G	88
69	2-CIC ₆ H ₄	н	26g	G	95
70	4-CIC ₆ H ₄	н	26d	G	86
71	$3,4-CI_2C_6H_3$	н	26a d	G	83
72	4-MeOC ₆ H ₄	н	26f	G	85
73	2-MeOC ₆ H ₄	Н	26e	G	78

Teimouri and Chermahinib reported a versatile and efficient synthesis of 1,2,4,5-tetrasubstituted imidazoles **27** in high yields by four component cyclocondensation of benzyl **25**, aniline **9**, ammonium acetate and various aromatic aldehydes **7** using nano-crystalline sulfated zirconia (SZ) as a catalyst in ethanol at moderate temperature (Scheme 11, Table 11, Method A).³⁷

Ziarani *et al.* used sulfonic acid functionalized SBA-15 nanoporous material (SBA-Pr-SO₃H) with a pore size of 6 nm as an effective catalyst in the synthesis of a variety of tetrasubstituted imidazoles **27** (Scheme 11, Table 11, Method B).³⁸

Montazeri *et al.* reported also a four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles **27** using nano Fe₃O₄ as magnetically recyclable catalyst under solvent free conditions (Scheme 11, Table 11, Method C).⁴⁰

Mirjalili *et al.* applied Nano-TiCl₄.SiO₂ (Fig. 8) as an efficient catalyst for synthesis of 1,2,4,5-triphenylimidazoles **27** with good to excellent yields *via* a similar four-component reaction (Scheme 11, Table 11, Method D).⁴¹

Fig. 8

Keivanloo *et al.* reported the synthesis of 1,2,4,5-tetrasubstituted imidazoles **27** catalyzed by oboehmite nanoparticles (AlOOH NPs) under solvent-free conditions (Scheme 11, Table 11, Method E). The results show that the reactions are equally facile with both electron donating and electron-withdrawing substituents present on both the aromatic aldehydes **7** and aromatic amines **9**, resulting in good-to high yields of the corresponding imidazoles **27**. Aliphatic amines also reacted efficiently, affording the desired products in 78–90% yield.³⁹

Ray *et al.* prepared a porous silica nano particle (PSNP-CA, Fig. 9), by post synthesis grafting of COOH functionalized organosilane on porous silica nano particle by using surface hydroxyl groups as anchor point. This catalyst was found to promote the chemoselective synthesis of 1,2,4,5-tetrasubstituted imidazole **27** in water during a similar four multi-component reaction (Scheme 11, Table 11, Method F).⁴²

Fig.9

Entry	R ¹	R ²	R3	Method I	Product	Yield (%)
1	C ₆ H ₅	C ₆ H ₅	н	А	27a	87
2	4-CIC ₆ H ₄	C_6H_5	н	А	27b	92
3	4-BrC ₆ H ₄	C_6H_5	н	А	27 c	85
4	4-0 ₂ NC ₆ H ₄	C ₆ H ₅	Н	А	27 d	76
5	4-HOC ₆ H ₄	C ₆ H ₅	Н	А	27e	85
6	4-MeC ₆ H ₄	C ₆ H ₅	н	А	27 f	87
7	4-MeOC ₆ H ₄	C ₆ H ₅	н	А	27g	80
8	4-CIC ₆ H ₄	C ₆ H ₅	Н	В	27b	100
9	4-CIC ₆ H ₄	Bn	н	В	27h	100
10	4-MeOC ₆ H ₄	C_6H_5	н	В	27g	97
11	4-MeC ₆ H ₄	C_6H_5	н	В	27 f	99
12	4-MeC ₆ H ₄	Bn	н	В	27 i	95
13	4-Me ₂ NC ₆ H ₄	Bn	Н	В	27j	99
14	3-0 ₂ NC ₆ H ₄	C ₆ H ₅	н	В	27 k	95
15	3-MeOC ₆ H ₄	Bn	н	В	271	84
16	C ₆ H ₅	C_6H_5	н	С	27a	94
17	C ₆ H ₅	Bn	н	С	27 m	92
18	4-O ₂ NC ₆ H ₄	4-MeC ₆ H ₄	н	С	27 n	80
19	4-CIC ₆ H ₄	C_6H_5	Н	С	27b	85
20	4-MeC ₆ H ₄	Bn	н	С	27 i	75
21	4-MeC ₆ H ₄	C_6H_5	н	С	27 f	91
22	4-CIC ₆ H ₄	4-O ₂ NC ₆ H ₄	Н	С	27 o	79
23	4-O ₂ NC ₆ H ₄	Bn	н	С	27p	81
24	4-MeC ₆ H ₄	Bn	н	С	27 i	87
25	4-CIC ₆ H ₄	Bn	н	С	27h	82
26	4-MeOC ₆ H ₄	C_6H_5	н	С	27g	92
27	4-MeOC ₆ H ₄	Bn	н	С	27q	93
28	C_6H_5	Ме	Н	С	27 r	80

Entry	R ¹	R ²	R ³	Method	Product	Vield (%)
29	Coll-	Call-				
20		0 ₆ , 1 ₅	Н	D	27a	82
21	С ₆ п ₅		Н	D	27m	84
31	С ₆ п ₅	-nexyi	Н	D	27s	64
32	C ₆ H ₅	Et	Н	D	27t	70
33	4-CIC ₆ H ₄	C ₆ H ₅	Н	D	27b	81
34	4-CIC ₆ H ₄	Bn	Н	D	27h	79
35	2-CIC ₆ H ₄	Bn	н	D	27u	83
36	4-HOC ₆ H ₄	Bn	Н	D	27v	68
37	4-MeC ₆ H ₄	C ₆ H ₅	н	D	27f	73
38	4-MeC ₆ H ₄	Bn	Н	D	27i	91
39	4-MeC ₆ H ₄	^c Hexyl	н	D	27w	75
40	3-MeOC ₆ H ₄	Bn	н	D	271	91
41	2-O ₂ NC ₆ H ₄	Bn	н	D	27x	86
42	ⁱ Pr	Bn	н	D	27у	60
43	C ₆ H ₅	C ₆ H ₅	н	Е	27a	94
44	C ₆ H ₅	Bn	н	Е	27m	96
45	4-MeC ₆ H ₄	C ₆ H ₅	Н	Е	27f	86
46	4-CIC ₆ H ₄	C ₆ H ₅	н	Е	27b	92
47	C ₆ H ₅	3-CIC ₆ H ₄	н	Е	27z	93
48	$4-O_2NC_6H_4$	C ₆ H ₅	н	Е	27d	78
49	C ₆ H ₅	^c Hexyl	Н	Е	27s	89
50	C ₆ H ₅	$4-O_2NC_6H_4$	н	Е	27aa	80
51	C ₆ H ₅	ⁿ Pr	н	Е	27ab	88
52	C ₆ H ₅	MeOCH ₂ CH ₂ -	н	Е	27ac	90
53	C ₆ H ₅	ⁱ Pr	н	Е	27ad	85
54	C ₆ H ₅	ⁿ Bu	н	Е	27ae	86
55	C ₆ H ₅	2-THF-CH ₂ -	н	Е	27af	78

Entry	R ¹	R ²	R ³	Method	Product	Yield (%)
56	4-O ₂ NC ₆ H ₄	3,4-Me ₂ C ₆ H ₃	н	F	27ag	96
57	3-O ₂ NC ₆ H ₄	3,4-Me ₂ C ₆ H ₃	н	F	27ah	96
58	4-NCC ₆ H ₄	$3,4-Me_2C_6H_3$	н	F	27 ai	94
59	4-MeOC ₆ H ₄	4-MeC ₆ H ₄	н	F	27 aj	94
60	3-O ₂ NC ₆ H ₄	3-MeC ₆ H ₄	н	F	27 ak	95
61	4-BrC ₆ H ₄	4-MeOC ₆ H ₄	н	F	27al	94
62	3-0 ₂ NC ₆ H ₄	3-MeOC ₆ H ₄	н	F	27 am	91
63	4-NCC ₆ H ₄	4-MeC ₆ H ₄	н	F	27an	92
64	4-MeOC ₆ H ₄	3,4-Me ₂ C ₆ H ₃	н	F	27ao	88
65	4-O ₂ NC ₆ H ₄	Bn	CI	F	27ap	96
66	4-O ₂ NC ₆ H ₄	3,4-Me ₂ C ₆ H ₃	CI	F	27aq	97
67	3-O ₂ NC ₆ H ₄	$3,4-\text{Me}_2\text{C}_6\text{H}_3$	CI	F	27ar	97
68	4-O ₂ NC ₆ H ₄	3,4-Me ₂ C ₆ H ₃	Ме	F	27as	85
69	<i>ⁿ</i> Pr	^c Hexyl	н	F	27 at	78
70	4-BrC ₆ H ₄	^c Hexyl	н	F	27au	95
71	4-MeOC ₆ H ₄	^c Hexyl	н	F	27 a v	89
72	4-Pyridyl	$3,4$ -Me $_2C_6H_3$	н	F	27 aw	83
73	3-O ₂ NC ₆ H ₄	3-O ₂ NC ₆ H ₄	н	F	27ax	91
74	4-CIC ₆ H ₄	$3,4-\text{Me}_2\text{C}_6\text{H}_3$	Н	F	27ay	97

Mitra *et al.* have explored the use of nano In_2O_3 as an effective and versatile catalyst for the synthesis of 4,5unsymmetrically substituted 1-*H*-imidazoles **26ae-ap** in good yields. The reaction was performed by the reaction of varying amidines **28** with a wide range of structurally diverse nitroolefins **29** (Scheme 12, Table 12). As it is evident from Table 12, this procedure is uniformly effective for nitroolefins with different substituents on the benzene ring as well as for aliphatic nitroolefin.⁴³ Based on previous results, the indium (III) catalyst promotes Michael addition of amidine-nitroolefin by activating the double bond.⁴⁴

Scheme 12

Entry	R ¹	R ²	R ³	Product	Yield (%)
1	C ₆ H ₅	Me	C_6H_5	26ae	88
2	C_6H_5	Me	4-MeOC ₆ H ₄	26af	80
3	C_6H_5	Me	4-CIC ₆ H ₄	26ag	70
4	C_6H_5	Me	4-MeC ₆ H ₄	26ah	80
5	C_6H_5	Me	4-BrC ₆ H ₄	26ai	72
6	C_6H_5	Me	ⁱ Pr	26aj	65
7	C_6H_5	Me	3,4-CH ₂ O ₂ C ₆ H	3 26ak	81
8	C_6H_5	Me	2-Furyl	26al	79
9	C_6H_5	Et	C ₆ H ₅	26am	70
10	3-O ₂ NC ₆ H ₄	Me	C ₆ H ₅	26an	75
11	3-0 ₂ NC ₆ H ₄	Me	4-MeOC ₆ H ₄	26ao	82
12	Ме	Me	C_6H_5	26ap	55

2.1.2.3. Thiazole

A magnetically ionic liquid supported on $Fe_3O_4@SiO_2$ nanoparticles (MNPs@ SiO_2-IL, Fig. 10) was synthesized and evaluated as a recoverable catalyst for the one-pot synthesis of 1,3-thiazolidin-4-ones **31a-j** in high to excellent yield by the three-component condensation of arylaldehydes **7**, anilines **9** and thioglycolic acid **30** under solvent-free conditions (Scheme 13, Table 13).⁴⁵ It can be speculated that the methylimidazolium cation [MIM]⁺ in the MNPs@SiO_2-IL favors the interact on oxygen atom of the carbonyl group of the aldehyde and facilitates the formation of imine intermediate by increasing the electrophilicity of the carbonyl group of the aldehyde.

Entry	R ¹	R ²	Product	Yield (%)
1	C_6H_5	C ₆ H ₅	31a	94
2	C ₆ H ₅	$4-MeC_6H_4$	31b	90
3	C ₆ H ₅	4-CIC ₆ H ₄	31c	90
4	C ₆ H ₅	$4-O_2NC_6H_4$	31d	86
5	4-MeC ₆ H ₄	$4-MeC_6H_4$	31e	93
6	4-MeC ₆ H ₄	C ₆ H ₅	31f	88
7	4-CIC ₆ H ₄	C_6H_5	31g	95
8	4-O ₂ NC ₆ H ₄	C ₆ H ₅	31h	92
9	4-O ₂ NC ₆ H ₄	$4-MeC_6H_4$	31i	90
10	3-O ₂ NC ₆ H ₄	C ₆ H ₅	31j	89

2.1.3. Five-membered rings with three heteroatoms

2.1.3.1. Oxadiazole

4,5,6,7-Tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-yl)methyl)thieno[2,3-*c*]pyridi-nes **33a-m** have been prepared by subjecting hydrazide compound **32** and different aromatic aldehydes **7** to reflux in ethanol using combined nano (ZnO–TiO₂) (1 mmol each) as a catalyst (Scheme 14, Table 14).⁴⁶

Scheme 14

Entry	R ¹	Product	MW Yield (%)	Δ Yield (%)
1	4-CIC ₆ H ₄	33a	96	91
2	C_6H_5	33b	91	88
3	4-MeOC ₆ H ₄	33c	95	91
4	C_6H_5	33d	91	87
5	3,4-(HO) ₂ C ₆ H ₃	33e	95	91
6	2,6-Cl ₂ C ₆ H ₄	33f	91	88
7	2,4-(MeO) ₂ C ₆ H ₃	33g	94	90
8	4-HOC ₆ H ₄	33h	94	89
9	2-Pyrrolyl	33i	95	87
10	2-Thienyl	33j	94	88
11	4-FC ₆ H ₄	33k	94	90
12	2,4-Cl ₂ C ₆ H ₄	331	92	89
13	2-Pyridyl	33m	95	87

2.1.3.2. 1,2,3-Triazole

Kaboudin *et al.* reported the synthesis of 1,2,3-triazoles **36a-q** *via* a one-pot reaction of arylboronic acids **34** with sodium azide in water at room temperature in the presence of Cu₂– β -CD (CD = Cyclodextrin) as a nanocatalyst followed by a click cyclization reaction with alkynes **35** (Scheme 15, Table 15).⁴⁷

Scheme 15

Ar-BH(OH)₂
$$\frac{ \begin{array}{c} 1 \\ Cu_{2}-\beta-CD 5 \\ 2 \end{array} \begin{array}{c} N=N, \\ R-C \equiv CH, \ rt, \ 4 \\ n \end{array} \begin{array}{c} N=N, \\ N-Ar \\ 36a-q \end{array}$$

Entry	Ar	R	Product	Yield (%)
1	C_6H_5	C ₆ H ₅	36a	94
2	$2-FC_6H_5$	C ₆ H ₅	36b	94
3	$3-O_2NC_6H_4$	C ₆ H ₅	36c	95
4	$3,5-F_2C_6H_4$	C ₆ H ₅	36d	96
5	$4-\text{MeC}_6\text{H}_4$	C ₆ H ₅	36e	94
6	$4-\text{MeOC}_6\text{H}_4$	C_6H_5	36f	97
7	$4-CIC_6H_5$	C ₆ H ₅	36g	96
8	4-HOC ₆ H ₄	C_6H_5	36h	94
9	2-Naphthyl	C ₆ H ₅	36i	94
10	C_6H_5	4-MeC ₆ H ₄	36j	95
11	C_6H_5	3-NH ₂ C ₆ H ₄	36k	95
12	C_6H_5	<i>n</i> Pr	361	93
13	C_6H_5	^{<i>n</i>} Ви	36m	89
14	C_6H_5	ⁿ Pn	36n	91
15	C_6H_5	CH ₂ OH	360	92
16	C_6H_5	CH ₃ (CH ₂) ₃ -CH(OH-)	36p	90
17	C_6H_5	СООН	36q	94

The authors proposed mechanism for $Cu_2-\beta$ -CD catalyzed in *situ* azidation of arylboronic acids **34** for the synthesis of 1,2,3-triazoles **36a-q**. The reaction is initiated by transmetallation of the aryl group from Boron to copper *via* the attack of the hydroxide ligand to the oxophilic boron center. The resulting arylcopper intermediate undergoes subsequent reductive azidation to the arylazide compound (Fig. 11). According to literature reports for the Cu-catalyzed azide-alkyne 1,3-dipolar cycloaddition,⁴⁸ the 1,2,3-triazole formation proceeds through attack of the hydroxido ligand of $Cu_2-\beta$ -CD complex to the terminal hydrogen of acetylene to give copper acetylide. Continuing, coordination of the arylazide to the copper center of the acetylide initiates an azide–alkyne 1,3-dipolar cycloaddition.

Fig. 11

Kamal and Swapna developed a new Fe₂O₃ nanoparticle catalyzed three-component reaction for the construction of 2,4,5-trisubstituted-1,2,3-triazoles **39a-x** from chalcones **37**, sodium azide and aryl halides **38**. This tandem three-component reaction involves an oxidative 1,3-dipolar cycloaddition of the chalcone and azide and subsequent regioselective *N*-2-arylation (Scheme 16, Table 16). Control experiments suggest that atmospheric oxygen acts as the sacrificial oxidant in the reaction. The reaction has good substrate scope and furnishes the products in very good yields. Importantly, the catalyst is easily recoverable and may be reused without any significant loss in catalytic activity.⁴⁹

RSC Advances Accepted Manuscrip

Table 16

Entry	R ¹	R ²	R ³	х	Product	Yield (%)
1	2-FC ₆ H ₄	2-FC ₆ H ₄	2-O ₂ NC ₆ H ₄	F	39a	92
2	4-FC ₆ H ₄	$3-CF_3C_6H_4$	2-O ₂ NC ₆ H ₄	F	39b	90
3	$4-O_2NC_6H_4$	C ₆ H ₅	2-O ₂ NC ₆ H ₄	F	39c	89
4	3-F-4-CIC ₆ H ₃	$4-FC_6H_4$	$2-O_2NC_6H_4$	F	39d	80
5	$4-CF_3C_6H_4$	4-FC ₆ H ₄	2-O ₂ NC ₆ H ₄	F	39e	80
6	4-MeC ₆ H ₄	C ₆ H ₅	2-O ₂ NC ₆ H ₄	F	39f	75
7	C ₆ H ₅	$4-MeOC_6H_4$	$2-O_2NC_6H_4$	F	39g	65
8	4-MeC ₆ H ₄	3-CIC ₆ H ₄	2-O ₂ NC ₆ H ₄	F	39h	70
9	4-MeOC ₆ H ₄	4-FC ₆ H ₄	2-O ₂ NC ₆ H ₄	F	39i	75
10	3-MeO-4-FC ₆ H	₃ 4-FC ₆ H ₄	$2-O_2NC_6H_4$	F	39j	72
11	4-MeOC ₆ H ₄	4-FC ₆ H ₄	2-F-4-O ₂ NC ₆ H ₃	F	39k	62
12	4-MeC ₆ H ₄	3-CIC ₆ H ₄	2-F-4-O ₂ NC ₆ H ₃	F	391	59
13	4-MeOC ₆ H ₄	$4-FC_6H_4$	2,4-(O ₂ N)2C ₆ H ₃	CI	39m	70
14	4-MeC ₆ H ₄	3-CIC ₆ H ₄	2-O2NC6H4	CI	39n	68
15	4- ⁱ PrC ₆ H₄	C ₆ H ₅	2-O ₂ NC ₆ H ₄	F	390	62
16	2-MeC ₆ H ₄	C ₆ H ₅	2-F-4-O ₂ NC ₆ H ₃	F	39p	69
17	2-MeC ₆ H ₄	C_6H_5	2-F-4-O2NC6H3	F	39q	65
18	$4-O_2NC_6H_4$	C ₆ H ₅	2-F-4-O ₂ NC ₆ H ₃	F	39r	86
19	4-FC ₆ H ₄	$4-FC_6H_4$	2-F-2,4-(O ₂ N) ₂ C ₆ H ₂	F	39s	93
20	2-Thienyl	C_6H_5	2-O2NC6H4	F	39t	-
21	2-Pyrrolyl	C ₆ H ₅	$2-O_2NC_6H_4$	F	39u	-
22	2-MeC ₆ H ₄	C ₆ H ₅	2-O ₂ NC ₆ H ₄	CI	39v	-
23	4-FC ₆ H ₄	$4-FC_6H_4$	4-O ₂ NPyridyl	CI	39w	-
24	2-MeC ₆ H ₄	C ₆ H ₅	2-MeC ₆ H ₄	CI	39x	-

Wang *et al.* prepared nanoparticle-supported tris(triazolyl)–CuBr (Fig. 12), with a diameter of approximately 25 nm and evaluated its catalytic activity in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction (Scheme 17, Table 17, Method A). It was found that the procedure can be successfully extended to various organic azides and alkynes to afford the corresponding 1H-1,2,3-triazoles **41a-q**.⁵⁰

Fig. 12

Rad *et al.* reported that the 1,3-dipolar cycloaddition of organic azides with terminal alkynes **35** can be catalyzed by doped nano-sized Cu₂O on melamine formaldehyde resin (nano-Cu₂O MFR) to furnish the corresponding 1,4-disubstituted 1*H*-1,2,3-triazole adducts **41s–ag** in good to excellent yields at room temperature (Scheme 17, Table 17, Method B).⁵¹

Nano copper-doped silica cuprous sulfate (CDSCS), proved also to be a highly efficient heterogeneous catalyst for the regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles derivatives **41g** and **41ah-bj**. In this synthetic methodology, CDSCS catalyzes 1,3-dipolar Huisgen cycloaddition of different functionalized β -azido alcohols and alkynes in a (1:1, v/v) solution of THF/H₂O at room temperature (Scheme 17, Table 17, Method C). The catalyst can be easily prepared and reused for many consecutive runs without a significant decrease in its catalytic reactivity.⁵²

Veerakumar *et al.* used highly dispersed SiO₂ supported CuNPs (copper nanoparticles, Fig. 13) as a recyclable heterogeneous nanocatalyst to employ the synthesis of 1,4-disubstituted-1,2,3-triazoles **41az-bi** *via* Huisgen 1,3-dipolar cycloaddition reactions of halides **38**, alkynes **35**, and sodium azide using DMSO as the solvent (Scheme 17, Table 17, Method D). All the reactions proceed smoothly to give **41** in high yield.⁵³

Method A: Tris(triazolyl)-CuBr-NPs 0.5 mol%/ H_2O , rt. Method B: nano-Cu₂O MFR/ THF/ H_2O , rt. Method C: CDSCS/ THF/ H_2O , rt. Method D: Cu-SiO₂ NPs/ DMSO, rt.

