

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Electrochemical detection of cholesterol based on competitive host-guest
2	recognition using a β-cyclodextrin/poly(<i>N</i> -acetylaniline)/graphene-modified
3	electrode
4	
5	Long Yang ^{a, 1} , Hui Zhao ^{b,1} , Shuangmei Fan ^a , Genfu Zhao ^a , Xin Ran ^a , Can-Peng Li ^{a,*}
6	
7	
8	^a School of Chemical Science and Technology, Yunnan University, Kunming 650091,
9	PR China.
10	^b Laboratory for Conservation and Utilization of Bio-resource, Yunnan University,
11	Kunming 650091, PR China.
12	
13	
14	
15	
16	
17	
18	
19	¹ These authors contributed equally to this work.
20	* Corresponding authors.
21	Fax or Tel: 86-871-65031119. E-mail: <u>lcppp1974@sina.com</u> (CP. Li);
22	

RSC Advances Accepted Manuscript

23	Abstract: A sensitive and selective electrochemical approach for cholesterol sensing
24	based on a competitive host–guest recognition between β -cyclodextrin (β -CD) and
25	signal probe (Methylene blue)/target molecule (cholesterol) using
26	β -CD/poly(<i>N</i> -acetylaniline)/graphene (β -CD/PNAANI/Gra)-modified electrode was
27	developed. Due to the host-guest interaction, MB molecules can enter into the
28	hydrophobic inner cavity of β -CD, and the β -CD/PNAANI/Gra modified glassy
29	carbon electrode displays a remarkable anodic peak. In the presence of cholesterol,
30	competitive interaction to β -CD occurs and the MB molecules are displaced by
31	cholesterol. This results in a decreased oxidation peak current of MB. As MB is a well
32	known redox probe and hence can be easily detected using differential pulse
33	voltammetery technique. A linear response range of 1.00 to 50.00 μ M for cholesterol
34	with a low detection limit of 0.50 μ M (S/N=3) was obtained by using the indirectly
35	method. The proposed method could be successfully utilized to detect cholesterol in
36	serum samples, and may be expanded to analysis of other non-electroactive species.
37	Besides, the host–guest interaction between cholesterol and β -CD was studied by
38	molecular modeling calculations, which revealed that the complexation could reduce
39	the energy of the system and the complex of 2:1 host-guest stoichiometry had the
40	lowest ΔE value of -10.45 kcal/mol. The molecular docking studies suggested that
41	hydrogen bonding, electrostatic interactions, and hydrophobic interactions should be
42	the major driving forces for the formation of the inclusion complex.
43	

44 **1. Introduction**

Page 3 of 33

45	Cholesterol is a vital component in cells and tissues of humans, playing a
46	functional role in construction of cell membranes or serving as a biosynthetic
47	precursor of bile acids, vitamin D, steroid hormones etc. ¹ The normal level of total
48	cholesterol in healthy human serum is ~200 mg dL ⁻¹ . ² Excess cholesterol in blood
49	serum forms plaques in the arteries of blood vessels which prevent the blood
50	circulation and cause cardiovascular diseases. ³ Thus the levels of total cholesterol in
51	serum and food are major parameters for diagnostic treatment. Over various analytical
52	methodologies, the electrochemical approach of different kinds of cholesterol
53	biosensing platforms has received great attention in past few decades as reviewed by
54	Arya et al. ⁴ Most of the cholesterol biosensors reported till date are based on the
55	detection of electrooxidation of hydrogen peroxide produced during the catalysis of
56	cholesterol by cholesterol oxidase. ⁵ This requires a high anodic potential that can
57	induce simultaneous oxidation of other electrochemically active species present in
58	samples leading to false positive signals. Besides, detection selectivity in these
59	methods relies on the use of cholesterol selective enzymes which are expensive,
60	unstable, and prone to denaturation. ³ Therefore, an alternative, simple, and cost
61	effective method for the sensitive and selective detection of cholesterol is highly
62	desirable.
63	The concept of indicator displacement assay (IDA) has received considerable
64	interest with the development of supramolecular chemistry, which exploit the
65	potential of artificial receptors, particularly macrocyclic hosts, for its promising
66	applications in molecular recognition and sensing. ^{6,7} The sensing principle of IDA