Table 17

Entry	R ¹	R ²	Method	Product	Yield (%)
1	C ₆ H ₅	C ₆ H ₁₃	А	41a	95
2	C ₆ H ₅	C ₈ H ₁₇	А	41b	91
3	C ₆ H ₅	C ₁₈ H ₃₂	А	41c	82
4	C ₆ H ₅	C ₆ H ₅	А	41d	92
5	C ₆ H ₅	4-MeOC ₆ H ₄	А	41e	83
6	C ₆ H ₅	4-IC ₆ H ₄	А	41f	81
7	C ₆ H ₅	Bn	А	41g	96
8	4-CHOC ₆ H ₄	Bn	А	41h	96
9	4-MeOC ₆ H ₄	Bn	А	41i	94
10	4-NH ₂ OC ₆ H ₄	Bn	А	41j	92
11	2-Pyridyl	Bn	А	41k	86
12	3-Pyridyl	Bn	А	411	92
13	C ₄ H ₉	Bn	А	41m	99
14	C ₅ H ₁₁	Bn	А	41n	93
15	HO-C(CH ₃)	Bn	А	41o	89
16	$HO-C(C_6H_5)$	Bn	А	41p	93
17	Ferrocenyl	Bn	А	41q	96
18	C ₆ H ₅	PhOCH ₂ CH(OH)CH ₂ -	В	41r	93
19	C ₆ H ₅	2-HOC ₆ H ₁₀ -	В	41s	92
20	C ₆ H ₅	$CH_2=C(Me)COOCH_2CH(OH)CH_2$ -	В	41t	83
21	4-CIC ₆ H ₄ OCH ₂	2,4-Cl ₂ C ₆ H ₃ OCH ₂ CH(OH)CH ₂ -	В	41u	80
22	4-CIC ₆ H ₄ OCH ₂	4-BnC ₆ H ₄ OCH ₂ CH(OH)CH ₂ -	В	41 v	81
23	Me ₂ C(OH)	4-MeOC ₆ H ₄ OCH ₂ CH(OH)CH ₂ -	В	41 w	85
24	Me ₂ C(OH)	PhOCH ₂ CH(OH)CH ₂ -	В	41 x	91
25	Me ₂ C(OH)	4-MeOC ₆ H ₄ OCH ₂ CH(OH)CH ₂ -	В	41 y	93
26	HOCH ₂	PhOCH ₂ CH(OH)CH ₂ -	В	41z	88
27	BrCH ₂	4-CIC ₆ H ₄ OCH ₂ CH(OH)CH ₂ -	В	41aa	86
28	-A	4-MeOC ₆ H ₄ OCH ₂ CH(OH)CH ₂ -	В	41ab	90
29	-A	MeCH ₂ CH(OH)CH ₂ -	В	41ac	88
30	-B	4-MeOC ₆ H ₄ OCH ₂ CH(OH)CH ₂ -	В	41 ad	93
31	-В	2-C ₁₀ H ₇ CH ₂ CH(OH)CH ₂ -	В	41 ae	92
32	-В	2-HOC ₆ H ₁₀ -	В	41 af	83
33	$Ph-C \equiv CPh$	2-HOC ₆ H ₁₀ -	В	41ag	-

 $A = \begin{pmatrix} 0 & 0 \\ N & N & N \\ N & N & N \\ N & N & N \end{pmatrix}$

RSC Advances Accepted Manuscript

Entry	R ¹	R ²	Method	Product	Yield (%)
34	-В	C ₁₀ H ₇ OCH ₂ CH(OH)CH ₂ -	С	41ah	93
35	-В	4-MeOC ₆ H ₄ OCH ₂ CH(OH)CH ₂ -	С	41ai	92
36	-A	4-MeOC ₆ H ₄ OCH ₂ CH(OH)CH ₂ -	С	41aj	83
37	-A	4-CI-3-MeC ₆ H ₃ OCH ₂ CH(OH)CH ₂ -	С	41ak	80
38	-A	MeCH ₂ CH(OH)CH ₂ -	С	41al	81
39	-C	PhOCH ₂ CH(OH)CH ₂ -	С	41am	85
40	-D	ⁿ BuOCH ₂ CH(OH)CH ₂ -	С	41an	91
41	-D	AllyIOCH ₂ CH(OH)CH ₂ -	С	41ao	93
42	4-CIC ₆ H ₄ OCH ₂	2,4-Cl ₂ C ₆ H ₃ OCH ₂ CH(OH)CH ₂ -	С	41ap	88
43	4-CIC ₆ H ₄ OCH ₂	4-BnC ₆ H ₄ OCH ₂ CH(OH)CH ₂ -	С	41aq	86
44	4-O ₂ NC ₆ H ₄ OCH	₂ 2-HOC ₆ H ₁₀ -	С	41ar	90
45	C_6H_5	PhOCH ₂ CH(OH)CH ₂ -	С	41as	88
46	C_6H_5	AllyIOCH ₂ CH(OH)CH ₂ -	С	41at	87
47	Me ₂ C(OH)	4-BnC ₆ H ₄ OCH ₂ CH(OH)CH ₂ -	С	41au	91
48	Me ₂ C(OH)	PhOCH ₂ CH(OH)CH ₂ -	С	41av	90
49	-E	4-CI-3-MeC ₆ H ₃ OCH ₂ CH(OH)CH ₂ -	С	41aw	-
50	C_6H_5	Bn	D	41g	98
51	C_6H_5	C ₆ H ₅	D	41ax	97
52	C_6H_5	Ме	D	41ay	92
53	C_6H_5	C ₃ H ₇	D	41az	83
54	C ₆ H ₅	C ₆ H ₁₃	D	41ba	95
55	C_6H_5	C ₁₀ H ₂₄	D	41bb	95
56	C_6H_5	C ₁₂ H ₂₅	D	41bc	65
57	C_6H_5	C ₁₆ H ₃₃	D	41bd	62
58	C_6H_5	C ₁₀ H ₂₀ N ₃	D	41be	60
59	Me ₂ C(OH)	Bn	D	41bf	65
60	Me ₂ C(OH)	C ₆ H ₅	D	41bg	95
61	Me ₂ C(OH)	C ₃ H ₇	D	41bh	90
62	Me ₂ C(OH)	C ₆ H ₁₃	D	41bi	94
م		ىرى ئىرى _		بر	

* The dimeric acetylene was the main product

Nanoparticle-supported tris(triazolyl)–CuBr, with a diameter of approximately 25 nm has been easily prepared, and its catalytic activity was evaluated in the copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction. The catalyst has been applied for the one-pot synthesis of triazoles **41**, through a cascade reaction involving benzyl bromides **38**, alkynes **35**, and sodium azide (Scheme 18, Table 18, Method A).⁵⁴

A graphene based composite material with c-Fe₂O₃ (Fig. 14) nanoparticles has been synthesized *via* a simple chemical route and can also serves as an efficient catalyst for one-pot synthesis of a series of 1,4-disubstituted-1,2,3 triazoles **41** *via* reaction of halides **38**, sodium azide and the corresponding alkynes **35** (Scheme 18, Table 18, Method B). It is noticeable that increase of electronic effect in the benzyl moiety increases the yield

whereas it decreases with substrates containing electron deficient aromatic halides. The same observation is found when different alkynes are studied.⁵⁵

Fig. 14

Alonso *et al.* found that copper nanoparticles on activated carbon CuNPs/C can also effectively catalyze the multicomponent synthesis of 1,2,3-triazoles **41** from the reaction of different halides, diazonium salts or amines, with sodium azide and alkynes in water at a low copper loading (Scheme 18, Table 18, Method C).^{56,57}

The same group used CuNPs/C, at a low catalyst loading (0.5 mol%), to promote the multicomponent synthesis of 1,2,3-triazoles from phenylacetylene, sodium azide and epoxides (Scheme 18, Table 18, Method D, entry 78).^{56,57}

Scheme 18

Entry	R ¹	R ²	х	Method	Product	Yield (%)
1	C ₆ H ₅	2-BrC ₆ H ₄ CH ₂ -	Br	А	41bj	88
2	C ₆ H ₅	3-IC ₆ H ₄ CH ₂ -	Br	А	41bk	87
3	C_6H_5	4-CNC ₆ H ₄ CH ₂ -	Br	А	41bl	72
4	C_6H_5	4-O ₂ NC ₆ H ₄ CH ₂ -	Br	А	41bm	90
5	C_6H_5	3-MeC ₆ H ₄ CH ₂ -	Br	А	41bn	98
6	C_6H_5	1-Me-4-C ₆ H ₄ triazolyl-	Br	А	41bo	83
7	C_6H_5	C ₆ H ₄ CH ₂ -	Br	В	41bp	92
8	C_6H_5	4-HOC ₆ H ₄ CH ₂ -	Br	В	41bq	93
9	C_6H_5	4-MeOC ₆ H ₄ CH ₂ -	Br	В	41br	91
10	C_6H_5	3-O ₂ NC ₆ H ₄	Br	В	41bs	89
11	C_6H_5	C ₆ H ₄ CH ₂ CH ₂ -	Br	В	41bt	81
12	ⁿ Hexyl	C ₆ H ₄ CH ₂ -	Br	В	41bu	72
13	COOEt	C ₆ H ₄ CH ₂ -	Br	В	41bv	84
14	4-MeOC ₆ H ₄	C ₆ H ₄ CH ₂ -	Br	В	41i	91
15	4-MeC ₆ H ₄	C ₆ H ₄ CH ₂ -	Br	В	41bw	85
16	4-BrC ₆ H ₄	C ₆ H ₄ CH ₂ -	Br	В	41bx	78
17	C_6H_5	^c Hexyl	Br	В	41by	70
18	C_6H_5	C ₆ H ₄ CH ₂ -	CI	В	41a	88
19	^c Hexyl	4-MeOC ₆ H ₄ CH ₂ -	CI	В	41bz	80
20	C_6H_5	C ₆ H ₄ CH ₂ -	Br	С	41bp	98
21	C ₆ H ₅	C ₆ H ₄ CH ₂ -	CI	С	41ca	99
22	C ₆ H ₅	4-NCC ₆ H ₄ CH ₂ -	Br	С	41bp	99
23	C ₆ H ₅	3,5-(MeO)2C ₆ H ₃ CH ₂ -	Br	С	41bp	98
24	C ₆ H ₅	C ₆ H ₅ CH=CHCH ₂ -	Br	С	41cb	94
25	C ₆ H ₅	C ₆ H ₄ COCH ₂ -	CI	С	41cc	82
26	C ₆ H ₅	EtOOCCH ₂ -	Br	С	41cd	98
27	C ₆ H ₅	CH ₃ (CH ₂) ₈ -	I	С	41ce	98
28	C ₆ H ₅	CH ₃ (CH ₂) ₈ -	CI	С	41cf	94
29	C ₆ H ₅	^c Hexyl	Br	С	41cg	93
30	C_6H_5	Indol-3-yl-CH ₂ CH ₂ -	Br	С	41a	89
31	C ₆ H ₅ OCH ₂	C ₆ H ₄ CH ₂ -	Br	С	41ch	76
32	N-Phthalimidyl-CH ₂	$C_6H_4CH_2$ -	Br	С	41ci	84
33	SiMe ₃	$C_6H_4CH_2$ -	Br	С	41cj	82
34	$CH_2CH_2CH_2C \equiv CH$	C ₆ H ₄ CH ₂ -	Br	С	41ck	87
Entry	R ¹	R ²	Х	Method	Product	Yield (%)
-------	---	---	---------------	--------	---------	-----------
35	C_6H_5	C ₆ H ₄ CH ₂ -	Br	С	41 g	98
36	C ₆ H ₅	C ₆ H ₄ CH ₂ -	Cl	С	41g	99
37	C ₆ H ₅	4-NCC ₆ H ₄ CH ₂ -	Br	С	41 cbl	99
38	C ₆ H ₅	3,5-(MeO)2C ₆ H ₃ CH ₂ -	Br	С	41 cm	98
39	C ₆ H ₅	9-Anthracenyl-CH ₂ -	Br	С	41 cn	90
40	C ₆ H ₅	C ₆ H ₅ CH=CHCH ₂ -	Br	С	41 co	94
41	C ₆ H ₅	C ₆ H ₄ COCH ₂ -	Cl	С	41 cp	82
42	C ₆ H ₅	EtOOCCH ₂ -	Br	С	41 cq	98
43	C ₆ H ₅	CH ₃ (CH ₂) ₈ -	I	С	41 cr	98
44	C ₆ H ₅	CH ₃ (CH ₂) ₈ -	Cl	С	41cs	91
45	C ₆ H ₅	^c Hexyl	Br	С	41a	93
46	C ₆ H ₅	Indol-3-yl-CH ₂ CH ₂ -	Br	С	41 ct	89
47	C ₆ H ₅ OCH ₂	C ₆ H ₄ CH ₂ -	Br	С	41 cu	76
48	4-MeOC ₆ H ₄	C ₆ H ₄ CH ₂ -	Br	С	41i	90
49	Pyrid-2-yl	C ₆ H ₄ CH ₂ -	Br	С	41k	92
50	N-Phthalimidyl-CH ₂	C ₆ H ₄ CH ₂ -	Br	С	41 cv	84
51	SiMe ₃	$C_6H_4CH_2$ -	Br	С	41 cw	82
52	(CH ₂) ₅ CH ₃	CH ₃ (CH ₂) ₈ -	1	С	41 cx	92
53	$(CH_2)_8CH_3$	^c Hexyl	Br	С	41 cy	89
54	$3-(HC \equiv C)C_6H_4$	C ₆ H₄CH₂-	Br	С	41cz	92
55	$(CH_2)_3C \equiv CH$	$C_6H_4CH_2$ -	Br	С	41 da	87
56	None	$HC^{-}C_{-}(CH_2)_{4}$	Cl	С	41 db	89
57	C ₆ H ₅	C ₆ H ₅	$N_2^+BF_4^-$	С	41 d	85
58	C ₆ H ₅	4-MeOC ₆ H ₄	$N_2^+BF_4^-$	С	41e	75
59	C ₆ H ₅	4-MeOCC ₆ H ₄	$N_2^+BF_4^-$	С	41 de	71
60	C ₆ H ₅	4-NCC ₆ H ₄ -	$N_2^+BF_4^-$	С	41 df	78
61	C ₆ H ₅	4-O ₂ NC ₆ H ₄ -	$N_2^+BF_4^-$	С	41 dg	92
62	4-MeOC ₆ H ₄	4-O ₂ NC ₆ H ₄ -	$N_2^+BF_4^-$	С	41 dh	88
63	Pyrid-2-yl	$4-O_2NC_6H_4$ -	$N_2^+BF_4^-$	С	41 di	91
64	4-F ₃ CC ₆ H ₄	$4 - O_2 NC_6 H_4 -$	$N_2^+BF_4^-$	С	41 dj	90
65	SiMe ₃	$4-O_2NC_6H_4-$	$N_2^+BF_4^-$	С	41 dk	83
66	C ₆ H ₅	C ₆ H ₅	$N_2^+BF_4^-$	С	41 d	85
67	C ₆ H ₅	C ₆ H ₅	NH_2	D	41 d	90
68	C ₆ H ₅	4-MeOC ₆ H ₄	NH_2	D	41 dl	95
69	C ₆ H ₅	2-CIC ₆ H ₄	NH_2	D	41 dm	64
70	C ₆ H ₅	3-CIC ₆ H ₄	NH_2	D	41 dn	80
71	C ₆ H ₅	4-CIC ₆ H ₄	NH_2	D	41 do	78
72	C ₆ H ₅	4-MeC ₆ H ₄	NH_2	D	41 dp	90
73	C ₆ H ₅	$4-F_3CC_6H_4$	NH_2	D	41 dq	66
74	C_6H_5	1-Naphthyl	NH_2	D	41 dr	70
75	$(CH_2)_3CH_3$	C ₆ H ₅	NH_2	D	41ds	93
76	°Hexyl	C ₆ H ₅	NH_2	D	41 dt	89
77	C ₆ H ₅	C ₆ H ₅	NH_2	D	41 d	92
78	C ₆ H ₅	C ₆ H ₅	Oxiranyl	С	41 d	92
-						

Alonso *et al.* applied also a new strategy in which the alkene **42** was directly mixed with the CuNPs/C, dimethyl(methylthio)-sulfonium tetrafluoroborate DMTSF, and NaN₃ in MeCN to produce the corresponding methylsulfanyl azide in only 1 h at room temperature. The subsequent reaction with the alkyne **35** afforded the triazole **41du** which represent its synthesis from an alkene **42** in one pot for the first time (Scheme 19).⁵⁶

Scheme 19

2.2. Synthesis of six-membered heterocycles

2.2.1. Six-membered rings with one heteroatom

2.2.1.1. 4H-Pyran

Commercially available nano-power magnetite or iron(III) oxide have been used as a catalyst in the construction of 4-substituted-4*H*-pyrans **43a-I** from reaction of β -keto esters or other 1,3-dicarbonyl compound **15** with the corresponding aldehyde **7** (Scheme 20, Table 19). The reaction implies a tandem process, involving an aldol condensation, a Michael-type addition, and a dehydrating annulation. The isolated yields of pyrans **43a-I** were similar independently of the aromatic aldehyde used, with electron-withdrawing groups, unsubstituted rings, or electron-donating groups being well tolerated.⁵⁸

Scheme 20

Entry	R ¹	Y	R ²	Product ^a	Yield (%)
1	Me	OMe	4-BrC ₆ H ₄	43a	96 (94)
2	Ме	OMe	4-NCC ₆ H ₄	43b	79
3	Ме	OMe	Ph	43c	85 (82)
4	Ме	OMe	4-MeOC ₆ H ₄	43 d	83
5	Ме	OMe	4-HOC ₆ H ₄	43 e	68
6	Ме	OMe	2-naphthyl	43f	57
7	Ме	OMe	(CH ₂) ₅ CH	43 g	80 (79)
8	Ме	OMe	<i>i-</i> Pr	43h	72 (67)
9	Ме	OEt	4-BrC ₆ H ₄	43i	95
10	Ме	OEt	4-MeOC ₆ H ₄	43j	63
11	Ме	Me	4-MeOC ₆ H ₄	43 k	75 (64)
12	Me	OMe	4-BrC ₆ H ₄	431	91 (79)

^a Reaction carried out using compound **15** (2.5 mmol), **7** (1 mmol), in 3 mL of toluene during 3 h, unless otherwise stated. Yields obtained by Fe_2O_3 catalysis appeared in paranthesis.

2.2.1.2. Dihydropyridine

1,4-Dihydropyridine derivatives **44a-o** have been prepared efficiently in a one-pot synthesis *via* Hantzsch condensation using nanosized titanium dioxide as a heterogeneous catalyst. Thus, various aliphatic, aromatic, and heterocyclic aldehydes **7** underwent smooth cyclocondensation with ethyl acetoacetate and ammonium acetate to give **44a-o** in good yields (Scheme 21, Table 20, Method A). The present methodology offers several advantages such as excellent yields, short reaction times (30–120 min) environmentally benign, and mild reaction conditions. The catalyst can be readily separated from the reaction products and recovered in excellent purity for direct reuse.⁵⁹

Mirzaei and Davoodnia used a microwave-assisted sol-gel method to synthesize nano-sized MgO particles using $Mg(NO_3)_2 \cdot 6H_2O$ as precursor and deionized water as solvent. The catalytic behavior of the catalyst was investigated in the one-pot synthesis of Hantzsch 1,4-dihydropyridines **44a-c**, **44f-h**, **and 44p,q** (Scheme 21, Table 20, Method B). The reaction proceeded in good to high yields from the reaction of aromatic aldehydes, ethylacetoacetate, and ammonium acetate.⁶⁰

A reaction mechanism is proposed and postulated that in MgO nanoparticles, there are acid-base bifunctional sites where Mg and O act as a weak Lewis acidic site and relatively high strength Brönsted basic site, respectively. These acid-base bifunctional sites facilitate the formation of arylidene and enamine intermediates that then react to give the final products.

Table 20

Entry	Ar	Products	Method	Yield ^a (%)
1	C_6H_5	44a	А	92
2	$4-BrC_6H_4$	44b	А	89
3	4-CIC ₆ H ₄	44c	А	90
4	3-CIC ₆ H ₄	44d	А	86
5	2-CIC ₆ H ₄	44e	А	80
6	4-O ₂ NC ₆ H ₄	44f	А	87
7	$4-MeOC_6H_4$	44g	А	81
8	4-HOC ₆ H ₄	44h	А	93
9	$4-CH_3C_6H_4$	44i	А	90
10	4-NCC ₆ H ₄	44j	А	90
11	C ₆ H₅-CH=CH	44k	А	86
12	C ₇ H ₅ O	441	А	92
13	2-Furyl	44m	А	50
14	2-Thienyl	44n	А	90
15	C ₆ H ₁₂ O	440	А	95
16	C_6H_5	44a	В	85
17	$4-BrC_6H_4$	44b	В	88
18	4-CIC ₆ H ₄	44c	В	90
19	4-HOC ₆ H ₄	44h	В	83
20	$4-MeOC_6H_4$	44g	В	90
21	$4-MeC_6H_4$	44p	В	92
22	3-O ₂ NC ₆ H ₄	44q	В	78
23	4-0 ₂ NC ₆ H ₄	44f	В	73

^alsolated yield of the pure product based on aryl aldehyde.

2.2.1.3. Tetrahydropyridine

Eshghi *et al.* prepared a nanomagnetic organic-inorganic hybrid catalyst (Fe@Si-Gu-Prs, Fig. 15) by the chemical anchoring of Preyssler heteropolyacid ($H_{14}[NaP_5W_{30}O_{110}]$) onto the surface of modified Fe₃O₄ magnetic nanoparticles with guanidine-propyl-trimethoxysilane linker. The catalytical activity of this catalyst in the synthesis of tetrahydropyridine **45a-u** was investigated. Thus, reaction of aldehydes **7**, amines **9**, and ethyl acetoacetate **15** using 0.025 g Fe@Si-GuPrs at room temperature and under solvent-free conditions afforded **45a-u** in high yield (Scheme 22, Table 21). The results shown in Table 22 showed that aldehyde **7** and amine **9**

compounds with substituents carrying either electron donating or electron-withdrawing groups reacted successfully and gave the expected products in excellent yields following short reaction times.⁶¹

Fig. 15

Scheme 22

Entry	R ¹	R^2	Products	Yield (%)
1	C ₆ H ₅	C_6H_5	45a	96
2	C_6H_5	4-BrC ₆ H ₄	45b	94
3	C_6H_5	4-CIC ₆ H ₄	45c	91
4	4-NCC ₆ H ₄	C_6H_5	45d	92
5	4-NCC ₆ H ₄	4-CIC ₆ H ₄	45e	95
6	4-MeC ₆ H ₄	4-MeC ₆ H ₄	45f	95
7	4-MeC ₆ H ₄	C_6H_5	45g	91
8	4-MeC ₆ H ₄	4-BrC ₆ H ₄	45h	92
9	4-MeC ₆ H ₄	4-O ₂ NC ₆ H ₄	45i	95
10	4-MeC ₆ H ₄	$4-\text{MeC}_6\text{H}_4$	45j	92
11	3-O ₂ NC ₆ H ₄	C_6H_5	45k	90
12	4-MeOC ₆ H ₄	4-CIC ₆ H ₄	451	93
13	4-CIC ₆ H ₄	4-BrC ₆ H ₄	45m	90
14	4-CIC ₆ H ₄	$4-\text{MeC}_6\text{H}_4$	45n	93
15	4-CIC ₆ H ₄	C_6H_5	450	91
16	4-MeOC ₆ H ₄	$4-\text{MeC}_6\text{H}_4$	45p	92
17	4-MeOC ₆ H ₄	C ₆ H ₅	45q	90
18	4-MeOC ₆ H ₄	4-BrC ₆ H ₄	45r	94
19	C_6H_5	4-IC ₆ H ₄	45s	91
20	4-CIC ₆ H ₄	$4-BrC_6H_4$	45t	92
21	4-NCC ₆ H ₄	$4-BrC_6H_4$	45u	91

2.2.1.4. Pyridine

Pyridine dicarbonitriles 47 have been synthesized in good yields *via* a one-pot multi–component reaction of aldehydes 7, malononitrile 46, and thiols 30 in the presence of nano-TiO₂ as a catalyst in ethanol (Scheme 23, Table 22, Method A).⁶²

2-Hydroxyethylammonium sulphonate immobilized on-Fe₂O₃ nanoparticles (-Fe₂O₃-2-HEAS, Fig. 16) was synthesized as a new supported ionic liquid by the reaction of *n*-butylsulfonated-Fe₂O₃ with ethanolamine. This catalyst also efficiently promoted the synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines **47** in good to high yields under solvent-free conditions (Scheme 23, Table 22, Method B+). The catalyst was easily isolated from the reaction mixture by magnetic decantation using an external magnet and reused at least five times without significant degradation in the activity.⁶³

γ-Fe₂O₃-2-HEAS

Fig. 16

Scheme 23

Method A: nano-110₂ **Method B**: γ -Fe₂O₃ MNPs-2-HEAS

Entry	R ¹	R ²	Method	Product	Yield ^{a,b} (%)
1	C ₆ H ₅	4-MeC ₆ H ₄	А	47a	82
2	4-CIC ₆ H ₄	4-MeC ₆ H ₄	А	47b	87
3	3-CIC ₆ H ₄	4-MeC ₆ H ₄	А	47c	85
4	4-BrC ₆ H ₄	4-MeC ₆ H ₄	А	47d	83
5	3-BrC ₆ H ₄	4-MeC ₆ H ₄	А	47e	83
6	3-O ₂ NC ₆ H ₄	4-MeC ₆ H ₄	А	47f	81
7	4-O ₂ NC ₆ H ₄	4-MeC ₆ H ₄	А	47g	82
8	4-MeOC ₆ H ₄	4-MeC ₆ H ₄	А	47h	85
9	C_6H_5	C_6H_5	В	47i	91
10	C_6H_5	4-CIC ₆ H ₄	В	47j	81
11	C_6H_5	4-MeOC ₆ H ₄	В	47k	79
12	C_6H_5	4-MeC ₆ H ₄	В	47a	84
13	4-MeC ₆ H ₄	C_6H_5	В	47I	81
14	4-CIC ₆ H ₄	C ₆ H ₅	В	47m	87
15	4-CIC ₆ H ₄	4-MeC ₆ H ₄	В	47b	80
16	2-Naphthyl	C_6H_5	В	47n	79
17	2-Pyridinyl	C_6H_5	В	470	89
18	2-Phenylpropanal	C_6H_5	В	47p	88
19	Ме	C_6H_5	В	47q	90
20	C_6H_5	<i>n-</i> Bu	В	47r	83

^a Method A Yields were analyzed by GC, ^b Method B yield refer to those of pure isolated products

2.2.2. Six-membered rings with two heteroatoms

2.2.2.1. Dihydropyrimidine

The magnetic Fe₃O₄ nanoparticles supported imidazolium-based ionic liquids (MNPs–IILs, Fig. 17), were used as efficient new catalysts for the one-pot synthesis of 3,4-dihydropyrimidin-2(1*H*)-ones(thiones) **49a-1**. The reaction proceeded *via* a one-pot cyclocondensation of an aromatic aldehydes **7**, β -dicarbonyl compound **15**, urea or thiourea **48** in the presence of the magnetic nanocatalysts under microwave irradiation and solvent-free conditions (Scheme 24, Table 23).⁶⁴

MNP-IIL-HSO4

Fig. 17

Table 23

Entry	R	Х	R ¹	Product	Time /Yield (%) MW ^a	Time /Yield (%) $\Delta^{\rm b}$
1	Ph	0	OEt	49a	4/97	30/95
2	3-CIC ₆ H ₄	0	OEt	49b	4/98	25/97
3	4-O ₂ NC ₆ H ₄	0	OEt	49c	4/98	30/97
4	2-Thienyl	0	OEt	49 d	4/98	25/98
5	2-FC ₆ H ₄	0	OEt	49e	4/97	35/92
6	3,4-(OMe) ₂ C ₆ H ₃	0	OEt	49 f	4/99	20/98
7	4-MeC ₆ H ₄	S	OEt	49g	4/95	40/90
8	Ph	S	OEt	49h	4/97	35/96
9	2-Thienyl	S	OEt	49i	4/95	25/95
10	Ph	0	Ме	49j	4/97	30/95
11	Ph	S	Ме	49 k	4/96	30/93
12	4-MeC ₆ H ₄	S	Ме	491	4/95	35/92

^a Using microwave irradiation

^b Under classical heating conditions

2.2.2.2. Pyrimidine

4-Amino-6-aryl-2-phenyl pyrimidine-5-carbonitrile derivatives **50a-m** were synthesized through a one-pot, three-component reaction of an aldehydes 7, malononitrile **46** and benzamidine hydrochloride **28**, in the presence of magnetic nano Fe₃O₄ particles as a catalyst under solvent-free conditions (Scheme 25, Table 24). The products **50a-m** were all prepared with excellent yields at 100 $^{\circ}$ C in 1–1.5 h. Both aromatic aldehydes with electron donating substituents and electron-withdrawing substituents showed significant reactivity in this process.⁶⁵

Entry	Ar	Product	Yield ^a (%)
1	Ph	50a	98
2	4-CIC ₆ H ₄	50b	96
3	4-BrC ₆ H ₄	50c	94
4	2,3-diCIC ₆ H ₃	50d	96
5	2-CIC ₆ H ₄	50e	96
6	4-NCC ₆ H ₄	50f	98
7	4-MeC ₆ H ₄	50g	96
8	2,4-diCIC ₆ H ₃	50h	96
9	$3-O_2NC_6H_4$	50i	96
10	4-O ₂ NC ₆ H ₄	50j	96
11	3-Indolyl	50k	90
12	4-MeCONHC ₆ H ₄	501	95
13	4-MeOC ₆ H ₄	50m	95

^a Isolated yields.

2.2.2.3. Pyrazine

An iron Schiff base complex was encapsulated in SBA-15 mesoporous silica to afford a Fe(III)-Schiff base/SBA-15 heterogeneous nanocatalyst (Fig. 18) for the synthesis of pyrazines **52a-d** from the reaction of the appropriate diamines **51a,b** with the corresponding 1,2-diketone **25**. These reactions proceeded in water with excellent yields (Scheme 26).⁶⁶

Fig. 18

2.3. Synthesis of fused bicyclic systems

2.3.1. Carbocyclic fused heterocycles

2.3.1.1. Five-membered carbocyclic fused with 6-membered heterocyclic ring: two heteroatoms

2.3.1.1.1. Cyclopenta[d]pyrimidine

Nano titania-supported sulfonic acid (*n*-TSA) has been easily prepared from the reaction of nano titania (titanium oxide) with chlorosulfonic acid as sulfonating agent. This catalyst was efficiently used as a heterogeneous catalyst for synthesis of pyrimidinones **54a-s**, *via* three component reaction of aromatic aldehydes **7**, cylopentanone **53**, urea or thiourea **49a,b** in solvent-free at 70 °C (Scheme 27, Table 25).⁶⁷

Entry	Ar	Х	Product	Time (h)	Yield ^b (%)
1	C ₆ H ₅	0	54a	0.75	95
2	2-CIC ₆ H ₄	0	54 b	1.5	86
3	4-CIC ₆ H ₄	0	54c	1.25	84
4	4-FC ₆ H ₄	0	54d	1.25	83
5	4-BrC ₆ H ₄	0	54e	1.25	89
6	4-MeC ₆ H ₄	0	54f	1	94
7	4-MeOC ₆ H ₄	0	54g	1	93
8	3-02NC6H4	0	54h	2.5	83
9	2-Naphthyl	0	54i	1.5	82
10	C_6H_5	S	54j	1	96
11	2-CIC ₆ H ₄	S	54k	2	86
12	4-CIC ₆ H ₄	S	541	1.5	92
13	4-FC ₆ H ₄	S	54m	1.6	86
14	4-BrC ₆ H ₄	S	54n	1.4	89
15	4-MeC ₆ H ₄	S	540	1	91
16	4-MeOC ₆ H ₄	S	54p	1	93
17	$3-O_2NC_6H_4$	S	54q	3.5	79
18	4-02NC6H4	S	54r	3	91
19	2-Naphthyl	S	54s	1.5	87

^a Reaction conditions: aromatic aldehyde (1 mmol), cyclopentanone (1 mmol), urea or thiourea (1.2 mmol) in solvent-free at 70 °C. ^bIsolated yield.

2.3.1.2. Six-membered carbocyclic fused with 6-membered heterocyclic ring: one heteroatom

2.3.1.2.1. Tetrahydro-4*H*-chromene

Nano magnetic complex lanthanum strontium magnesium oxide $La_{0.7} Sr_{0.3}MnO_3$ (LSMO) has been explored as an efficient and recyclable catalyst to effect the one-pot three-component synthesis of 2-amino-5-oxo-5,6,7,8-tetrahydro-4*H*-chromenes **56** by condensation reactions between aromatic aldehydes **7**, malononitrile **46** and 5,5-dimethyl-cyclohexane-1,3-dione **55** in EtOH under ultrasound irradiation conditions (Scheme 28, Table 26, Method A).⁶⁸

Azarifar *et al.* used nano-titania-supported Preyssler-type heteropolyacid, n-TiO₂/H₁₄[NaP₅W₃₀O₁₁₀] as an efficient and reusable heterogeneous catalyst for the synthesis of highly functionalized 4*H*-chromenes **56** under ultrasound irradiation conditions. (Scheme 28, Table 26, Method B).⁶⁹

The same group reported also the synthesis of highly functionalized 4*H*-chromenes **56** in the presence of nanotitania sulfuric acid (15-nm TSA) as a heterogeneous catalyst. (Scheme 28, Table 26, Method C).⁷⁰

As shown in Table 26, the ease of the reaction is directly related to the substituents attached to the benzene ring and the spatial accessibility of aldehyde 7 as well. The electron withdrawing groups were found to activate the aldehyde toward nucleophilic attack and increase the reaction rate (entry 10, 11).

Sarrafi *et al.* demonstrated a similar approach for the synthesis of 4*H*-chromene derivatives **56** in excellent yields using mesoporous silica nanoparticles as a bio-compatible, and recoverable catalyst (Scheme 28, Table 26, Method D).⁷¹

Scheme 28

Entry	R	Product	Method	Yield (%)
1	C ₆ H ₅	56a	А	92
2	4-FC ₆ H ₄	56b	А	96
3	4-CIC ₆ H ₄	56c	А	97
4	3-O ₂ NC ₆ H ₄	56d	А	98
5	4-O ₂ NC ₆ H ₄	56e	А	88
6	4-MeOC ₆ H ₄	56f	А	5
7	4-MeC ₆ H ₄	56g	А	87
8	2-CIC ₆ H ₄	56h	А	83
9	4-HOC ₆ H ₄	56i	А	92
10	2-0 ₂ NC ₆ H ₄	56j	А	77
11	CH=CHC ₆ H ₄	56k	А	Trace
12	CH ₂ CH ₂ C ₆ H ₄	561	А	Trace
13	C ₆ H ₅	56a	В	98
14	4-MeOC ₆ H ₄	56f	В	73
15	4-MeC ₆ H ₄	56g	В	93
16	4-Me ₂ NC ₆ H ₄	56m	В	90
17	2-CIC ₆ H ₄	56h	В	86
18	4-CIC ₆ H ₄	56c	В	94
19	$4-BrC_6H_4$	56n	В	90
20	2-0 ₂ NC ₆ H ₄	56j	В	83
21	3-O ₂ NC ₆ H ₄	56d	В	98
22	4-0 ₂ NC ₆ H ₄	56e	В	97
23	2-FC ₆ H ₄	560	В	90
24	CH ₃ CH ₂ CH ₂	56p	В	70
25	Furan-2-yl	56q	В	93
26	CH=CHC ₆ H ₅	56k	В	71
27	C ₆ H ₅	56a	С	97
28	4-MeOC ₆ H ₄	56f	С	89
29	4-MeC ₆ H ₄	56g	С	93
30	$4 - Me_2NC_6H_4$	56m	С	95
31	2-CIC ₆ H ₄	56h	С	86
32	4-CIC ₆ H ₄	56c	С	94
33	4-BrC ₆ H ₄	56n	С	93
34	2-0 ₂ NC ₆ H ₄	56j	С	88
35	3-0 ₂ NC ₆ H ₄	56d	С	95
36	$4-O_2NC_6H_4$	56e	С	94

Entry	R	Product	Method	Yield (%)
37	C ₆ H ₅	56a	D	94
38	2-CIC ₆ H ₄	56h	D	97
39	2-BrC ₆ H ₄	56r	D	94
40	4-CIC ₆ H ₄	56c	D	98
41	4-BrC ₆ H ₄	56n	D	96
42	3-CIOC ₆ H ₄	56s	D	96
43	4-FC ₆ H ₄	56b	D	98
44	2-CIC ₆ H ₄	56h	D	96
25	2-O ₂ NC ₆ H ₄	56j	D	95
46	4-O ₂ NC ₆ H ₄	56e	D	93
47	4-NCOC ₆ H ₄	56t	D	95
48	3-HOC ₆ H ₄	56u	D	90
49	2-Naphthyl	56v	D	97
50	1-Naphthyl	56w	D	92
51	2-Furyl	56x	D	94
52	2-Thienyl	56y	D	96
53	4-OHCC ₆ H ₄	56i	D	98
54	4-OHCC ₆ H ₄	56i	D	98
55	Et	56z	D	88
56	<i>n</i> Pr	56aa	D	86

 $CuFe_2O_4$ magnetic nanoparticles were synthesized and recognized as an efficient catalyst for the one-pot synthesis of 4*H*-chromene derivatives **57** in aqueous medium at mild conditions and in excellent yields. The reaction proceeds *via* MCR's of dimedone or cyclohexane-1,3-dione, **55** dialkyl acetylenedicarboxylates **8** and malononitrile or ethyl cyanoacetate **46** (Scheme 29, Table 27).⁷²

Table 27

Entry	R ¹	R ²	R ³	Product	Time (h)	Yield (%)
1	Me	Et	CN	57a	2	92
2	Me	Et	CO ₂ Et	57b	2.5	88
3	Me	Ме	CN	57 c	2	91
4	Me	Me	CO ₂ Et	57 d	2.5	86
5	н	Et	CN	57e	2	94
6	Н	Et	CO ₂ Et	57 f	2.5	89
7	Н	Ме	CN	57g	2	92
8	Н	Ме	CO ₂ Et	57h	2.5	86

Pradhan *et al.* proposed a possible mechanism (Scheme 3) for this 3 CRs. Thus, Cu^{2+} of $CuFe_2O_4$ catalyzed the Michael addition reaction of dialkyl acetylene dicarboxylate with alkyl nitrile derivatives (malononitrile and ethyl cyanoacetate) during the formation of the intermediate X. The nucleophilic attack by the intermediate Y at the β position (with respect to nitrile group) of the intermediate X was enhanced by Cu^{2+} may be due to the polarization of the π -electron cloud. Finally, the Lewis acidic Fe³⁺ interacted with enolate intermediate Z which in turn facilitates intramolecular electrophilic cyclization with the formation of the six member ring (P). (Scheme 30).⁷²

Scheme 30

Sarrafi *et al.* investigated the synthesis of spiro[(4*H*-chromene)-4,3'-oxindoles] **59a-s** by three component reaction of an isatin, malononitrile, and cyclic 1,3-diketones in ethanol at 60 °C using mesoporous silica nanoparticles as a catalyst (Scheme 31, Table 28, Method A).⁷¹

Hosseini-Sarvari and Tavakolian also synthesized spirooxindole derivatives **59** by a one-pot, three-component reaction of **55**, **58** and **46** in excellent yield at room temperature under solvent-free conditions in the presence of 10 mol % ZnO nano-rods catalyst by a very simple procedure (using a mortar and the mixture was ground by a

pestle at room temperature) (Scheme 31, Table 28, Method B). All of the reactions provided the desired spirooxindole products in excellent yields employing both electron-deficient (entries 2, 4, and 5) and electron-rich (entry 3) isatins as substrates.⁷³

The nano ZnO has Lewis acid (Zn^{2+}) and Lewis basic (O^{2-}) sites.⁷⁴ In the first step (i) a Lewis acid site (Zn^{2+}) is coordinated to O-atom of the C=O group of isatin, resulting in the increase of its reactivity.⁷⁵

Scheme 31

Method A: MSNs/EtOH, 60 °C Method B: ZnO nano-rodes/solvent free, rt

Entry	R ¹	R ²	R	Product	Method	Yield (%)
1	н	Н	Ме	59a	А	98
2	Н	Н	Н	59b	А	97
3	Н	Н	Me	59c	А	95
4	Н	Н	Н	59 d	А	96
5	Н	Bn	Ме	59e	А	93
6	Н	Bn	Н	59f	А	95
7	5-Br	Н	Ме	59g	А	97
8	5-Br	Н	Н	59h	А	98
9	5-Me	Н	Me	59i	А	95
10	5-Me	Н	Н	59j	А	94
11	5-0 ₂ N	Н	Ме	59k	А	96
12	5-0 ₂ N	Н	Н	591	А	97
13	5-Br	Н	Ме	59e	А	96
14	5-Br	Н	Н	59h	В	96
15	Н	Н	Н	59 d	В	98
16	Н	NO ₂	Н	59m	В	94
17	Н	Ме	Н	59n	В	92
18	Н	CI	Н	590	В	97
19	Н	Br	Н	59p	В	91
20	Ме	Н	Н	59q	В	96
21	Н	Н	Me	59a	В	97
22	Н	NO ₂	Me	59r	В	93
23	Н	CI	Me	59s	В	90

2.3.1.3.2. Hexahydroquinoline

Tajbakhsh *et al.* reported four component reaction of dimedone **55**, aldehyde **7**, acetoacetic ester **15**, and ammonium acetate using a catalytic amount of titanium dioxide nanoparticles to prepare the polyhydroquinoline derivatives **60** in high yields (Scheme 32, table 29). It can be seen that both electron-rich and electron-deficient aldehydes as well as heterocyclic ones worked well, giving good to excellent yields of the substituted polyhydroquinoline derivatives.⁷⁶

Scheme 32

Entry	R	Product	Yield (%) ^a
1	C_6H_5	60a	96
2	4-BrC ₆ H ₄	60 b	94
3	3-BrC ₆ H ₄	60 c	90
4	4-CIC ₆ H ₄	60 d	92
5	2-CIC ₆ H ₄	60 e	90
6	3-CIC ₆ H ₄	60 f	90
7	4-(CH ₃) ₂ NC ₆ H ₄	60 g	80
8	2-MeOC ₆ H ₄	60 h	93
9	2-FC ₆ H ₄	60 i	90
10	4-NO ₂ C ₆ H ₄	60j	88
11	$2-NO_2C_6H_4$	60 k	82
12	4-MeC ₆ H ₅	601	92
13	4-OHC ₆ H ₅	60 m	86
14	C ₆ H₅CH=CH	60 n	90
15	2-Thienyl	60 o	89
16	3-Thienyl	60 p	91
17	2-Furyl	60 q	90
18	3-Pyridyl	60 r	89
19	C ₄ H ₈ O	60 s	84

^aYield refers to isolated products.

The bimetallic $ZnFe_2O_4$ nanopowder, a dual Lewis acid–base combined catalyst, is found to efficiently catalyze a four component reaction for the synthesis of functionalized tetrahydrospiro[indoline-3,2'-quinoline] derivatives **61a-ae**. Thus, reaction of arylamines **9**, dialkyl acetylene dicarboxylates **8**, isatin derivatives **58** and cyclohexane-1,3-diones **55** in water medium at room temperature afforded **61** in good yields (Scheme 33, Table 30).⁷⁷ A probable mechanism for the formation of **61** depends on the dual role of $ZnFe_2O_4$ as a Lewis acidic site, as well as basic site.⁷⁸

Scheme 33

Entry	R ¹	R ²	R ³	R^4	R^5	Product	Yield (%)
1	Н	н	4-MeC ₆ H ₄	Ме	Ме	61a	77
2	Н	Н	4-MeOC ₆ H ₄	Et	Ме	61b	75
3	Н	Н	4-BrC ₆ H ₄	Me	Ме	61c	72
4	Н	Н	4-BrC ₆ H ₄	Et	Ме	61d	73
5	Et	Н	4-MeOC ₆ H ₄	Me	Ме	61e	80
6	Et	Н	4-CIC ₆ H ₄	Me	Ме	61f	78
7	Н	Br	4-MeOC ₆ H ₄	Me	Ме	61g	71
8	Et	CI	4-MeOC ₆ H ₄	Et	Н	61h	77
9	Н	CI	4-BrC ₆ H ₄	Me	Ме	61i	69
10	Pr	Н	4-MeOC ₆ H ₄	Me	Ме	61j	72
11	Н	CI	4-CIC ₆ H ₄	Et	Ме	61k	76
12	Pr	CI	4-MeOC ₆ H ₄	Me	Ме	611	81
13	Pr	CI	$4-MeC_6H_4$	Et	Ме	61m	72
14	Pr	Н	4-CIC ₆ H ₄	Me	Н	61n	70
15	Н	Н	4-MeOC ₆ H ₄	Et	Н	610	74
16	Pr	CI	4-CIC ₆ H ₄	Me	Н	61p	76
17	Н	F	4-MeOC ₆ H ₄	Et	Н	61q	78
18	Н	Br	4-CIC ₆ H ₄	Et	Ме	61r	73
19	Et	CI	4-FC ₆ H ₄	Et	Н	61s	79
20	Н	CI	4-MeC ₆ H ₄	Et	Ме	61t	82
21	Н	Н	3-CIC ₆ H ₄	Et	Ме	61u	67
22	Н	Н	3-MeOC ₆ H ₄	Et	Ме	61v	70
23	Н	CI	3-CIC ₆ H ₄	Et	Ме	61w	69
24	Н	Н	4-CIC ₆ H ₄	Me	Ме	61x	77
25	Н	CI	4-MeOC ₆ H ₄	Me	Ме	61y	73
26	Н	CI	C_6H_5	Me	Ме	61z	67
27	Н	CI	4-MeOC ₆ H ₄	Et	Ме	61a	78
28	Н	Н	4-MeOC ₆ H ₄	Me	Me	61b	78
29	Н	Н	C_6H_5	Me	Me	61c	73
30	Н	Н	4-CIC ₆ H ₄	Et	Me	61d	79
31	Н	Н	$4-MeC_6H_4$	Et	Me	61e	82

2.3.2. Benzo fused heterocycles

2.3.2.1. Benzo fused with 5-membered heterocyclic ring: two heteroatoms

2.3.2.1.1. Benzoxazole

Sarode *et al.* reported a green and sustainable approach for the synthesis of 2-substituted benzoxazole **63** by using a one pot redox cascade condensation reaction of benzyl amine derivatives **9** and 2-nitrophenols **62**, catalyzed by Cu Ferrite NPs (Scheme 34, Table 31).⁷⁹ Cu Ferrite NPs are magnetically separable, air stable and can be recycled up to fifth cycle without a significant loss in catalytic activity.

Table 31

Entry	R-NH ₂	R ¹	Product	R	Yield (%) ^b
1	C ₆ H ₅ CH ₂ -	н	63a	C_6H_5	92
2	3-HOC ₆ H ₄ CH ₂ -	н	63b	3-HOC ₆ H ₄	84
3	4-MeOC ₆ H ₄ CH ₂ -	н	63c	4-MeOC ₆ H ₄	89
4	4-FC ₆ H ₄ CH ₂ -	Н	63d	4-FC ₆ H ₄	85
5	4-BrC ₆ H ₄ CH ₂ -	Н	63e	4-BrC ₆ H ₄	78
6	2-Naphthyl-CH ₂ -	н	63f	2-Naphthyl	90
7	3-Pyridyl-CH ₂ -	Н	63g	3-Pyridyl	87
8	3,5-(MeO) ₂ C ₆ H ₃ CH ₂ -	Н	63h	3,5-(MeO) ₂ C ₆ H	3 81
9	C ₆ H ₅ CH ₂ -	2-Me	63i	C_6H_5	84
10	C ₆ H ₅ CH ₂ -	3-CI	63j	C_6H_5	80
11	C ₆ H ₅ CH ₂ -	3,4-Me ₂	63k	C_6H_5	90
12	C ₆ H ₅ CH ₂ -	3-CI	631	C_6H_5	86
13	C ₆ H ₅ CH ₂ -	2-Me-3-Cl	63m	C_6H_5	83

The plausible reaction mechanism depends on the basis that Cu Ferrite NPs provide the surface for the simultaneous oxidation and reduction of the reactants.⁸⁰ Benzyl amine on autoxidation forms corresponding benzaldehyde and releases the ammonia which was confirmed by the litmus paper test after the workup of the reaction. Here ammonia acts as a hydrogen source for the reduction of the nitro group of the *o*-nitro phenol. It reduces to 2-amino phenol which was then condensed with the benzaldehyde and gives the 2-phenylbenzo[*d*]oxazole (Scheme 35).

Scheme 35

56

Tang *et al.* described a one-pot direct synthesis of benzoxazoles **63** using *o*-nitrophenols **62** and alcohols **64** as the starting materials catalyzed by gold nanoparticles supported on titanium dioxide (Au/TiO₂) (Scheme 36). The products were obtained in good yields and yields are summarized in Table 32 The electronic properties of a series of benzylic alcohols were found to have little influence on the reaction. Reactions with benzylic alcohols bearing both electron-donating groups (Table 32, entries 2–5) and electron-withdrawing groups (Table 32, entries 8–10) in the aromatic ring could effectively afford the desired products in excellent yields. However, the steric hindrance of the substituents had a negative influence on the reaction. Relatively low yields of the corresponding products were obtained when the substituent groups appeared in the *ortho*-position of the benzene ring (Table 32, entries 6 and 7).⁸¹

Entry	R	R ¹	Product	Yield (%)
1	C ₆ H ₅	Н	63a	99(90)
2	4-MeC ₆ H ₄	Н	63n	98
3	3-MeC ₆ H ₄	Н	630	97
4	4-MeOC ₆ H ₄	Н	63p	99(91)
5	3-MeOC ₆ H ₄	Н	63q	91
6	2-MeC ₆ H ₄	Н	63r	81
7	2-MeOC ₆ H ₄	Н	63s	85
8	4-FC ₆ H ₄	Н	63d	95(85)
9	3-FC ₆ H ₄	Н	63t	94
10	4-CIC ₆ H ₄	Н	63u	98
11	4-BrC ₆ H ₄	Н	63e	63/17
12	4-CF ₃ C ₆ H ₄ -	Н	63v	70
13	1-Naphthyl	Н	63w	95
14	Ме	Н	63x	52
15	^t Bu	Н	63y	63(55)
16	ⁿ C ₅ H ₁₁	Н	63z	56
17	Cyclohexyl	Н	63aa	60
18	C ₆ H ₅	4-Me	63ab	96
19	C ₆ H ₅	5-Me	63ac	95(84)
20	C ₆ H ₅	4-MeO	63ad	97
21	C ₆ H ₅	5-F	63ae	98
22	C ₆ H ₅	4-F	63af	99
23	C ₆ H ₅	4-CI	63ag	95
24	C_6H_5	Н	63a	80(75)

The authors suggested a possible mechanism for the reaction as depicted in Scheme 37 First of all, dehydrogenative oxidation of the alcohol **64** to its corresponding carbonyl compound generates the gold-hydride species (**b**) and 2-nitrophenol (**62**) is reduced to 2-aminophenol in *situ* by **b**. This is the first hydrogen-transfer process. Then, the aldehyde can readily react with 2-aminophenol to afford the corresponding imine (**c**). **c** is selectively converted to the intermediate 2-phenyl-2,3-dihydrobenzoxazole (**d**) under the catalysis of a gold catalyst. Subsequently, **d** can be rapidly oxidized to the product **63** in the presence of a gold catalyst accompanied by the generation of **b** and 2-nitrophenol (**62**) is reduced to 2-aminopheno by **b**. This is the second hydrogen-transfer process. In the whole catalytic cycle, the alcohol and the intermediate 2-phenyl-2,3-dihydrobenzoxazole are used as reductants (hydrogen donor) once and 2-nitrophenol is used as the oxidant (hydrogen acceptor) twice.⁸¹

2.3.2.1.2. Benzimidazole

Nasr-Esfahani *et al.* reported the synthesis of a stable heterogeneous catalyst, Cu(II) containing nanosilica triazine dendrimer (Cu(II)-TD@nSiO₂). This catalyst has been successfully applied for the synthesis of benzimidazoles **65**a-k *via* the condensation of 1,2-phenylenediamines **9** with a wide variety of aromatic, polycyclic and heteroaromatic aldehydes at ambient atmosphere under conventional conditions (Scheme 38, Table 33).⁸²

Scheme 38

Page	60	of	1	1	7
------	----	----	---	---	---

Entry	R	R ¹	Product	Yield (%)
1	C_6H_5	Н	65a	95
2	4-CIC ₆ H ₄	Н	65b	97
3	2-BrC ₆ H ₄	Н	65c	97
4	4-MeC ₆ H ₄	Н	65d	95
5	3-O ₂ NC ₆ H ₄	4-Me	65e	89
6	1-Naphthyl	4-Me	65f	93
7	1-Naphthyl	4-Cl	65g	88
8	9-Anthryl	Н	65h	92
9	3-Pyridyl	Н	65i	91
10	3-Indolyl	4-Me	6 <i>5</i> j	92
11	2-Thienyl	Н	65k	92

The same authors has also achieved an efficient synthesis of bis-benzimidazoles **66**, from terephthaldialdehyde using this catalytic system (Scheme 39).⁸²

Scheme 39

A highly efficient and selective reaction for the synthesis of 2-substituted benzimidazoles **68** using *o*-nitroanilines **67** and alcohols **64** as the starting materials catalyzed by Au/TiO_2 has been developed *via* two hydrogen-transfer processes (Scheme 40, Table 34). This reaction has a good tolerance to air and water, a wide substrate scope, and represents a new avenue for practical C–N and C–O bond formation. More importantly, no additional additives, oxidants and reductants are required for the reaction and the catalyst can be recovered and reused readily.⁸¹

Table 34

Entry	R ¹	R^2	Product	Yield (%)
1	C_6H_5	н	68a	78(70)
2	C_6H_5	Ме	68b	84
3	$4-MeC_6H_4$	Ме	68c	83
4	$4-MeOC_6H_4$	Me	68d	86(81)
5	$4-FC_6H_4$	Ме	68e	86
6	4-CIC ₆ H ₄	Ме	68f	79(70)

2.3.2.1.3. Benzothiazole

The Cu(II) containing nanosilica triazine dendrimer (Cu(II)-TD@nSiO₂, Fig. 19) can also be used as an efficient catalyst for the preparation of various benzothiazoles under mild conditions. The reaction proceeded by reaction of the appropriate aromatic aldehydes 7 with 2-aminothiophenol **9** in the presence of a catalytic amount of Cu(II)-TD@nSiO₂ (Scheme 41, Table 35, Method A).⁸²

Rahmani *et al.* prepared nano titania-supported sulfonic acid (*n*-TSA) from the reaction of nano titania (titanium oxide) with chlorosulfonic acid as sulfonating agent. This was efficiently used as a heterogeneous catalyst for synthesis of 2-arylbenzothiazoles **69**, *via* reaction of aromatic aldehyde with 2-aminothiophenol in solvent-free at 70 °C (Scheme 41, Table 35, Method B).⁶⁷

RSC Advances Accepted Manuscript

Entry	Ar	Product	Method	Yield (%)
1	4-CIC ₆ H ₅	69a	А	97
2	$2,4-Cl_2C_6H_3$	69b	А	96
3	3,4-(MeO) ₂ C ₆ H ₃	69c	А	93
4	4-MeC ₆ H ₄	69d	А	98
5	3-MeOC ₆ H ₄	69e	А	96
6	3-O ₂ NC ₆ H ₄	69f	А	87
7	1-Naphthyl	69g	А	93
8	3-Pyridyl	69h	А	92
9	3-indolyl	69i	А	94
10	2-Thienyl	69j	А	92
11	C ₆ H ₅	69k	В	90
12	2-CIC ₆ H ₄	691	В	84
13	4-CIC ₆ H ₄	69a	В	86
14	2-HOC ₆ H ₄	69m	В	82
15	4-HOC ₆ H ₄	69n	В	83
16	4-FC ₆ H ₄	690	В	86
17	4-BrC ₆ H ₄	69p	В	86
18	4-MeC ₆ H ₄	69d	В	90
19	4-MeOC ₆ H ₄	69q	В	93
20	$2-O_2NC_6H_4$	69r	В	81
21	3-02NC6H4	69f	В	86
22	$4-O_2NC_6H_4$	69s	В	89
23	2-Naphthyl	69t	В	90
24	Furyl	69u	В	79

Table 35

Nasr-Esfahani *et al.* prepared symmetrical bis-benzothiazole **70** in high yield by the reaction of terephthaldialdehyde **7** with two equivalents of 2-aminothiophenol **9** in the presence of a catalytic amount of Cu(II)-TD@nSiO₂ under conventional conditions (Scheme 42).⁸²

2.3.2.2. Benzo fused with 6-membered heterocyclic ring: one heteroatom

2.3.2.2.1. 2H-Chromene

A wide range of substituted coumarin derivatives **71a-l** were synthesized by refluxing in acetonitrile, ethyl acetoacetate, and ethyl benzoyl acetate **15** with a wide range of structurally diverse phenol derivatives **62** within a short reaction time with a catalytic combination of pyridine dicarboxylic acid as organocatalyst and nanocrystalline ZnO (Scheme 43, Table 36).⁸³

Scheme 43

2.3.2.2.2. 4*H*-Chromene

Nano ZnO can serve as an efficient catalyst for the synthesis of 2-amino-4*H*-benzopyrans **72a**,**b** in good yields from methylenemalononitrile, generated *in situ* from aldehyde **7** and malononitrile **46** and phenols **62a**,**b** (Scheme 44).⁸⁴

72b, $R^{1} = OH, R = 4-CIC_{6}H_{4}$, yield 50%

Mohammad and Kassaee reported the use of sulfochitosan-coated Fe₃O₄ magnetic nanoparticles (Fe₃O₄@CS-SO₃H NPs, Fig. 20) as a "green" heterogeneous catalyst for preparation of 2-amino-4*H*-chromen-4-yl phosphonates **72c-k** through one-pot, three-component reactions of salicylaldehydes **7**, malononitrile **46**, and triethyl phosphite in water at room temperature (Scheme 45, Table 37).⁸⁵

Scheme 45

Entry	R ¹	Product	Yield (%)
1	Н	72c	93
2	6-CI	72d	96
3	6-0 ₂ N	72e	92
4	6-Me	72f	95
5	6-Br	72g	97
6	7-MeO	72h	93
7	6,8-Br ₂	72i	97
8	6,8-Br ₂	72j	94
9	6-MeO	72k	88

Fe₃O₄@CS-SO₃H NPs

Fig. 20

2.3.2.3. Benzo fused with 6-membered heterocyclic ring: two heteroatoms

2.3.2.3.1. Quinoxaline

An iron Schiff base complex was encapsulated in SBA-15 (Santa BArbara No. 15), the most interesting mesoporous silica, to afford a Fe(III)-Schiff base/SBA-15 heterogeneous nanocatalyst (Fig. 21). The latter catalyzed the synthesis of quinoxalines **73a-d** with excellent yields from the reaction of *o*-phenylenediamine with the appropriate 1,2-diketone **25** in water (Scheme 46, Table 38).⁶⁶

Fig. 21

Table 38

Entry	R ¹	Product	Yield (%)
1	C ₆ H ₅	73a	99
2	4-FC ₆ H ₄	73b	99
3	4-MeOC ₆ H ₄	73c	98
4	Ме	73d	99

2.3.2.3.2. Quinazoline

Zhang *et al.* prepared a new heterogeneous catalyst consisting of CuO NPs supported on kaolin and studied its catalytic activity for the synthesis of quinazolines **75**. Thus, a series of quinazoline derivatives **75** were synthesized from 2-aminobenzophenones **74** and benzylic amines **9** under mild conditions in good to excellent yields (Scheme 47, Table 39). The employment of a suitable supporting material can not only increase the catalytic activity of CuO NPs but also facilitate the separation between the catalyst and the product.⁸⁶

Scheme 47

Entry	R ¹	R ²	R ³	Product	Yield (%)
1	Н	C ₆ H ₅	C ₆ H ₅	75a	90
2	Н	4-Fluorophenyl	C ₆ H ₅	75b	88
3	Н	4-Bromophenyl	C ₆ H ₅	75c	83
4	Н	<i>p-</i> Tolyl	C ₆ H ₅	75d	82
5	Н	2,5-diMephenyl	C ₆ H ₅	75e	71
6	Н	Mesityl	C ₆ H ₅	75f	0
7	Н	Et	C ₆ H ₅	75g	84
8	Н	ⁿ Bu	C ₆ H ₅	75h	95
9	Н	Hexadecyl	C ₆ H ₅	75i	78
10	Н	ⁱ Pr	C ₆ H ₅	7 5j	90
11	Н	^t Bu	C ₆ H ₅	75k	89
12	Н	Cyclopropyl	C ₆ H ₅	751	90
13	Н	Cyclopropyl	C ₆ H ₅	751	74
14	Н	C ₆ H ₅	C ₆ H ₅	75m	73
15	6-Cl	C ₆ H ₅	C ₆ H ₅	75a	85
16	6-Br	C ₆ H ₅	C ₆ H ₅	75n	93
17	6,7-diMe	C ₆ H₅	C ₆ H ₅	750	63
18	6-Cl	C ₆ H ₅	C ₆ H ₅	75p	45
19	Н	C ₆ H ₅	p-Tolyl	75q	89
20	Н	C ₆ H ₅	m-Tolyl	75r	86
21	Н	C ₆ H ₅	o-Tolyl	75s	94
22	Н	C ₆ H ₅	4-Methoxyphenyl	75t	88
23	Н	C ₆ H ₅	Benzo[1,3]dioxol-5-yl	75u	58
24	Н	C ₆ H ₅	4-Chlorophenyl	75v	87
25	Н	C ₆ H ₅	4-Fluorophenyl	75w	91
26	Н	C ₆ H ₅	4-(Trifluoromethyl)phenyl	75x	92
27	Н	C ₆ H ₅	1-Naphthyl	75y	86
28	Н	C ₆ H ₅	2-Furyl	75z	51

A postulated reaction pathway is proposed, as shown in Scheme 8 Firstly, CuO NPs may activate 2aminobenzophenone to generate intermediate I. Meanwhile, benzylic amine can attach to the surface of the CuO NPs to form intermediate II. In the intermediate II, the distance between 2-aminobenzophenone and benzylic amine may be shortened, facilitating the attack of benzylic amine to 2-aminobenzophenone. After attacked by benzylic amine, imine A is formed. A subsequently undergoes an oxidation process and is stabilized by CuO NPs (intermediate III). Intramolecular attack of the amino-group to the imine cation results in intermediate B. Further oxidation of intermediate B gives the quinazoline product.⁸⁶

Tang *et al.* developed a highly efficient and selective nitrogen source-promoted reaction for the synthesis of 2,4-disubstituted quinazolines **75** from *o*-nitroacetophenones **76** and alcohols **64** catalyzed by Au/TiO₂ *via* a hydrogen-transfer strategy (Scheme 49, Table 40). This reaction has good tolerance to air and water, a wide substrate scope, and represents a new avenue for practical multiple C–N bond formation. More importantly, no additional additive, oxidant and reductant are required in the reaction and the catalyst can be recovered and reused readily. The electronic properties of a series of aromatic alcohols were found to have little influence on the reaction. The reactions could be carried out effectively to afford the desired products with good yields regardless of the electron-donating groups or electron-withdrawing groups at the benzene ring of benzylic alcohols. However, the steric hindrance of the substituents had a negative influence on the reaction.⁸⁷

Scheme 49

Entry	R ¹	R ²	R ³	Yield (%)
1	Н	Ме	C ₆ H ₅	99(83) ^a
2	Н	Ме	4-MeC ₆ H ₄	97(80) ^a
3	Н	Ме	4-MeOC ₆ H ₄	95
4	Н	Ме	2-MeOC ₆ H ₄	54(84) ^b
5	Н	Ме	3,4-(MeO) ₂ C ₆ H ₃	97
6	Н	Ме	4-FC ₆ H ₄	91(81) ^a
7	Н	Ме	3-FC ₆ H ₄	70
8	Н	Ме	4-CIC ₆ H ₄	96
9	Н	Ме	2-CIC ₆ H ₄	63(86) ^b
10	Н	Ме	4-BrC ₆ H ₄	94(85) ^a
11	Н	Ме	4-MeOOCC ₆ H ₄	36(94) ^b
12	Н	Ме	4-CF ₃ C ₆ H ₄	31(87) ^b
13	Н	Ме	1-Naphthyl	89
14	Н	Ме	Ме	85(74) ^a
15	Н	Ме	<i>n</i> Pr	76
16	Н	Ме	^t Bu	58
17	Н	Ме	Cyclohexyl	73
18	Н	C_6H_5	C_6H_5	74
19	Н	4-MeC ₆ H ₄	C_6H_5	71
20	Н	4-FC ₆ H ₄	C_6H_5	76
21	Н	4-CIC ₆ H ₄	C_6H_5	73
22	Н	4-BrC ₆ H ₄	C_6H_5	68
23	Н	2,4,6-(Me) ₃ C ₆ H ₂	C_6H_5	0
24	6-Cl	C_6H_5	C_6H_5	73
25	6-Me	Ме	C_6H_5	92
26	6-F	Ме	C_6H_5	94(97) ^a
27	7-Cl	Ме	C_6H_5	91
28	Н	Н	C_6H_5	53
29	Н	<i>n</i> Bu	C_6H_5	56
30	Н	۶Pn	C_6H_5	71
31	Н	Hexadecyl	C_6H_5	68

^a Under air, ^b 150 ^oC

The possible mechanism is depicted in Scheme 50. First of all, dehydrogenative oxidation of the alcohol (64) into the corresponding carbonyl compound (64') promoted by ammonia, generates the gold-hydride species (b) and 76a' is reduced into 76b in *situ* by b. This is the first hydrogen-transfer process and also the rate-limiting step of the reaction. Then, 76b can readily react with 64a' to afford the corresponding imine (c). Compound c is converted to the intermediate (d) under the catalysis of gold. Subsequently, d can be rapidly oxidized to the product of 75 in the presence of the gold catalyst accompanied with the generation of b. And 76a' is again reduced into 76b by b. This is the second hydrogen-transfer process. In the whole catalytic cycle, the alcohol 64

and the intermediate **d** are used as the reductant (hydrogen donor) once and the nitro compound **76a'** is used as the oxidant (hydrogen acceptor) twice.⁸⁷

Scheme 50

2.3.3.Two fused heterocycles

2.3.3.1. Fused [5-5] systems: two bridgehead nitrogens and one extra heteroatom

2.3.3.1.1. Pyrazolo[1,2-*a*][1,2,4]triazole

Azarifar *et al.* explored the catalytic activity of nano-structured ZnO in the synthesis of pyrazolo[1,2-a][1,2,4]triazole-1,3-dione derivatives **78** *via* a three-component coupling reaction between aromatic aldehydes **7**, malononitrile **46**, and 4-aryltriazoles **77** under solvent-free conditions (Scheme 51, Table 41, Method A).⁸⁸

Naeimi *et al.* also developed an efficient clean method for the synthesis of pyrazolo[1,2-a][1,2,4]triazole derivatives **75** *via* a one-pot three-component reaction of aromatic aldehydes **7**, **77** and **46** in the presence of a catalytic amount of nanocrystalline (NC) magnesium oxide (Scheme 51, Table 41, Method B).⁸⁹

Shaterian and Moradi used a similar approach for the synthesis of 7-amino-1,3-dioxo-1,2,3,5-tetrahydropyrazolo[1,2-*a*][1,2,4]triazole derivatives **78** by employing magnetic Fe₃O₄ nanoparticles coated by (3-aminopropyl)-triethoxysilane (Fig. 22) as a catalyst for a similar reaction (Scheme 51, Table 41, Method C).⁹⁰

Fig. 22

Scheme 51

Method A: Nano-ZnO/ solvent free, reflux Method B: NC MgO(10 mol%)/EtOH, reflux Method C: APTES-MNPs/solvent free, 80 °C
|--|

Entry	R	Х	R ¹	Product	Method	Yield (%)
1	C ₆ H ₅	CN	C ₆ H ₅	78a	A	90
2	4-CIC ₆ H ₄	CN	C_6H_5	78b	А	88
3	C ₆ H ₅	CN	4-CIC ₆ H ₄	78c	А	91
4	4-CIC ₆ H ₄	CN	4-CIC ₆ H ₄	78d	А	91
5	4-O ₂ NC ₆ H ₄	CN	4-CIC ₆ H ₄	78e	А	90
6	4-O ₂ NC ₆ H ₄	CN	$2,4\text{-}\mathrm{Cl}_2\mathrm{C}_6\mathrm{H}_4$	78f	А	86
7	4-O ₂ NC ₆ H ₄	CN	4-0 ₂ NC ₆ H ₄	78g	А	71
8	C_6H_5	CN	4-MeOC ₆ H ₄	78h	А	84
9	4-O ₂ NC ₆ H ₄	CN	4-MeOC ₆ H ₄	78i	А	81
10	C_6H_5	CN	4- ^t BuC ₆ H₄	78j	А	80
11	4-O ₂ NC ₆ H ₄	CN	4- ^t BuC ₆ H₄	78k	А	75
12	4-CI-3O2NC6H3	CN	C_6H_5	781	А	86
13	2,4,6-(MeO) ₃ C ₆ H ₂	CN	C_6H_5	78m	А	78
14	2,3-Cl ₂ C ₆ H ₄	CN	C_6H_5	78n	А	91
15	C ₆ H ₅	CN	C_6H_5	78a	А	-
16	C_6H_5	CN	C_6H_5	78a	В	89
17	4-BrC ₆ H ₄	CN	C_6H_5	780	В	88
18	3-O ₂ NC ₆ H ₄	CN	C_6H_5	78p	В	91
19	4-CIC ₆ H ₄	CN	C_6H_5	78q	В	86
20	3-BrC ₆ H ₄	CN	C_6H_5	78r	В	81
21	2-BrC ₆ H ₄	CN	C_6H_5	78s	В	87
22	4-MeC ₆ H ₄	CN	C_6H_5	78t	В	90
23	C ₆ H ₅	COOMe	C_6H_5	78u	В	83
24	3-O ₂ NC ₆ H ₄	COOMe	C_6H_5	78v	В	84
25	4-CIC ₆ H ₄	COOMe	C_6H_5	78w	В	85
26	4-O ₂ NC ₆ H ₄	COOMe	C_6H_5	78x	В	92
27	4-CIC ₆ H ₄	COOEt	C_6H_5	78y	В	82
28	4-O ₂ NC ₆ H ₄	COOEt	C_6H_5	78z	В	86
29	4-MeC ₆ H₄	COOEt	C_6H_5	78aa	В	89
30	Ferrocenyl	CN	C_6H_5	78ab	В	-
31	C ₆ H ₅	CN	C_6H_5	78a	С	92
32	4-CIC ₆ H ₄	CN	C_6H_5	78b	С	90
33	4-FC ₆ H ₄	CN	C_6H_5	78ac	С	92
34	2-CIC ₆ H ₄	CN	C_6H_5	78ad	С	88
35	3-CIC ₆ H ₄	CN	C_6H_5	78ae	С	94
36	2-O ₂ NC ₆ H₄	CN	C_6H_5	78af	С	88
37	$4-O_2NC_6H_4$	CN	C_6H_5	78ag	С	89
38	$2,4-Cl_2C_6H_3$	CN	C_6H_5	78ah	С	90
39	3-O ₂ NC ₆ H₄	CN	C ₆ H ₅	78p	С	90
40	4-MeC ₆ H₄	CN	C_6H_5	78t	С	89
41	3-BrC _e H₄	CN	C_6H_5	78r	С	93
42	2-BrC _e H₄	CN	C_6H_5	78s	С	92
43	4-BrC _e H₄	CN	C ₆ H ₅	780	С	89
44	<i>n</i> -Heptanal	CN	C ₆ H ₅	78ai	С	-

2.3.3.2. Fused [5-5] systems: four heteroatoms [2:2]

2.3.3.2.1. Imidazo[4,5-*d*]imidazole

Nano-sized HZSM-5 zeolite have been used by Vessally *et al.* as a mild and efficient catalyst for the synthesis of tetrahydroimidazo[4,5-*d*]imidazole-2,5(1*H*,3*H*)dione derivatives **79a-f** through reaction between urea **49** and the appropriate dicarbonyl compound **25**. The yield of the reaction increases when the time of the reaction reaches 72 h. The amount of catalyst was also reported to increase the reaction yields. HZSM-5 was prepared by ion exchange of ZSM-5 nanozeolite with NH₄Cl, followed by drying and calcination (Scheme 52, Table 42).⁹¹

Scheme 52

Table 42

2.3.3.3. Fused [5-6] systems: one bridgehead nitrogen

5

6

Me

Et

2.3.3.3.1. Indolizine

Albaladejo *et al.* reported the synthesis of a wide range of indolizines **80a-m** in moderate-to-high yields (59–93%) by the reaction of pyridine-2-carbaldehyde **7** secondary amines and arylacetylenes **35** using low catalyst loading (0.5 mol%) of Cu NPs/C (Cu NPs on activated carbon) (Scheme 53, Table 43).⁹²

Me

Et

79e

79f

67

70

Entry	$R^1 R^2$	R ³	Yield (%)
1	-CH ₂) ₅	C ₆ H ₅	86
2	-CH ₂) ₂ -O-CH ₂) ₂ -	C ₆ H ₅	74
3	Bu,Bu	C ₆ H ₅	91
4	Me,Bn	C ₆ H ₅	80
5	Bn,Bn	C ₆ H ₅	93
6	-CH ₂) ₅	4-MeC ₆ H ₄	69
7	-CH ₂) ₅	4-F ₃ CC ₆ H ₄	76
8	-CH ₂) ₅	4-MeOOCC ₆ H ₄	59
9	-CH ₂) ₅	4-Me ₂ NC ₆ H ₄	93
10	-CH ₂) ₅	4-MeOC ₆ H ₄	86
11	-CH ₂) ₅	4-BrC ₆ H ₄	73
12	Bn,Bn	4-MeC ₆ H ₄	91
13	Bu,Bu	ⁿ Decyl	64

2.3.3.4. Fused [5-6] systems: one bridgehead nitrogen and one extra heteroatom

2.3.3.4.1. Imidazo[1,2-*a*]pyridine

Meng *et al.* developed an efficient and mild heterogeneously CuCl₂/nano-TiO₂-catalyzed aerobic synthesis of imidazo[1,2-*a*]pyridines **82a-d** in good yields with low catalyst loading (0.8 mol%) from 2-aminopyridines **9** and ketones **81** using air as the oxidant in the absence of any ligands and additives. This strategy was compatible with a large range of substrates, including unactivated aryl ketones and unsaturated ketones and went through the C–H bond functionalization mechanism (Scheme 54, Table 44).⁹³

Table	44
-------	----

Entry	R ¹	R ²	Product	Yield (%)
1	Н	4-MeOC ₆ H ₄	82a	85
2	Н	3-MeOC ₆ H ₄	82b	84
3	Н	2-MeOC ₆ H ₄	82c	69
4	Н	$4-MeC_6H_4$	82d	88
5	Н	3-MeC ₆ H ₄	82e	82
6	Н	2-MeC ₆ H ₄	82f	91
7	Н	4-CIC ₆ H ₄	82g	92
8	Н	3-CIC ₆ H ₄	82h	88
9	Н	2-CIC ₆ H ₄	82i	70
10	Н	4-BrC ₆ H ₄	82j	85
11	Н	4-Me ₂ NC ₆ H ₄	82k	72
12	Н	4-F ₃ CC ₆ H ₄	821	65
13	Н	3-F ₃ CC ₆ H ₄	82m	86
14	Н	2-F ₃ C ₆ H ₄	82n	72
15	Н	4-MeOOCC ₆ H ₄	82o	64
16	Н	3-O ₂ NC ₆ H ₄	82p	81
17	Н	4-NCC ₆ H ₄	82q	90
18	Н	2-Furyl	82r	78
19	Н	2-Thienyl	82s	86
20	Н	2-Pyridyl	82t	74
21	Н	2-Thiazolyl	82u	71
22	Н	2-Styryl	82v	78
23	Н	*	82w	84
24	3-Me	C ₆ H ₅	82x	83
25	4-Me	C_6H_5	82y	80
26	4-Me	4-BrC ₆ H ₄	82z	78
27	4-CF ₃	C_6H_5	82aa	75
28	3-Br-2-Me	C_6H_5	82ab	61
29	2,4-Br ₂ -6-Me	C_6H_5	82ac	55
30	3-0 ₂ N	C ₆ H ₅	82ad	-

* methylphenylketone is used and the product is

Guntreddi *et al.* demonstrated the catalytic use of magnetic nano-Fe₃O₄–KHSO₄·SiO₂ for an efficient one pot synthesis of imidazo[1,2-*a*]pyridines **83** by one pot three-component reaction of 2-aminopyridine **9**, aldehyde **7**, and alkyne **35** (Scheme 55, Table 45, Method A).⁹⁴

Tajbakhsh *et al.* synthesized a magnetically recoverable nano-catalyst based on a biimidazole Cu(I) complex by covalent grafting of biimidazole on chloride-functionalized silica@magnetite nanoparticles, followed by

metalation with CuI. The prepared nanocatalyst was also shown to have excellent and green catalytic activity in the synthesis of imidazo[1,2-*a*]pyridines **83a-y** *via* the one-pot reaction of 2-aminopyridines **9**, aldehydes **7** and phenylacetylene **35** in aqueous media (Scheme 55, Table 45, Method B).⁹⁵

Scheme 55

Method A: Fe₃O₄-KHSO₄.SiO₂-MNPs/110 °C, toluene, 17-24 h **Method B**:MNP@BiimCu(1.2 mol%)/CTAB(5 mg)/H₂O, reflux

Entry	R ¹	R ²	Method	Product	Yield (%)
1	Н	C_6H_5	А	83a	89
2	Н	4-CIC ₆ H ₄	А	83b	86
3	Н	3-CIC ₆ H ₄	А	83c	84
4	Н	4-BrC ₆ H ₄	А	83d	83
5	Н	3-BrC ₆ H ₄	А	83e	82
6	Н	2-BrC ₆ H ₄	А	83f	83
7	Н	4-MeOC ₆ H ₄	А	83g	75
8	Н	4-Me ₂ NC ₆ H ₄	А	83h	-
9	Н	4-MeC ₆ H ₄	А	83i	79
10	Н	4-O ₂ NC ₆ H ₄	А	83j	69
11	Н	2-O ₂ NC ₆ H ₄	А	83k	65
12	Н	Et	А	831	70
13	Н	2-Furyl	А	83m	72
14	Н	3-MeO-4-OHC ₆ H ₄	А	83n	55
15	Н	4-CIC ₆ H ₄	В	83b	90
16	Н	C_6H_5	В	83b	92
17	Н	4-MeOC ₆ H ₄	В	83g	85
18	Н	4-BrC ₆ H ₄	В	83d	90
19	Н	4-MeC ₆ H ₄	В	83i	78
20	Н	4-NCC ₆ H ₄	В	830	95
21	Н	4-F ₃ CC ₆ H ₄	В	83p	90
22	Н	4-FC ₆ H ₄	В	83q	95
23	Н	2-MeC ₆ H ₄	В	83r	80
24	Н	2-CIC ₆ H ₄	В	83s	87
25	Н	3-BrC ₆ H ₄	В	83e	82
26	Н	3-CIC ₆ H ₄	В	83c	85
27	Н	1-Naphthyl	В	83t	78
28	Н	2-Furyl	В	83u	90
29	Н	<i>"</i> Pr	В	83v	65
30	Н	ⁱ Pr	В	83w	76
31	3-Me	C_6H_5	В	83x	82
32	3-Me	C_6H_5	В	83y	78

Multi-component reaction of various types of aldehydes 7, 2-aminopyridines 9 and trimethylsilyl cyanide was carried out in the presence of MCM-41 supported boron trifluoride (BF₃/MCM-41) as a nanostructured solid acid catalyst for the synthesis of 3-iminoaryl-imidazo[1,2-*a*]pyridine derivatives **84a-i** (Scheme 56, Table 46). MCM-41 nanoparticles were synthesized by a sol–gel method and BF₃/MCM-41 samples with various loading amounts of BF₃ and different calcination temperatures were prepared and characterized by XRD, SEM and FT-IR techniques.⁹⁶

Table	46
-------	----

Entry	R ¹	R ²	Product	Yield (%)
1	н	Н	84a	95
2	н	6-Me	84b	75
3	3-Pyridyl	Н	84c	85
4	4-Me	Н	84d	80
5	4-MeO	Н	84e	80
6	4-F	Н	84f	80
7	4-Me	6-Me	84g	85
8	2-OH	4-Me	84h	80
9	4-F	6-Me	84i	75

Sanaeishoar *et al.* prepared LaMnO₃ perovskit nanoparticles using a sol–gel method. This perovskite-type oxide as a green and reusable catalyst for the synthesis of imidazo[1,2-*a*]pyridines **85a-o** by the reaction between 2-aminopyridine **9**, benzaldehydes **7**, and cyclohexyl isocyanide under solvent-free conditions within 1.5 h at 35 °C (Scheme 57, Table 47). The products **85a-o** were prepared under solvent free conditions without any additives.⁹⁷

Scheme 57

Entry	Х	R	Product	Yield (%)
1	н	C_6H_5	85a	96
2	н	4-MeC ₆ H ₄	85b	95
3	н	4-CIC ₆ H ₄	85c	99
4	н	4-Me ₂ NC ₆ H ₄	85d	94
5	н	2-Fluorenyl	85e	95
6	н	4-MeOC ₆ H ₄	85f	91
7	н	4-BrC ₆ H ₄	85g	99
8	н	2-Thiophen	85h	97
9	Me	C_6H_5	85i	95
10	Me	4-MeC ₆ H ₄	8 5j	94
11	Me	$2,4$ -Me $_2C_6H_3$	85k	91
12	Me	4-CIC ₆ H ₄	851	98
13	Me	4-Me ₂ NC ₆ H ₄	85m	94
14	Me	2-Fluorenyl	85n	94
15	Me	4-BrC ₆ H ₄	850	99

2.3.3.5. Fused [5-6] systems: three heteroatoms [1:2]

2.3.3.5.1. Pyrrolo[2,3-*d*]pyrimidine

Paul *et al.* developed a highly convergent, efficient and practical heteroannulation protocol for the synthesis of a library of uracil fused pyrrole derivatives **87a-i** by reactions involving the $CuFe_2O_4$ nanoparticles catalyzed one-pot three-component domino coupling of 6-aminouracil **86**, aldehydes **7** and nitromethane (Scheme 58, Table 48).⁹⁸

The Fe³⁺ of the magnetic nanoparticles (CuFe₂O₄) has shown excellent catalytic activity in promoting the Knoevenagel condensation reaction by enhancing the electrophilicity of the aromatic aldehydes 7. The Cu²⁺ of CuFe₂O₄ catalyzes the subsequent Michael addition reaction of the 6-aminouracil **86** to the α , β -unsaturated nitroalkene.

Scheme 58

Entry	R	R ¹	Product	Yield %
1	C ₆ H ₅	Ме	87a	89
2	4-MeOC ₆ H ₄	Ме	87b	92
3	$4-FC_6H_4$	Ме	87c	88
4	4-MeC ₆ H ₄	Ме	87d	92
5	C ₆ H ₅	Н	87e	91
6	4-MeOC ₆ H ₄	Н	87f	91
7	$4-FC_{6}H_{4}$	Н	87g	86
8	4-MeC ₆ H ₄	Н	87h	88
9	2-Furyl	н	87i	78

2.3.3.6. Fused [5-6] systems: three heteroatoms [2:1]

2.3.3.6.1. Pyrazolo[3,4-c]pyridine

MCM-41 (Mobil Composition of Matter No. 41) embedded magnetic nanoparticles which was prepared through the formation of MCM-41 in the presence of Fe₃O₄ nanoparticles has been used as a magnetically recoverable catalyst for the synthesis of new series of pyrazolo[3,4-*c*]pyridine derivatives **89a-p**. The reaction proceeded by the reaction of 3,5-dibenzylidenepiperidin-4-one **88** with methylhydrazine, hydrazine hydrate or hydrazine hydrate and subsequent acylation of the bicyclic compounds with acetic anhydride (Scheme 59, Table 49).⁹⁹

It is worth mentioning that 3,5-dibenzylidenepiperidin-4-one with electron-withdrawing groups on the phenyl rings induce greater electronic positive charge on the corresponding β -atoms and reacted rapidly whereas electron-rich groups on the phenyl rings require longer reaction times.

Scheme 59

Entry	Х	R	Product	Yield (%)
1	4-Me	Ме	89a	97
2	2,4-Cl ₂	Ме	89b	98
3	4-Br	Ме	89c	90
4	4-PhCH ₂ O	Ме	89d	95
5	2,3-Cl ₂	Ме	89e	98
6	4-CI	Me	89f	98
7	4-MeO	Ме	89g	90
8	4-F	Ме	89h	98
9	4-Me	Me	89i	98
10	4-CN	Me	89j	96
11	4-CI	COMe	89k	90
12	4-PhCH ₂ O	COMe	891	90
13	4-CN	COMe	89m	95
14	2,3-Cl ₂	Н	89n	95
15	3-0 ₂ N	Н	890	96
16	2,4-Cl ₂	Н	89p	98

A plausible mechanism for the formation of pyrazolo[4,3-*c*]pyridines **89a-p** is shown in Scheme 60. Because of the Lewis acidity property of the Fe³⁺, the intermediate 88 can be formed through the reaction of hydrazine hydrate with activated C=C double bond of 3,5-dibenzylidenepiperidin-4-one **88**. Then, the nucleophilic attack of the other NH₂ group on the carbonyl (C=O) moiety gives intermediate (4). Finally, the expected product (5) is afforded by water elimination.

Scheme 60

2.3.3.6.2. Imidazo[4,5-*b*]pyridine

RSC Advances Accepted Manuscrip

Rai *et al.* reported unprecedented version of the Ugi three-component coupling reaction, in which isocyanides **91** react with unprotected aldoses **90** as biorenewable aldehyde components **7** and acyclic amidines **28** as amine components. The reaction proceeds through [4+1] cycloaddition of a conjugated imine intermediate with the isocyanide **91** followed by dehydrative ring transformation of the resulting 4-amino-5-(polyhydroxyalkyl)imidazole to afford imino sugarannulated imidazoles **92a-f** and **93a-f** in excellent yields (86–95%). The procedure is performed in one pot in the presence of a nanoclay (K-10) catalyst, and can be expeditiously effected under solvent-free microwave-irradiation conditions (Scheme 61, Table 50).¹⁰⁰

Scheme 61

Table 50

Entry	R^1	R ²	Product	Time (min) ^a	Yield (%) ^b
1	Ph	Ph	92a	12	91
2	Ph	Bn	92b	15	88
3	Me	Ph	92c	12	90
4	Me	Bn	92d	12	89
5	4-CIC ₆ H ₄	Ph	92e	14	94
6	4-CIC ₆ H ₄	Bn	92f	12	92
7	Ph	Ph	93a	15	91
8	Ph	Bn	93b	15	90
9	Me	Ph	93c	15	90
10	Me	Bn	93d	12	86
11	4-CIC ₆ H ₄	Ph	93e	13	92
12	4-CIC ₆ H ₄	Bn	93f	12	95

^aTime required for completion of the reaction as indicated by by TLC. ^bYield of isolated and purified products.

2.3.3.7. Fused [6-5] systems: three heteroatoms [1:2]

2.3.3.7.1. Dihydropyrano[2,3-c]pyrazole

Nano magnetic complex lanthanum strontium magnesium oxide $La_{0.7}$ Sr_{0.3}MnO₃ (LSMO) has been explored as an efficient and recyclable catalyst to effect the one-pot three-component synthesis of 1,4-dihydropyrano[2,3*c*]pyrazol-5-yl cyanide **95** by condensation reactions between aromatic aldehydes **7**, malononitrile **46** and 3methyl-1-phenyl-2-pyrazolin-5-one **94** in EtOH under ultrasound irradiation conditions (Scheme 62, Table 51, Method A).⁶⁸

Azarifar *et al.* reported also the synthesis of highly functionalized 1,4-dihydropyrano[2,3-*c*]pyrazole derivatives **95** from the ultrasound promoted reactions between **7**, **45** and **94** in the presence of nano-titania-supported Preyssler-type heteropolyacid (n-TiO₂/H₁₄[NaP₅W₃₀O₁₁₀]) as an efficient and reusable heterogeneous catalyst. (Scheme 62, Table 51, Method B).⁶⁹

Nano-titania sulfuric acid (15-nm TSA) was also used as an efficient and reusable heterogeneous catalyst to furnish the synthesis of **95** in high to excellent yields by a similar ultrasound promoted reactions (Scheme 62, Table 51, Method C).⁷⁰

Scheme 62

Entry	Ar	Product	Method	Time (min)	Yield (%)
1	Ph	95a	А	11	89
2	4-FC ₆ H ₄	95b	А	5	95
3	4-CIC ₆ H ₄	95c	А	6	92
4	3-CIC ₆ H ₄	95d	А	8	88
5	4-BrC ₆ H ₄	95e	А	11	87
6	3-O ₂ NC ₆ H ₄	95f	А	5	90
7	4-O ₂ NC ₆ H ₄	95g	А	6	91
8	2,4-Cl ₂ C ₆ H ₃	95h	А	11	88
9	3-EtO-4-HOC ₆ H ₃	95i	А	14	86
10	4-PhC ₆ H ₄	95j	А	9	91
11	2-Naphthyl	95k	А	11	90
12	4-HOCC ₆ H ₄	951	А	10	86
13	PhCH = CH	95m	A	80	Trace
14	PhCH ₂ CH ₂	95n	A	80	Trace
15	Ph	95a	В	15	97
16	4-MeOC ₆ H ₄	950	В	30	83
17	4-MeC ₆ H ₄	95p	В	20	93
18	2-CIC ₆ H ₄	95q	В	30	86
19	3-CIC ₆ H ₄	95d	В	15	91
20	4-CIC ₆ H ₄	95c	В	15	95
21	4-BrC ₆ H ₄	95e	В	20	90
22	4-PhC ₆ H ₄	95j	В	15	90
23	4-OHCC ₆ H ₄	951	В	10	83
24	3-O ₂ NC ₆ H ₄	95f	В	10	98
25	4-O ₂ NC ₆ H ₄	95g	В	10	97
26	2-FC ₆ H ₄	95r	В	10	90
27	2-Naphthyl	95k	В	12	92
28	Ph	95a	С	15	96
29	4-MeOC ₆ H ₄	950	С	25	85
30	4-MeC ₆ H ₄	95p	С	15	92
31	2-CIC ₆ H ₄	95q	С	20	88
32	3-CIC ₆ H ₄	95d	С	15	96
33	4-CIC ₆ H ₄	95c	С	10	95
34	4-BrC ₆ H ₄	95e	С	15	92
35	4-PhC ₆ H ₄	95j	С	15	87
36	4-OHCC ₆ H ₄	951	С	10	87
37	$3-O_2NC_6H_4$	95f	C	10	97
38	4-O ₂ NC ₆ H ₄	95g	С	5	97
39	2-FC ₆ H ₄	95r	С	5	91

A four-component reaction of hydrazine hydrate or phenyl hydrazine **23**, ethyl 3-alkyl-3-oxo propanoate **15**, aldehydes **7** and malononitrile **46** has been performed in the presence of nanosized magnesium oxide as a highly effective heterogeneous base catalyst to produce of 6-amino-3-alkyl-4-aryl-5-cyano-1,4-dihydropyrano[2,3-*c*]pyrazole derivatives **96** in excellent yields and in a short experimental time. This method is simple and rapid for focusing a pyrano ring with a pyrazole ring (Scheme 63, Table 52, Method A).¹⁰¹

Shaterian and Azizi *et al.* reported also a convenient and efficient solvent-free procedure for preparation of 6amino-4-aryl-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles **96** by a similar four component

reaction in the presence of a catalytic amount of titanium dioxide nano-sized particles (Scheme 63, Table 52, Method B).¹⁰²

Entry	R	R^1	Ar Pr	roduct	Method	Yield (%)
1	н	Ме	C ₆ H ₅	96a	А	97
2	Н	Me	2-CIC ₆ H ₄	96b	А	93
3	Н	Me	4-CIC ₆ H ₄	96c	А	97
4	Н	Me	3-BrC ₆ H ₄	96d	А	90
5	Н	Me	4-O ₂ NC ₆ H ₄	96e	А	90
6	Н	Me	4-MeOC ₆ H ₄	96f	А	89
7	Ph	Me	C ₆ H ₅	96g	А	95
8	Ph	Me	4-MeC ₆ H ₄	96h	А	93
9	Ph	Me	4-MeOC ₆ H ₄	96i	А	90
10	Ph	Me	4-CIC ₆ H ₄	96j	А	96
11	Ph	Me	2,4-Cl ₂ C ₆ H ₃	96k	А	92
12	Ph	Me	4-BrC ₆ H ₄	961	А	88
13	Ph	Pr	4-CIC ₆ H ₄	96m	А	92
14	Ph	<i>i</i> pr	4-CIC ₆ H ₄	96n	А	93
15	Ph	<i>i</i> pr	2,4-Cl ₂ C ₆ H ₃	960	А	95
16	Н	Me	C ₆ H ₅	96a	В	96
17	Н	Me	3-MeO-4-HOC ₆ H ₃	96p	В	81
18	Н	Me	4-CIC ₆ H ₄	96j	В	93
19	Н	Me	4-MeOC ₆ H ₄	96i	В	89
20	Н	Me	4-O ₂ NC ₆ H ₄	96e	В	87
21	Н	Me	2,4-Cl ₂ C ₆ H ₃	96k	В	85
22	Н	Me	4-BrC ₆ H ₄	961	В	86
23	Н	Me	3-BrC ₆ H ₄	96d	В	86
24	Н	Me	2-CIC ₆ H ₄	96b	В	85
25	Н	Me	2-0 ₂ NC ₆ H ₄	96q	В	82
26	Н	Me	2,4-Cl ₂ C ₆ H ₃	96k	В	87
27	Н	Me	4-FC ₆ H ₄	96r	В	87
28	Н	Me	4-MeC ₆ H ₄	96h	В	85
29	Н	Me	2,5-(MeO) ₂ C ₆ H ₃	96s	В	85
30	Н	Me	3,4-(MeO) ₂ C ₆ H ₃	96t	В	82
31	Н	Me	3,4,5-(MeO) ₃ C ₆ H ₂	96u	В	84
32	Н	Me	4-HOC ₆ H ₄	96v	В	81
33	Н	Me	4-Me ₂ NC ₆ H ₄	96w	В	81
34	Н	Me	3-O ₂ NC ₆ H ₄	96x	В	92

Pradhan *et al.* synthesized CuFe₂O₄ magnetic nanoparticles and reported their use as an efficient catalyst for the one-pot synthesis of dihydropyrano[2,3-*c*]pyrazole derivatives **97a-k** at mild conditions and in excellent yields. The four component reaction (4CRs) of a wide variety of substituted hydrazine derivatives **23**, ethyl acetoacetate **15**, dialkyl acetylenedicarboxylates **8** and alkyl nitrile derivatives **46** (malononitrile and ethyl cyanoacetate) gave the targeted dihydropyrano[2,3-*c*]pyrazoles **97a-k** in good yield (Scheme 64, Table 53).⁷²

Scheme 64

Table 53

Entry	R ¹	R ²	R ³	Product	Yield (%)
1	C ₆ H ₅	Et	CN	97a	95
2	$4-O_2NC_6H_4$	Et	CN	97b	90
3	4-BrC ₆ H ₄	Et	CN	97 c	94
4	4-NCC ₆ H ₄	Et	CN	97 d	94
5	Н	Et	CN	97e	97
6	C ₆ H ₅	Me	COOEt	97f	93
7	$4-O_2NC_6H_4$	Me	COOEt	97g	98
8	4-BrC ₆ H ₄	Me	COOEt	97h	92
9	4-NCC ₆ H ₄	Me	COOEt	97i	92
10	Н	Me	COOEt	97j	96
11	Н	Et	COOEt	97k	85

2.3.3.8. Fused [5-7] systems: four heteroatoms [2:2]

2.3.3.8.1. Pyrazolo[3,4-*e*][1,4]thiazepine

Nano *n*-propylsulfonated γ -Al₂O₃ is easily prepared by the reaction of nano γ -Al₂O₃ with 1,3-propanesultone. This reagent can be used as an efficient catalyst for the synthesis of spiro[indoline-3,4-pyrazolo[3,4*e*][1,4]thiazepine]diones **100a-p** by a four-component condensation reaction of 3-aminocrotononitrile **98**, phenylhydrazine **23**, isatin **58** and 2-mercaptoacetic acid **99** in aqueous media (Scheme 65, Table 54). This method consistently has the advantages of excellent yields and short reaction times. Further, the catalyst can be reused and recovered several times.¹⁰³

Entry	R ¹	R ²	R ³	Product	Time (h)	Yield (%)
1	н	н	н	100a	5	91
2	Н	н	Me	100b	5	92
3	Н	5-Cl	Me	100c	8	88
4	Н	5-Br	н	100d	8	87
5	Н	5-F	н	100e	5	90
6	Н	5-F	Me	100f	5	93
7	Н	5-Me	Н	100g	7	87
8	Н	5-Me	Me	100h	7	86
9	Me	Н	Н	100i	6	90
10	Me	н	Me	1 00j	6	92
11	Н	5-0 ₂ N	Н	100k	10	Trace
12	Н	5-0 ₂ N	Me	1001	10	Trace
13	Н	6-Cl	Н	100m	7	91
14	Н	6-Cl	Me	100n	8	88
15	Н	6-Br	Н	1000	7	88
16	Н	6-Br	Ме	100p	8	90

2.3.3.9. Fused [6-6] systems: one bridgehead heteroatom and one extra atom

2.3.3.9.1. Pyrido[1,2-*c*]pyrimidine

Yadav and Rai have developed nanoclay-catalyzed unprecedented three component [3+2+1] coupling protocol for an expeditious synthesis of pharmaceutically relevant multifunctionalized fused pyrimidines **103**, **105** in excellent yields (79–92%) with high trans-diastereoselectivity (>94%) using unprotected aldoses as a biorenewable aldehyde component **7**, an active methylene building block 2-phenyl-1,3-oxazol-5-one (**101**), and amidines/guanidine **28** (Scheme 66, Table 55). The reaction proceeds under solvent-free MW irradiation conditions *via* initial formation of the protected benzoylamine derivatives **102** and **104**, respectively, followed by acid hydrolysis.¹⁰⁴

Entry	R	Product	Time (min)	Yield (%)	trans/cis ratio
1	Ме	103a	10	89	98:2
2	NH ₂	103b	10	79	95:5
3	Н	103c	12	88	97:3
4	Ph	103d	10	92	96:4
5	$4-O_2NC_6H_4$	103e	11	90	96:4
6	4-H ₂ NC ₆ H ₄	103f	10	83	98:2
7	Ме	105a	11	86	96:4
8	NH ₂	105b	12	89	95:5
9	н	105c	10	91	97:3
10	Ph	105d	12	89	95:5
11	$4-O_2NC_6H_4$	105e	10	82	98:2
12	4-H ₂ NC ₆ H ₄	105f	10	90	96:4
13	Me	103a	4	45	95:5
14	Me	105a	6	52	95:5

2.3.3.10. Fused [6-6] systems: three heteroatoms [1:2]

2.3.3.10.1. Pyrido[2,3-d]pyrimidine

The magnetic nanoparticles supported silica sulfuric acid (Fe₃O₄@SiO₂–SO₃H) was used as an efficient catalyst for the synthesis of pyrido[2,3-*d*]pyrimidines **106a,b** by reacting 6-amino-1,3-dimethyl uracil **86** with ethylacetoacetate **15** and various substituent benzaldehydes **7** in water (Scheme 67). The desired products **106a,b** were obtained in excellent yields irrespective of the presence of an electron withdrawing or releasing substituent. The catalyst was readily recovered using an external magnet and could be reused several times without significant loss of reactivity.¹⁰⁵

Scheme 67

2.3.3.10.2. Pyrido[2,3-*b*]pyrazine

Malakooti reported the synthesis of pyrido[2,3-*b*]pyrazines **108a-c** catalyzed by a heterogeneous nanocatalyst Fe(III)-Schiff base/SBA-15 from the reaction of 2,3-diaminopyridine **107** with the appropriate 1,2-diketone **25** (Scheme 68). These reactions proceeded in water with excellent yields.⁶⁶

Scheme 68

2.3.3.10.3. Pyrido[3,4-*b*]pyrazine

The same authors reported the synthesis of pyrido[3,4-b] pyrazines **110a-c** from the reaction of 3,4-diaminopyridine **109** with the appropriate 1,2-diketone **25** under similar reaction conditions and using the same nano-catalyst (Scheme 69).⁶⁶

Scheme 69

2.4. Synthesis of Fused tricyclic systems

2.4.1. Fused [5-6-6] system: one bridgehead heteroatom

2.4.1.1. Pyrrolo[1,2-*a*]quinoline

Albaladejo *et al.* reported the synthesis of a wide range of pyrrolo[1,2-*a*]quinolines in moderate-to-high yields (59–93 %) by the reaction of quinoline-2-carbaldehyde (**111**) secondary amines and phenylacetylene (**35**) using low catalyst loading (0.5 mol%) of Cu NPs/C (Cu NPs on activated carbon) (Scheme 70, Table 56).⁹²

Entry	R	Product	Yield (%)
1	C_6H_5	112a	82
2	C_6H_5	112b	92
3	4-MeC ₆ H ₄	112c	84
4	4-CF ₃ C ₆ H ₄	112d	79
5	4-MeOC ₆ H ₄	112e	84
6	4-BrC ₆ H ₄	112f	72

2.4.2. Fused [5-6-6] system: Two bridgehead heteroatoms

2.4.2.1. Pyrazolo[2,1-b]phthalazine

Kiasat *et al.* developed an efficient, and high yielding one-pot protocol for the synthesis of 2*H*-pyrazolo[2,1*b*]phthalazinedione derivatives **115** by three-component coupling of phthalhydrazide **113**, acetylacetone **15** and some aromatic aldehydes **7** in ecofriendly neat conditions promoted by nano- γ -alumina sulforic acid (Scheme 71, Table 57, Method A).¹⁰⁶

The catalytic activity of nano-structured ZnO has also been explored in the synthesis of 1*H*-pyrazolo[1,2-*b*]phthalazine-5,10-diones **114** *via* a three-component coupling reaction between **113**, **15**, and **7** (Scheme 71, Table 57, Method B).⁸⁸ Almost all the reactions proceeded smoothly in relatively short reaction times (8–20 min) to afford the respective 1*H*-pyrazolo[1,2-*b*]phthalazine-5,10-diones **4a–n** in high yields (86–93 %).

Kiasat and Davarpanah prepared Fe_3O_4 @silica sulfuric acid core-shell nanocomposite (Fig. 23) and investigated its catalytic activity in the synthesis of 1*H*-pyrazolo[1,2-*b*]phthalazine-5,10-dione derivatives **114** (Scheme 71, Table 57, Method C). The attractive features of this method are simple procedure, cleaner reaction, use of reusable catalyst, easy workup and performing multicomponent reaction under solvent free conditions.¹⁰⁷

Fe₃O₄@Silica sulfuric acid

Fig. 23

Method A: nano-ASA/neat / 110 °C Method B: nano-ZnO/ solvent free / 80-100 °C Method C: nano-Fe₃O₄@SSA

Entry	R	R^1	R ²	Product	Method	Yield (%)
1	C ₆ H ₅	COMe	Ме	114a	А	88
2	4-CIC ₆ H ₄	COMe	Me	114b	А	60
3	4-MeOC ₆ H ₄	COMe	Me	114c	А	81
4	4-O ₂ NC ₆ H ₄	COMe	Ме	114d	А	77
5	4-NCC ₆ H ₄	COMe	Ме	114e	А	70
6	2-CIC ₆ H ₄	COMe	Ме	114f	А	67
7	C_6H_5	CN	$\rm NH_2$	114g	В	90
8	2-CIC ₆ H ₄	CN	$\rm NH_2$	114h	В	89
9	3-CIC ₆ H ₄	CN	$\rm NH_2$	114i	В	91
10	4-O ₂ NC ₆ H ₄	CN	$\rm NH_2$	114j	В	87
11	4-FC ₆ H ₄	CN	$\rm NH_2$	114k	В	93
12	4-MeC ₆ H ₄	CN	$\rm NH_2$	1141	В	86
13	2-BrC ₆ H ₄	CN	$\rm NH_2$	114m	В	90
14	3-MeOC ₆ H ₄	CN	$\rm NH_2$	114n	В	87
15	4-Pyridyl	CN	$\rm NH_2$	1140	В	86
16	3-Pyridyl	CN	$\rm NH_2$	114p	В	90
17	2-Naphthyl	CN	$\rm NH_2$	114q	В	91
18	3-OHC-C ₆ H ₄	CN	$\rm NH_2$	114r	В	88*
19	$2,4-Cl_2C_6H_3$	CN	$\rm NH_2$	114s	В	92
20	2,3-Cl ₂ C ₆ H ₃	CN	$\rm NH_2$	114t	В	91
21	C_6H_5	COMe	Ме	114a	С	85
22	4-O ₂ NC ₆ H ₄	COMe	Me	114d	С	88
23	4-NCC ₆ H ₄	COMe	Ме	114e	С	87
24	4-CIC ₆ H ₄	COMe	Ме	114f	С	84

* Product is the bis-derivative:

Shaterian and Mohammadnia reported an efficient, one-pot procedure for preparation of 1*H*-pyrazolo[1,2*b*]phthalazine-5,10-dione derivatives **116a-ab** from four-component condensation reaction of hydrazine monohydrate **23**, phthalic anhydride **115**, malononitrile or ethyl cyanoacetate **46** and aromatic aldehydes **7** in the presence of magnetic Fe₃O₄ nanoparticles coated by (3-aminopropyl)-triethoxysilane (Fig. 24) as catalyst under mild, ambient, and solvent-free conditions (Scheme 72, Table 58). The magnetic Fe₃O₄ nanoparticles coated by (3-aminopropyl)-triethoxysilane can be recovered and reused several times without loss of activity.¹⁰⁸

Entry	ArCHO	Х	Product	Time (min)	Yield (%)
1	C ₆ H₅CHO	CN	116a	19	92
2	2-CIC ₆ H ₄ CHO	CN	116b	15	93
3	3-CIC ₆ H ₄ CHO	CN	116c	16	90
4	4-CIC ₆ H ₄ CHO	CN	116d	15	93
5	4-FC ₆ H ₄ CHO	CN	116e	17	89
6	2-O ₂ NC ₆ H ₄ CHO	CN	116f	14	91
7	4-BrC ₆ H ₄ CHO	CN	116g	15	92
8	3-BrC ₆ H ₄ CHO	CN	116h	16	89
9	3-CIC ₆ H ₄ CHO	CO ₂ Et	116i	23	88
10	2-O ₂ NC ₆ H ₄ CHO	CO ₂ Et	116j	21	89
11	3-O ₂ NC ₆ H ₄ CHO	CO ₂ Et	116k	22	91
12	4-O ₂ NC ₆ H ₄ CHO	CO ₂ Et	1161	21	89
13	4-BrC ₆ H ₄ CHO	CO ₂ Et	116m	22	90
14	2,6-Cl ₂ C ₆ H ₃ CHO	CN	116n	14	92
15	2,4-Cl ₂ C ₆ H ₃ CHO	CN	1160	15	91
16	2,3-Cl ₂ C ₆ H ₃ CHO	CN	116p	16	93
17	2-MeOC ₆ H ₄ CHO	CN	116q	14	90
18	3-MeOC ₆ H ₄ CHO	CN	116r	16	92
19	2,4,6-(MeO) ₃ C ₆ H ₂ CHO	CN	116s	17	91
20	2,6-(MeO) ₂ C ₆ H ₃ CHO	CN	116t	16	93
21	5-MeC ₆ H ₄ CHO	CN	116u	16	92
22	4-F ₃ CC ₆ H ₄ CHO	CN	116v	16	90
23	2,6-Cl ₂ C ₆ H ₃ CHO	CO ₂ Et	116w	22	89
24	2,4-Cl ₂ C ₆ H ₃ CHO	CO ₂ Et	116x	21	88
25	2,3-Cl ₂ C ₆ H ₃ CHO	CO ₂ Et	116y	23	89
26	2-MeOC ₆ H ₄ CHO	CO ₂ Et	116z	22	90
27	4-F ₃ CC ₆ H ₄ CHO	CO ₂ Et	116aa	22	89
28	n-Heptanal	CN	116ab	10 h	Trace

2.4.3. Fused [6-6-5] system: two heteroatoms [1:1]

2.4.3.1. Chromeno[4,3-b]pyrrole

Paul *et al.* reported a highly convergent, efficient and practical heteroannulation protocol for the synthesis of a library of coumarin fused pyrrole derivatives **118a-k** Thus, one-pot three-component domino coupling of 4-aminocoumarin **117**, aldehydes **7** and nitromethane catalyzed by $CuFe_2O_4$ magnetic nano particles resulted in highly substituted of **118** in good yields (Scheme 73, Table 59).⁹⁸

Scheme 73

Table 59

Entry	R	Product	Yield (%)
1	C_6H_5	118a	87
2	4-MeO	118b	95
3	4-F	118c	85
4	4-Me	118d	87
5	3-0 ₂ N	118e	80
6	4-Cl	118f	85
7	3-HO-4-MeO	118g	84
8	4-0 ₂ N	118h	85
9	2,4-Cl ₂	118i	90
10	4-Br	1 18j	87
11	2-Thienyl	118k	81
4 5 6 7 8 9 10 11	4-Me $3-O_2N$ 4-Cl 3-HO-4-MeO $4-O_2N$ $2,4-Cl_2$ 4-Br 2-Thienyl	118d 118e 118f 118g 118h 118i 118j 118k	87 80 85 84 85 90 87 81

2.4.4. Fused [6-6-6] systems: one heteroatoms

2.4.4.1. Octahydro-1*H*-xanthene

Poly(4-vinylpyridine)-supported nanoparticles of copper(I) iodide(P4VPy–CuI) have been reported as a new, efficient and recyclable catalyst for the synthesis of 1,8-dioxooctahydroxanthenes **119a-t** from the reaction of cyclic 1,3-dicarbonyl compounds **55** (dimedone and 1,3-cyclohexadione) with aldehydes **7** under solvent-free conditions (Scheme 74, Table 60).¹⁰⁹ This catalyst can be recovered by simple filtration and recycled up to 10 consecutive runs without losing of its efficiency.

Entry	ArCHO	R	Time (min)	Product	Yield (%)
1	C ₆ H₅CHO	Ме	13	119a	88
2	2-O ₂ NC ₆ H ₄ CHO	Me	15	119b	89
3	3-O ₂ NC ₆ H ₄ CHO	Me	10	119c	89
4	4-O ₂ NC ₆ H ₄ CHO	Me	7	119d	90
5	2-CIC ₆ H ₄ CHO	Me	10	119e	90
6	4-CIC ₆ H ₄ CHO	Me	8	119f	90
7	4-FC ₆ H ₄ CHO	Me	10	119g	88
8	4-MeC ₆ H ₄ CHO	Me	12	119h	87
9	2-MeOC ₆ H ₄ CHO	Me	25	119i	87
10	4-MeOC ₆ H ₄ CHO	Me	28	119j	85
11	3,4-(MeO) ₂ C ₆ H ₃ CHO	Me	36	119k	86
12	4-NCC ₆ H ₄ CHO	Me	14	1191	85
13	4-HOC ₆ H ₄ CHO	Me	35	119m	86
14	C ₆ H₅CHO	Н	12	119n	90
15	4-BrC ₆ H ₄ CHO	Н	9	1190	90
16	4-CIC ₆ H ₄ CHO	Н	8	119p	91
17	4-MeOC ₆ H ₄ CHO	Н	30	119q	86
18	4-NCC ₆ H ₄ CHO	Н	12	119r	90
19	3-BrC ₆ H ₄ CHO	Н	8	119s	87
20	3-MeOC ₆ H ₄ CHO	Н	30	119t	88

2.4.4.2. Decahydroacridine

Dam *et al.* developed an efficient, high yielding, expeditious method for the synthesis of decahydroacridine derivatives **120a-n** *via* an one-pot multi-component condensation of dimedone **55**, aldehydes **7**, and ammonium acetate in water using Fe_3O_4 @SiO₂ nanoparticles as a recyclable heterogeneous catalyst. This method takes advantage of the fact that water, a green solvent is used in combination with Fe_3O_4 @SiO₂ nanoparticles as catalyst which can be easily recovered magnetically and reused for further runs (Scheme **75**, Table **61**, Method A).¹¹⁰ The nature and position of substitution in the aromatic ring did not affect the reactions much. The reaction was tried with aliphatic aldehydes, ketones, and furfuraldehyde but no desired product **120a-n** was formed after **5** h of refluxing.

Fekri *et al.* reported also an efficient, three component synthesis of novel class of decahydroacridine derivatives **120a-n** from reaction between the appropriate aldehydes **7**, dimedone **55** and ammonium acetate in the presence of nano Fe₃O₄ as a recyclable catalyst under ultrasonic irradiation (Scheme 74, Table 61, Method B).¹¹¹

Scheme 75

Table 61

Entry	Ar	Product	Method	Yield (%)
1	4-CIC ₆ H ₄	120a	А	92
2	4-BrC ₆ H ₄	120b	А	89
3	4-NCC ₆ H ₄	120c	А	93
4	$4-O_2NC_6H_4$	120d	А	95
5	$2-O_2NC_6H_4$	120e	A	94
6	2-CIC ₆ H ₄	120f	A	90
7	4-MeOC ₆ H ₄	120g	А	85
8	4-MeC ₆ H ₄	120h	А	82
9	MeO N ²⁵ N ⁻ Ph N ⁻ Ph	120i	В	90
10	CI CI	120j	В	87
11	O ₂ N N·Ph	120k	В	81
12	HO C N Ph	1201	В	78
13	Ph N Ph Cl	120m	В	83
14	Me N·Ph	120n	В	86

2.4.4.3. 3H-Benzo[f]chromene

2.4.4.4. 2H-Benzo[g]chromene

2*H*-Benzo[*h*]chromen-2-one **122** and 2*H*-benzo[*g*]chromen-2-one derivatives **124** were synthesized by refluxing in acetonitrile of ethyl acetoacetate or ethyl benzoyl acetate **15**, with each of α -naphthol **123** and β -naphthol **121** with a catalytic combination of pyridine dicarboxylic acid as organocatalyst and nanocrystallin ZnO (Scheme 76).⁸³

Scheme 76

4*H*-Benzo[*h*]chromene

1*H*-benzo[*f*]chromene

Kumar *et al.* found that nanosized magnesium oxide can easily catalyze three-component condensation reaction of aldehydes 7, malononitrile 46, and α -naphthol 123 in water–PEG to afford the corresponding 4*H*-Benzo[*h*]chromenene 125a-f in high yields at room temperature (Scheme 77, Table 62, Method A). The greener protocol was found to be fairly general and the catalyst was reused in subsequent reactions with consistent activity.¹¹²

Hosseini-Sarvari *et al.* used nano ZnO as an efficient catalyst for the synthesis of 2-amino-4*H*-chromenes **125a,b,e,f, g-k** from methylenemalononitrile, generated in *situ* from aldehyde **7** and malononitrile **46** and naphthol **123** (Scheme 77, Table 62, Method B).⁸⁴

Scheme 77

Entry	R	Method	Product	Yield % [*]
1	Ph	А	125a	86(96)
2	4-MeOC ₆ H ₄	А	125b	85(95)
3	3-O2NC6H4	А	125c	92(96)
4	4-O2NC6H4	А	125d	93(97)
5	4-CIC ₆ H ₄	А	125e	86(89)
6	2-Furyl	А	125f	84(87)
7	4-O ₂ NC ₆ H ₄	В	125g	98
8	Ph	В	125a	85
9	4-HOC ₆ H ₄	В	125h	85
10	4-MeOC ₆ H ₄	В	125b	50
11	4-CIC ₆ H ₄	В	125e	95
12	3-CIC ₆ H ₄	В	125i	75
13	2-CIC ₆ H ₄	В	125j	80
14	2-Thiophenyl	В	125k	90
15	2-Furyl	В	125f	60

* yield in methanol between paranthes

Hosseini-Sarvari *et al.* also used nano ZnO to catalyze the reaction of various naphthalenediols **126**, **128**, **130**, **132**, **134** with aldehydes 7 and malononitrile **46** to produce 4H-benzo[*h*]chromene **127** and **129** (Scheme 78) and 1*H*-benzo[*f*]chromene **131**, **133**, and **135** (Scheme 79).⁸⁴

Scheme 78

2.4.5. Fused [6-6-6] system: Two heteroatoms [1:1]

2.4.5.1. Dihydropyrano[3,2-c]chromene

CuFe₂O₄ magnetic nanoparticles were synthesized and recognized as an efficient catalyst for the one-pot synthesis of pyrano[3,2-*c*]coumarin derivatives **137a-d** in aqueous medium at mild conditions and in excellent yields. The reaction proceeds *via* MCR's of 4-hydroxycoumarin **136**, dialkyl acetylenedicarboxylates **8** and malononitrile or ethyl cyanoacetate **46** (Scheme 80, Table 63).⁷²

Entry	R ¹	R ²	Product	Yield (%)	
1	Et	CN	137a	90	
2	Et	CO ₂ Et	137b	87	
3	Ме	CN	137c	88	
4	Ме	CO ₂ Et	137d	84	

Lashgari *et al.* applied sulfonic acid functionalized SBA-15 (SBA-Pr-SO₃H) as a new nanoporous solid acid catalyst in the green one-pot three-component synthesis of spirooxindole-4*H*-pyrans **138a-i** *via* condensation of isatins **58**, malononitrile or methyl cyanoacetate or ethyl cyanoacetate **46**, and 4-hydroxycoumarin **136** in water solvent (Scheme 81, Table 64).¹¹³

Scheme 81

Table 64

Entry	R	х	Product	Time (min)	Yield (%)
1	Н	CN	138a	15	90
2	Cl	CN	138b	20	85
3	Br	CN	138c	20	78
4	н	CO ₂ Me	138d	20	75
5	Cl	CO ₂ Me	138e	20	78
6	Br	CO ₂ Me	138f	35	75
7	н	CO ₂ Et	138g	30	83
8	Cl	CO ₂ Et	138h	30	91
9	Br	CO ₂ Et	138i	35	84

2.4.6. Fused [6-6-6] system: Three heteroatoms [2:1]

2.4.6.1. Tetrahydropyrimido[4,5-b]quinoline

Nemati and Saeedirad used magnetic nanoparticles supported silica sulfuric acid (Fe₃O₄@SiO₂–SO₃H) as an efficient catalyst for the synthesis of pyrimido[4,5-*b*]quinolines **139a-i** by reacting 6-amino-1,3-dimethyl uracil **86** with dimedone **55** and various substituent benzaldehydes **7** in water (Scheme 82, Table 65).¹⁰⁵ The desired products were obtained in excellent yields irrespective of the presence of an electron withdrawing or releasing

substituent. The catalyst was readily recovered using an external magnet and could be reused several times without significant loss of reactivity.

Scheme 82

Table 65

Entry	Ar	Product	Time (min)	Yield (%)
1	Ph	139a	30	92
2	4-MeOC ₆ H ₄	139b	40	86
3	3-BrC ₆ H ₄	139c	35	90
4	4-02NC6H4	139d	25	92
5	3-0 ₂ NC ₆ H ₄	139e	30	90
6	2-CIC ₆ H ₄	139f	35	81
7	4-CIC ₆ H ₄	139g	25	92
8	4-FC ₆ H ₄	139h	30	89
9	2-Thiophene	139i	35	87

2.4.7. Fused [6-6-6] system: Five heteroatoms [2:1:2]

2.4.7.1. Pyrimido[5',4':5,6]pyrido[2,3-*d*]pyrimidine

The magnetic nanoparticles supported silica sulfuric acid (Fe₃O₄@SiO₂–SO₃H) was successfully used as an efficient catalyst for the synthesis of pyrimido[5',4':5,6]pyrido[2,3-*d*]pyrimidine **140** by reacting 6-amino-1,3-dimethyl uracil **86** with 6-amino-1,3-dimethylbarbituric acid and various substituent benzaldehydes **7** in water (Scheme 83).¹⁰⁵ The desired products were obtained in excellent yields irrespective of the presence of an electron withdrawing or releasing substituent.

Scheme 83

2.4.8. Fused [6-6-7] system: Two heteroatoms

2.4.8.1. Tetrahydro-1*H*-dibenzo[*b*,*e*][1,4]diazepine

Maleki and Kamalzare *et al.* developed a new efficient, and green procedure for the synthesis of benzodiazepine derivatives **141a-l** in high yields *via* a one-pot, three-component reaction of *o*-phenylenediamine **9**, dimedone **55**, and different aldehydes **7** at room temperature by using a magnetic recyclable Fe_3O_4 @chitosan composite nanocatalyst (Scheme 84, Table 66).¹¹⁴

Scheme 84

Table 66

Entry	Ar	Product	Yield (%)
1	4-O ₂ NC ₆ H ₄	141a	94
2	3-O ₂ NC ₆ H ₄	141b	89
3	4-CIC ₆ H ₄	141c	91
4	2-CIC ₆ H ₄	141d	90
5	2,4-Cl ₂ C ₆ H ₃	141e	96
6	4-HOC ₆ H ₄	141f	88
7	2-HOC ₆ H ₄	141g	85
8	4-MeC ₆ H ₄	141h	91
9	4-Me ₂ NC ₆ H ₄	141i	94
10	2-Thienyl	141j	85
11	2-Furyl	141k	87
12	2-Pyridyl	1411	84

2.5. Synthesis of fused tetracyclic systems

2.5.1. Fused [6-5-5-6] systems: three heteroatoms [1:2]

2.5.1.1. Tetrahydroindeno[1,2-b]pyrazolo[4,3-e]pyridine

Mohammad *et al.* reported the synthesis of fused azo-linked pyrazolo[4,3-*e*]pyridines **144a-f**, and **145a-c** from indan-1,3-dione **142** and 3-amino-5-methylpyrazole **143**, using nano-Fe₃O₄ in water as an effective and reusable catalyst (Scheme 85, Table 67).¹¹⁵ It is important to point out the fact that when 3-amino-5-methylpyrazole (**143**), indan-1,3-dione (**142**) and azo-linked benzaldehyde containing electron releasing substituents **7g-i** were refluxed for required reaction time, the reaction leads to the formation of the aromatized pyrazolopyridine **145g-i**, but in the case of using azo-linked aldehydes containing electron withdrawing substituents **7a-f**, just pyrazolopyridine **144a-f** were observed.

Entry	Ar	Product	Time (min)	Yield (%)
1	4-IC ₆ H ₄	144a	5	75
2	4-O ₂ NC ₆ H ₄	144b	8	83
3	2-Me-4-O ₂ NC ₆ H ₄	144c	8	75
4	2-CIC ₆ H ₄	144d	5	83
5	3-CIC ₆ H ₄	144e	5	95
6	4-CIC ₆ H ₄	144f	5	84
7	Ph	145a	2	86
8	4-MeC ₆ H ₄	145b	1	79
9	4-MeOC ₆ H ₄	145c	1	87

2.5.2. Fused [6-5-6-6] systems: two bridgehead heteroatoms

2.5.2.1. Dihydro-2*H*-indazolo[2,1-*b*]phthalazine

Kiasat *et al.* developed a simple and efficient one-pot protocol for the synthesis of 2*H*-indazolo[2,1*b*]phthalazinetrione derivatives **146** by three-component coupling of phthalhydrazide **113**, dimedone **55** and some aromatic aldehydes **7** in ecofriendly neat conditions promoted by nano- γ -alumina sulfuric acid (Scheme 86, Table 68, Method A).¹⁰⁶

Kiasat and Davarpanah prepared Fe₃O₄@silica sulfuric acid core–shell nanocomposite and investigated its catalytic activity also in the synthesis of 2*H*-indazolo[2,1-*b*]phthalazine-1,6,11-trione derivatives **146** by a similar one-pot three component reaction. (Scheme 86, Table 68, Method B).¹⁰⁷

Rostami *et al.* also applied *N*-propylsulfamic acid supported onto magnetic Fe_3O_4 nanoparticles (MNPs-PSA) as an efficient and magnetically recoverable catalyst for the synthesis of 2*H*-Indazolo[2,1-*b*]phthalazine-1,6,11(13*H*)-trione **146** from a similar one-pot three-component reaction (Scheme 86, Table 68, Method C).¹¹⁶

The same authors have developed this synthetic method for the preparation of bis-2*H*-indazolo[2,1*b*]phthalazine-trione **146** derivative in a 2:1.1:2 molar ratio of phthalhydrazide to isophthaladehyde and dimedone (Table 68, entry 32).¹¹⁶

Method A: nano-Fe₃O₄@SSA/ solvent free Method B: Fe₃O₄-MNPS-SPA/ solvent free / 100 $^{\circ}$ C Method C: nano-ASA/ solvent free / 110 $^{\circ}$ C

Table 68

Entry	R ¹	R ²	Method	Product	Yield (%)
1	CeHr	Ме	Α	146a	88
2	4-CIC-H	Ме	A	146b	90
3	$4 - O_0 N C_0 H_4$	Ме	A	146c	90
4	4-HOC ₂ H	Me	A	146d	94 85
5	4-NCC ₆ H ₄	Ме	А	146e	02
6	3-FC-H4	Ме	A	146f	92
7	3-CIC _e H₄	Ме	А	146q	90
8	3-MeC _e H₄	Ме	А	146h	88
9	4-MeC _e H₄	Ме	А	146i	86
10	4-MeOC ₆ H₄	Ме	А	146j	85
11	2-O₂NC ₆ H₄	Ме	А	146k	90
12	CeHz	Ме	В	146a	93
13	2-MeC _e H₄	Ме	В	1461	91
14	4-MeC _e H₄	Ме	В	146i	90
15	3-MeOC _e H₄	Ме	В	146h	87
16	4-MeOC ₆ H₄	Ме	В	146j	89
17	3,4-(MeO) ₂ C ₆ H ₃	Ме	В	146m	88
18	3-BrC _e H₄	Ме	В	146n	85
19	2-CIC ₆ H₄	Ме	В	1460	87
20	4-CIC ₆ H₄	Ме	В	146b	93
21	2,4-(CI) ₂ C ₆ H ₃	Ме	В	146p	91
22	4-FC ₆ H₄	Ме	В	146q	90
23	2-O ₂ NC ₆ H₄	Ме	В	146k	82
24	3-O ₂ NC ₆ H ₄	Ме	В	146r	86
25	$4-O_2NC_6H_4$	Ме	В	146c	83
26	2-Naphthyl	Me	В	146s	84
27	C ₆ H ₅	Н	В	146t	86
28	4-Me	Н	В	146u	88
29	4-MeOC ₆ H ₄	Н	В	146v	90
30	$4-O_2NC_6H_4$	Н	В	146w	83
31	4-FC ₆ H ₄	Н	В	146x	89
32	3-HOCC ₆ H ₄	Me	В	146y	80*
33	C ₆ H ₅	Me	С	146a	85
34	4-CIC ₆ H ₄	Me	С	146b	98
35	4-MeOC ₆ H ₄	Me	С	146j	94
36	4-O ₂ NC ₆ H ₄	Me	С	146c	72
37	4-MeC ₆ H ₄	Me	С	146i	70
38	4-CC ₆ H ₄	Me	С	146e	89
39	4-F ₃ CC ₆ H ₄	Ме	С	146z	78
40	4-NO ₂ NC ₆ H ₄	Me	С	146c	87
41	4-CIC ₆ H ₄	Me	С	146b	70
42	3-O ₂ NC ₆ H ₄	Me	С	146r	83
43	4-BrC ₆ H ₄	Me	С	146aa	80
44	4-EtOC ₆ H ₄	Ме	С	146ab	70

* the product was:

RSC Advances Accepted Manuscript

2.5.3. Fused [6-5-6-6] systems: three heteroatoms [1:2]

2.5.3.1. Indeno[2',1':5,6]pyrido[2,3-d]pyrimidine

Nemati and Saeedirad used magnetic nanoparticles supported silica sulfuric acid (Fe₃O₄@SiO₂–SO₃H) as an efficient catalyst for the synthesis of indeno[2',1':5,6]pyrido[2,3-*d*]pyrimidine **147a,b** by reacting 6-amino-1,3-dimethyl uracil **86** with 1,3-indanedione **142** and various substituent benzaldehydes **7** in water (Scheme 87).¹⁰⁵

Scheme 87

2.6. Synthesis of fused pentaacyclic systems

2.6.1. Fused [6-6-6-6] systems: one heteroatom

2.6.1.1. 14*H*-Dibenzo[*a*,*j*]xanthene

Novel magnetite–sulfuric acid (Fe₃O₄·SO₃H) magnetic nanoparticles MSA-MNP 1 and MSA-MNP 2 catalysts (Fig. 24) were prepared by the direct reaction of chlorosulfonic acid with magnetite nanoparticles and were shown to exhibit remarkable catalytic performance in the solvent-free synthesis of mono-, bis-, and tris-14*H*-dibenzo[$a_{,j}$]xanthen-14-ylarenes **148a-g**, **149**, **150**, and **152a,b**. The reactions were performed by the reaction of 2-naphthol with benzaldehyde derivatives (Scheme 88), terephthalaldehyde, isophthalaldehyde (Scheme 89) or trialdehydes **151a** and **151b** (Scheme 90), respectively, in the presence of 0.1 g MSA-MNP 2 under solvent-free conditions.¹¹⁷

Fig. 24

7a: $R^1 = H$, $R^2 = H$, $R^3 = H$ **7b:** $R^1 = H$, $R^2 = 4$ -Me, $R^3 = H$ **7c:** $R^1 = H, R^2 = 4$ -Cl, $R^3 = H$ **7d:** $R^1 = H, R^2 = 4 - NO_2, R^3 = H$ **7e:** R^1 = MeO, R^2 = MeO, R^3 = MeO **7f:** $R^1 = H, R^2 = NC - (-, R^3 = H)$ NC **7g:** R¹ = H, R² = NC⁻ ⁻O⁻ , R³ = MeO NĆ

121

Scheme 89

Scheme 90

2.6.2. Fused [6-6-6-6] systems: Three heteroatoms [1:1:1]

2.6.2.1. Dichromeno[4,3-b:3',4'-e]pyridine

Dam *et al.* reported an efficient, high yielding method for the synthesis of dichromeno[4,3-*b*:3',4'-*e*]pyridine derivatives **153a-g** *via* an one-pot multi-component condensation of 4-hydroxycoumarine **136**, aldehydes **7**, and ammonium acetate in water using Fe₃O₄@SiO₂ nanoparticles as a recyclable heterogeneous catalyst (Scheme 91, Table 69).¹¹⁰ The nature and position of substitution in the aromatic ring did not affect the reactions much.

Scheme 91

Table 69

Entry	Ar	Product	Yield (%)	_
1	4-CIC ₆ H ₄	153a	88	
2	4-BrC ₆ H ₄	153b	86	
3	4-NCC ₆ H ₄	153c	90	
4	4-FC ₆ H ₄	153d	87	
5	2-CIC ₆ H ₄	153e	88	
6	2-BrC ₆ H ₄	153f	88	
7	4-MeC ₆ H ₄	153g	82	

2.7. Synthesis of miscellaneous fused systems

2.7.1. 8,9-Dihydroacenaphtho[1,2-b]pyrazine

2.7.2. Acenaphtho[1,2-*e*]pyrido[3,4-*b*]pyrazine

2.7.3. Acenaphtho[1,2-*e*]pyrido[2,3-*b*]pyrazine

2.7.4. Dibenzo[f,h]pyrido[3,4-b]quinoxaline

Malakooti *et al.* reported the synthesis of fused pyrazines and fused pyrido[2,3-*b*]pyrazines **154-157** from the reaction of the diaminopyridines with the appropriate 1,2-diketone **25** in the presence of an iron Schiff base complex encapsulated in SBA-15 mesoporous silica [Fe(III)-Schiff base/SBA-15] as heterogeneous nanocatalyst (Scheme 92-95). These reactions proceeded in water with excellent yields.⁶⁶

Scheme 92

Scheme 93

3. Conclusions

Heterocycles are found in many natural products, pharmaceuticals, organic materials, and in numerous functional molecules. They are especially important in chemical and pharmaceutical industries. Therefore, the ongoing interest for developing new versatile and efficient syntheses of heterocyclic systems has always been a challenge in the synthetic community. They can be synthesized by a variety of synthetic approaches.

This review compiles the literatures on the application of nanomaterials in heterocyclic synthesis. The fused heterocycles mentioned in this review are arranged in an organized manner with respect to the type of heterocyclic systems.

In most of the reactions the spent catalyst can be easily separated from the reaction mixture. It can also be reused without noticeable change in its catalytic activity. Magnetic nanomaterials can be easily recovered by simple magnet, therefore it makes the catalyst more efficient.

We hope that this review will be useful not only for organic synthetic and organometallic chemists, but also for heterocyclic and natural product synthetic chemists.

Acknowledgements

Prof. Dr. Ahmed H. M. Elwahy thanks the Alexander von Humboldt Foundation for a research fellowship. He is also greatly indebted to Prof. K. Hafner, University of Darmstadt for his continuous help and generous support.

References

- 1. Eicher, T.; Hauptmann, S. *The Chemistry of Heterocycles*: Structure, Reactions, Syntheses, and Applications. 2nd ed; Wiley-VCH, Verlag gmbh: Weinheim 2003.
- 2. Nylund, K., Johansson, P., Puterova, Z., and Krutosikova, A. *Heterocyclic Compounds*: Synthesis, Properties and Applications, Nova Science Publishers, Hauppauge: New York, 2010.
- a) Katritzky, A. R. and Rees, C. W. (eds) Comprehensive Heterocyclic Chemistry I, Pergamon Press, Oxford, 1984. b) Katritzky, A. R., Rees, C. W. and Scriven, F. V. (eds) Comprehensive Heterocyclic Chemistry II, Pergamon Press, Oxford, 1996. c) Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K. Comprehensive Heterocyclic Chemistry III, Elsevier, Amsterdam, 2008. d) Katritzky, A. R., Ramsden, C. A., Joule, J. A., and Zhdankin, V. V. Handbook of Heterocyclic Chemistry, 3rd ed, Elsevier: Amsterdam, 2010. e) Katritzky, A. R. (ed.) Advances in Heterocyclic Chemistry, Elsevier, Amsterdam, 2010. f) Balaban, A. T.; Oniciu, D. C.; Katritzky, A. R. Chem. Rev. 2004, 104, 2777.
- a) Freund, H.-J.; Knozinger, H. J. Phys. Chem. B 2004, 108, 14183-14186. b) Cuenya, B. R. Thin Solid Films 2010, 518, 3127–3150. b) Ertl, G. Angew. Chem. Int. Ed. 2008, 47, 3524-3535. c) Beta, C.; Moula, M. G.; Mikhailov, A. S.; Rotermund, H. H.; Ertl, G. Phys. Rev. Lett. 2004, 93, 188302 (1-4). d) Kim, M.; Bertram, M.; Pollmann, M.; von Oertzen, A.; Mikhailov, A. S.; Rotermund, H. H.; Ertl, G. Science 2001, 292, 1357-1360.
- 5. Freund, H.-J. Surf. Sci. Rep. 2008, 63, iii-iv.
- 6. Bond G. C. *Heterogeneous Catalysis*: Principles and Applications. Clarendon Press, 1974.
- 7. Li, G.; Jin, R. Nanotechnol. Rev. 2012, 1, 31–56.
- 8. Fukui, T.; Murata, K.; Ohara, S.; Abe, H.; Naito, M.; Nogi, K. J. Power Sources 2004, 125, 17–21.
- 9. Barbaro, P.; Liguori, F. ed. *Heterogenized homogeneous catalysts for fine chemicals production : materials and processes*. Dordrecht: Springer, 2010.
- 10. Zalesskiy, S. S.; Ananikov, V. P. Organometallics 2012, 31, 2302–2309.
- 11. a) Henry, C. R. Appl. Surf. Sci. 2000, 164, 252-259. b) Clair, T. P. St.; Goodman, D. W. Top. Catal. 2000, 13, 5-19. C) Bowker, M.; Bennet, R. A.; Dickinson, A.; James, D.; Smith, R.; Stone, P. Stud. Surf. Sci. Catal. 2001, 133, 3-17. d) Kralik, M.; Biffis, A. J. Mol. Catal. A: Chem. 2001, 177, 113-138; e) Thomas, J.; Raja, R. Chem. Rec. 2001, 1, 448-466; f) Mohr, C.; Claus, P. Sci. Prog. 2001, 84, 311-334; g) Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Migley, P. A. Acc. Chem. Res. 2003, 36, 20-30; h) Alexeev, O.; Gates, B. C. Ind. Eng. Chem. Res. 2003, 42, 1571-1587. I) Herrmann, W. A.; Cornils, B. Angew.Chem. Int. Ed. Engl. 1997, 36, 1049-1067. j) Metal-Catalyzed Cross-Coupling Reactions, Diederich, F.; Stang, P. J. (Eds.), Wiley - VCH, Weinheim, 1998. k) Metal - Catalyzed Cross - Coupling Reaction, Vol. 1 and 2, de Mejere, A.; Diederich; F. (Eds.), Wiley - VCH, Weinheim , 2004. 1) Gladysz, J. A. Pure Appl. Chem. 2001, 73, 1319-1324. m) Astruc, D. Organometallic Chemistry and Catalysis, Springer, Heidelberg, 2007 (Parts 4 and 5). n) Astruc, D.; Lu, F.; Ruiz Aranzaes, J. Angew. Chem. Int. Ed. 2005, 44, 7399-7404. o) De Vries, J. G. Dalton Trans. 2006, 421-429. p) Astruc, D. Inorg. Chem. 2007, 46, 1884-1894. q) Finke, R. G. In Metal Nanoparticles. Synthesis, Characterizations and Applications, Feldheim, D. L.; Foss, C. A.; Jr., (Eds.), Marcel Dekker, New York, 2002, Ch. 2, pp. 17-54. r) Wieckowski, A.; Savinova, E. R.; Vayenas, C. G.

Catalysis and Electrocatalysis at Nanoparticle Surfaces, Marcel Dekker, New York, 2003, p. 970; Nanoparticles, Schmid, G. (Eds.), Wiley -VCH, Weinheim, **2004**. s) Daniel, M. - C.; Astruc, D. *Chem. Rev.* **2004**, *104*, 293-346. t) Gittins, D. I.; Caruso, F. *Angew. Chem.* **2001**, *113*, 3089-3092; *Angew. Chem. Int. Ed.* **2001**, *40*, 3001-3004. u) Choudary, T. V.; Goodman, D. W. *Top. Catal.* **2002**, *21*, 25; Schmid, G.; Corain, B. *Eur. J. Inorg. Chem.* **2003**, 3081-3098. v) El - Sayed, M. A. *Acc. Chem. Res.* **2001**, *34*, 257-264. w) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. *Acc. Chem. Res.* **2001**, *34*, 181-190. x) Bönnemann, H.; Richards, R. *Synth. Methods Organomet. Inorg. Chem.* **2002**, *10*, 209-224. y) Roucoux, A.; Schulz, J.; Patin, H. *Chem. Rev.* **2002**, *33*, 27-36. z) Bell, A. T. *Science* **2003**, *299*, 1688-1691. aa) Moreno - Manas, M.; Pleixats, R. *Acc. Chem. Res.* **2003**, *36*, 638-643. (ab) Johnson, B. F. G. *Top. Catal.* **2003**, *24*, 147-159. (ac) Widegren, J. A.; Finke, R. G. *J. Mol. Catal. A Chem.* **2003**, **198**, 317-341. ad) Widegren, J. A.; Finke, R. G. *Inorg. Chem.* **2002**, *41*, 1558-1572. (ae) Besson, C.; Finney, E. E.; Finke, R. R. *J. Am. Chem. Soc.* **2005**, *127*, 8179-8184. af) Besson, C.; Finney, E. E.; Finke, R. R. *Chem. Mater.* **2005**, *17*, 4925-4938.

- 12. Elwahy, A. H. M.; Shaaban, M. R. Curr. Org. Synth. 2010, 7, 433-454.
- 13. Shaaban, M. R.; El-Sayed, R.; Elwahy, A. H. M. Tetrahedron 2011, 67, 6095-6130.
- 14. Shaaban, M. R.; Elwahy, A. H. M. Curr. Org. Synth. 2013, 10, 425-466.
- 15. Shaaban, M. R.; Elwahy, A. H. M. Current Organic Synthesis, 2014, 11, 471-525.
- 16. Elwahy, A. H. M.; Shaaban, M. R. Curr. Org. Synth. 2014, 11, 835-873.
- 17. Heravi, M. M.; Alishiri, T. Heterocycles, 2012, 85, 545 586.
- 18. Hemalatha, K.; Madhumitha, G.; Kajbafvala, A.; Anupama, N.; Sompalle, R.; Roopan, S. M. J. *Nanomater.* **2013**, 1-23.
- 19. Cano, R.; Yus, M.; Ramón, D. J. Tetrahedron 2013, 69, 7056-7065.
- 20. Cao, H.; Jiang, H.; Huang, H. Synthesis 2011, 1019-1036.
- 21. Tekale, S. U.; Kauthale, S. S.; Pagore, V. P.; Jadhav, V. B.; Pawar, R. P. *J. Iran. Chem.l Soc.* **2013**, *10*, 1271-1277.
- 22. Hosseini-Sarvari, M.; Najafvand-Derikvandi, S.; Jarrahpour, A.; Heiran, R. *Chem. Heterocycl. Comp.* **2014**, *49*, 1732-1739.
- a) Noda, L. K.; de Almeida, R. M. L.; Probst, F. D.; Goncalves, N. S. J. Mol. Catal. A: Chem. 2005, , 39, 225; b) Zhang, Y.; Li, Z.; Wakim ,S.; Alem, S.; Tsang, S. W.; Lu, J.; Ding, J.; Tao, Y. Org. Electron 2011, 12, 1211-1215.
- 24. Polshettiwar, V.; Varma, R. S. *Tetrahedron* 2010, *66*, 1091-1097.
- 25. Ma, F. P.; Li, P. H.; Li, B. L.; Mo, L. P.; Liu, N.; Kang, H. J.; Liu, Y. N.; Zhang, Z. H. *Appl. Catal., A* **2013**, *457*, 34-41.
- 26. Teimouri, A.; Chermahini, A. N. Chin. J. Chem. 2012, 30, 372-376.
- 27. Li, B. L.; Hu, H. C.; Mo, L. P.; Zhang, Z. H. RSC Adv. 2014, 4, 12929-12943.
- 28. Sabbaghan ,M.; Ghalaei, A. J. Mol. Liq. 2014, 193, 116-122.
- 29. Hosseini-Sarvari, M.; Sharghi, H.; Etemad, S. Helv. Chim. Acta 2008, 91, 715–724.
- 30. Hosseini-Sarvari, M.; Tavakolian, M. Appl. Catal. A 2012, 441–442, 65–71.

- 31. Li, B. L.; Zhang, M.; Hu, H. C.; Du, X.; Zhang, Z. H. New J. Chem. 2014, 38, 2435-2442.
- 32. Emtiazi, H.; Amrollahi, M. A.; Mirjalili, B. B. F. Arab. J. Chem. 2013, in press.
- 33. Mirjalili, B. F.; Bamoniri, A.; Mirhoseini, M. A. Sci. Iran. 2013, 20, 587-591.
- 34. Safari, J.; Zarnegar, Z. J. Chem. Sci. 2013, 125, 835-841.
- 35. Zamani, L.; Mirjalili, B. B. F.; Namazian, M. Chemija **2013**, *24*, 312-319.
- 36. Zarnegar, Z.; Safari, J. *RSC Adv.* **2014**, *4*, 20932-20939.
- 37. Teimouri, A.; Chermahini, A. N. J. Mol. Catal. A: Chem. 2011, 346, 39-45.
- 38. Mohammadi Ziarani, G.; Badiei, A.; Lashgari, N.; Farahani, Z. J. Saudi Chem. Soc. 2013, in press.
- 39. Keivanloo, A.; Bakherad, M.; Imanifar, E.; Mirzaee, M. Appl. Catal., A 2013, 467, 291-300.
- 40. Montazeri, N.; Pourshamsian, K.; Rezaei, H.; Fouladi, M.; Rahbar, S. *Asian J. Chem.* **2013**, *25*, 3463-34.66.
- 41. Mirjalili, B. F.; Bamoniri, A. H.; Zamani, L. Sci. Iran. 2012, 19, 565-568.
- 42. Ray, S.; Das, P.; Bhaumik, A.; Dutta, A.; Mukhopadhyay, C. Appl. Catal., A 2013, 458, 183-195.
- 43. Mitra, S.; Bagdi, A. K.; Majee, A.; Hajra, A. Tetrahedron Lett. 2013, 54, 4982-4985.
- 44. Kundu, D.; Samim, M.; Majee, A.; Hajra, A. Chem.-Asian J. 2011, 6, 406-409.
- 45. Azgomi, N.; Mokhtary, M. J. Mol. Catal. A: Chem. 2015, 398, 58-64.
- 46. Sangshetti, J. N.; Dharmadhikari, P. P.; Chouthe, R. S.; Fatema, B.; Lad, V.; Karande, V;.Darandale, S. N.; Shinde, D. B. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 2250-2253.
- 47. Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Org. Biomol. Chem. 2012, 10, 4543- 4548.
- 49. Kamal, A.; Swapna, P. *RSC Adv.* **2013**, *3*, 7419-7426.
- 50. Wang, D.; Etienne, L.; Echeverria, M.; Moya, S.; Astruc, D. Chem.-Eur. J. 2014, 20, 4047-4054.
- 51. Rad, M. N. S.; Behrouz, S.; Movahedian, A.; Doroodmand, M. M.; Ghasemi, Y.; Rasoul-Amini, S.; Gandomani, A. R. A.; Rezaie, R. *Helv. Chim. Acta* **2013**, *96*, 688-701.
- 52. Soltani Rad, M. N.; Behrouz, S.; Doroodmand, M. M.; Movahediyan, A. *Tetrahedron* **2012**, *68*, 7812-7821.
- 53. Veerakumar, P.; Velayudham, M ;.Lu, K. L.; Rajagopal, S. Catal. Sci. Technol. 2011, 1, 1512-1525.
- 54. Wang D.; Etienne L.; Echeverria M.; Moya S. and Astruc D.; *Chem-Eur. J.* **2014**, *20*, 4047-4054.
- 55. Salam, N.; Sinha, A.; Mondal, P.; Roy, A. S.; Jana, N. R.; Islam, S. M. *RSC Adv.* **2013**, *3*, 18087-18098.
- 56. Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Adv. Synth. Catal. 2010, 352, 3208-3214.
- 57. Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Org. Biomol. Chem. 2011, 9, 6385–6395.
- 58. Cano, R.; Ramón, D. J.; Yus, M. Synlett 2011, 2017-2020.
- Tajbakhsh, M.; Alaee, E.; Alinezhad, H.; Khanian, M.; Jahani, F.; Khaksar, S.; Rezaee, P.; Tajbakhsh, M. Chinese J. Catal. 2012, 33, 1517-1522.
- 60. Mirzaei, H.; Davoodnia, A. Chinese J. Catal. 2012, 33, 1502-1507.
- 61. Eshghi, H.; Khojastehnezhad, A.; Moeinpour, F.; Rezaeian, S.; Bakavolia, M.; Teymouri, M.; Rostami, A.; Haghbeen, K. *Tetrahedron* **2015**, *71*, 436-444.

- 62. Baghernejad, B. Bull.Chem. Soc. Ethiopia 2014, 28, 149-153.
- 63. Sobhani, S.; Honarmand, M. Appl. Catal., A 2013, 467, 456-462.
- 64. Zarnegar, Z.; Safari, J. J. Nanopart. Res. 2014, 16, 2509-2523.
- 65. Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Sadeghian, H.; Davoodnejad, M. *Chinese Chem. Lett.* **2013**, 24, 629-632.
- 66. Malakooti, R.; Bardajee, G. R.; Hadizadeh, S.; Atashin, H.; Khanjari, H. *Transition Met. Chem.* **2014**, *39*, 47-54.
- 67. Rahmani, S.; Amoozadeh, A.; Kolvari, E. Catal. Commun. 2014, 56, 184–188.
- 68. Azarifar, A.; Nejat-Yami, R.; Al Kobaisi, M.; Azarifar, D. J. Iran. Chem. Soc. 2013, 10, 439-446.
- 69. Azarifar, D.; Khatami, S. M.; Nejat-Yami, R. J. Chem. Sci. 2014, 126, 95-101.
- 70. Azarifar, D.; Khatami, S. M ;. Zolfigol, M. A.; Nejat-Yami, R. J. Iran. Chem. Soc. 2014, 11, 1223-1230.
- 71. Sarrafi, Y.; Mehrasbi, E.; Vahid, A.; Tajbakhsh, M. Chin. J. Catal. 2012, 33, 1486-1494.
- 72. Pradhan, K.; Paul, S.; Das, A. R. Catal. Sci. Technol. 2014, 4, 822-831.
- 73. Hosseini-Sarvari, M.; Tavakolian, M. Comb. Chem. High Throughput Screening 2012, 15, 826-834.
- 74. Kong, X. Y.; Wang, Z. L. Nano Lett. 2003, 3, 1625-1631.
- 75. Hosseini-Sarvari, M. Canadian J. Chem. 2009, 87, 1122-1126.
- Tajbakhsh, M.; Alaee, E.; Alinezhad, H.; Khanian, M.; Jahani, F.; Khakasar, S.; Rezaee, P.; Tajbakhsh, M. Chin. J. Catal. 2012, 33, 1517–1522.
- 77. Debnath, K.; Pramanik, A. Tetrahedron Lett. 2015, 56, 1654–1660.
- 78. Das, P.; Dutta, A.; Bhaumik, A.; Mukhopadhyay, C. Green Chem. 2014, 16, 1426-1435.
- 79. Sarode, S. A.; Bhojane, J. M.; Nagarkar, J. M. Tetrahedron Lett. 2015, 56, 206–210.
- (a) Hari, A.; Karan, C.; Rodrigues, W. C.; Miller, B. L. J. Org. Chem. 2001, 66, 991–996; (b) Lee, J.; Kim, J.; Jun, Y. M.; Kim, B. H.; Lee, B. M. Tetrahedron 2009, 65, 8821-8831; (c) Nishioka, H.; Ohmori, Y.; Iba, Y.; Tsuda, E.; Harayama, T. Heterocycles 2004, 64, 193-198; (d) Wu, M.; Hu, X.; Liu, J.; Liao, Y.; Deng, G.-J. Org. Lett. 2012, 14, 2722–2725; (e) Tang, L.; Guo, X.; Yang, Y.; Zha, Z.; Wang, Z. Chem. Commun. 2014, 6145-6148. (f) Kim, Jong-Man; Cho, In-Seop; Patrick, S.; Mariano, J. Org. Chem. 1991, 56, 4943–4955; (g) Ohkubo, K.; Nanjo, T.; Fukuzumi, S. Bull. Chem. Soc. Jpn. 2006, 79, 1489–1500; (h) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Green Chem. 2013, 15, 2713-2717; (i) Chaudhari, H. K.; Telvekar, V. N. Synth. Commun. 2013, 43, 1155–1160; (j) Duan, Z.; Ma, G.; Zhang, W. Bull. Korean Chem. Soc. 2012, 33, 4003-4006.
- 81. Tang, L.; Guo, X.; Yang, Y.; Zha, Z.; Wang, Z. Chem. Commun. 2014, 50, 6145-6148.
- 82. Nasr-Esfahani, M.; Mohammadpoor-Baltork, I.; Khosropour, A. R.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S. J. Mol. Catal. A-Chem. 2013, 379, 243-254.
- 83. Goswami, P. Synth. Commun. 2009, 39, 2271-2278.
- 84. Hosseini-Sarvari, M.; Shafiee-Haghighi, S. Collect. Czech. Chem. Commun. 2011, 76, 1285-1298.
- 85. Mohammadi, R.; Kassaee, M. Z. J. Mol. Catal. A: Chem. 2013, 380, 152-158.

- 86. Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Chem. Commun. 2010, 46, 5244-5246.
- 87. Tang, L.; Yang, Y.; Wen, L.; Zhang, S.; Zha, Z.; Wang, Z. Org. Chem. Front. 2015, 2, 114-118.
- 88. Azarifar, A.; Nejat-Yami, R.; Azarifar, D. J. Iran. Chem. Soc. 2013, 10, 297-306.
- 89. Naeimi, H.; Rashid, Z.; Zarnani, A. H.; Ghahremanzadeh, R. J. Nanopart. Res. 2014, 16, 2416-2426.
- 90. Shaterian, H. R.; Moradi, F. Res. Chem. Intermed. 2015, 41, 223-229.
- 91. Vessally, E.; Esrafili, M. D.; Alimadadi, Z.; Rouhani, M. Green Chem. Lett. Rev. 2014, 7, 119-125.
- 92. Albaladejo, M. J.; Alonso, F.; Yus, M. Chem. Eur. J. 2013, 19, 5242-5245.
- 93. Meng, X.; Wang, Y.; Yu, C.; Zhao, P. RSC Adv. 2014, 4, 27301-27307.
- 94. Guntreddi, T.; Allam, B. K.; Singh, K. N. Synlett 2012, 23, 2635-2638.
- 95. Tajbakhsh, M.; Farhang, M.; Hosseinzadeh, R.; Sarrafi, Y. RSC Advances 2014, 4, 23116-23124.
- 96. Abdollahi-Alibeik, M.; Rezaeipoor-Anari, A. Catal. Sci. Technol. 2014, 4, 1151-1159.
- 97. Sanaeishoar, T.; Tavakkoli, H.; Mohave, F. Appl. Catal., A 2014, 470, 56-62.
- 98. Paul, S.; Pal, G.; Das, A. R. RSC Advances 2013, 3, 8637-8644.
- 99. Rostamizadeh, S.; Shadjou, N.; Azad, M.; Jalali, N. *Catal. Commun.* **2012**, *26*, 218-224.
- 100. Rai, V. K.; Singh ,S.; Singh, P.; Yadav, L. D. S. Synthesis 2010, 4051-4056.
- 101. Babaie, M.; Sheibani, H. Arab. J. Chem. 2011, 4, 159-162.
- 102. Shaterian, H. R.; Azizi, K. Res. Chem. Intermed. 2014, 40, 661-667.
- 103. Wu, L. Q. Appl. Organomet. Chem. 2013, 27, 148-154
- 104. Yadav, L. D. S.; Rai, A. Synthesis 2009, 2802-2808.
- 105. Nemati, F.; Saeedirad, R. Chin. Chem. Lett. 2013, 24, 370-372.
- 106. Kiasat, A. R.; Noorizadeh, S.; Ghahremani, M.; Saghanejad, S. J. J. Mol. Struct. 2013, 1036, 216-225.
- 107. Kiasat, A. R.; Davarpanah, J. J. Mol. Catal. A: Chem. 2013, 373, 46-54.
- 108 Shaterian, H. R.; Mohammadnia, M. Res. Chem. Intermed. 2014, 40, 371-383.
- 109. Albadi, J.; Keshavarz, M.; Abedini, M.; Khoshakhlagh, M. J. Chem. Sci. 2013, 125, 295-298.
- 110. Dam, B.; Nandi, S.; Pal, A. K. Tetrahedron Lett. 2014, 55, 5236–5240.
- 111. Fekri, L. Z.; Nikpassand, M.; Pour, K. H. Curr. Org. Synth. 2015, 12, 76-79.
- 112. Kumar, D.; Reddy, V. B.; Mishra, B. G.; Rana, R. K.; Nadagouda, M. N.; Varma, R. S. *Tetrahedron* 2007, 63, 3093–3097.
- 113. Lashgari, N.; Ziarani, G. M.; Badiei, A.; Zarezadeh-Mehrizi, M. J. Heterocyclic Chem. 2014, 51, 1628-1633.

- 114. Maleki, A.; Kamalzare, M. Tetrahedron Lett. 2014, 55, 6931-6934.
- 115. Nikpassand, M.; Zare, L.; Shafaati, T.; Shariati, S. Chin. J. Chem .2012, 30, 604-608.
- 116. Rostami, A.; Tahmasbi, B.; Yari, A. Bull. Korean Chem. Soc. 2013, 34, 1521-1524.
- 117. Karimi, A. R.; Dalirnasab, Z.; Karimi, M. Synthesis 2014, 46, 917-922.