67	relies on the competition between a test substance and an indicator for the same
68	binding site on the host. ⁸ When an analyte is added to a solution containing
69	host indicator complex, the analyte displaces the indicator from the binding site.
70	Upon displacement of the indicator, a change in signal is observed. Cyclodextrins
71	(CDs) as the typical macrocyclic molecules have toroidal shapes with hydrophobic
72	inner cavities and hydrophilic exteriors. ⁹ The interesting characteristics can enable
73	them to bind a wide variety of hydrophobic guest molecules to form stable host-guest
74	complex in their hydrophobic cavity. 10 The host–guest interaction between $\beta\text{-CD}$ and
75	cholesterol has been used for cholesterol extraction from bioenvironment such as food,
76	cell membranes, blood serum and cultured cells. 3 This suggests that $\beta\text{-CD}$ can be an
77	alternative to cholesterol enzyme for selective recognition of cholesterol. However,
78	this interaction does not produce any signal change. In addition, cholesterol is one of
79	the non-electroactive species, resulting its direct electrochemical determination is very
80	difficult. Alternatively, designing a competitive host-guest recognition system by
81	selecting an electroactive probe as signal indicator might have promising applications
82	for the analysis of non-electroactive species. Mondal and Jana ³ have recently carried
83	out fluorescent detection of cholesterol using graphene - β -CD (Gra- β -CD) hybrid
84	system, where the optical detection of cholesterol was carried out using rhodamin 6G
85	(R6G) dye as a fluorophore. Although the competitive host-guest interaction system
86	has been widely applied in the fluorescent sensing filed, ^{3,11–15} it is rarely investigated
87	for electrochemical sensing applications except few researchers contributed to this
88	area. ^{16,17}

Page 5 of 33

89	Herein, a non-enzymatic electrochemical approach for cholesterol sensing based
90	on a competitive host-guest recognition between β -CD and signal probe/target
91	molecules using β -CD/poly(<i>N</i> -acetylaniline)/Gra (β -CD/PNAANI/Gra)-modified
92	electrode was proposed. Methylene blue (MB) and cholesterol were selected as the
93	probe and target molecules, respectively. Gra was chosen here considering that it can
94	enhance the electrode conductivity and facilitate the electron transfer. The
95	introduction of PNAANI film is used to steadily immobilize β -CD and to avoid the
96	non-specific adsorption of MB on the Gra film by a π - π stacking interaction. Due to
97	the host-guest interaction, MB molecules can enter into the hydrophobic inner cavity
98	of β -CD, and the β -CD/PNAANI/Gra modified glassy carbon electrode displays a
99	remarkable anodic peak. In the presence of cholesterol, competitive interaction to
100	β -CD occurs and the MB molecules are displaced by cholesterol. This results in a
101	decreased oxidation peak current of MB. As MB is a well known redox probe and
102	hence can be easily detected using differential pulse voltammetery (DPV) technique.
103	Agnihotri et al. ¹⁷ reported an electrochemical detection of cholesterol using
104	Gra- β -CD hybrid as the sensing matrix, while the host–guest interaction in their work
105	did not occur on the electrode surface (in an electrochemical cell). Compared with this
106	previous report, the host-guest interaction in the present work occurred completely on
107	the β -CD/PNAANI/Gra-modified electrode surface, which is less expensive as an
108	electrochemical cell needs 3 mL materials. And the non-specific adsorption of MB on
109	the Gra film was avoided by the PNAANI film. The proposed method could be
110	successfully utilized to detect cholesterol in serum samples, and exhibited a promising

RSC Advances Accepted Manuscript

111	application in practice. In addition, the host-guest interaction between cholesterol and
112	β -CD was investigated by molecular modeling calculations.
113	
114	2. Materials and methods
115	2.1. Chemicals
116	Graphite oxide was purchased from Nanjing XFNANO Materials Tech Co., Ltd.
117	(Nanjing, China). Cholesterol, MB, β -CD, and <i>N</i> -acetylaniline (NAANI) were
118	obtained from Sigma Chemical Co. (St. Louis, MO, USA). All other reagents were of
119	analytical grade. Phosphate buffer (PBS, 0.1 M pH 7.0) was used as working solution.
120	All aqueous solutions were prepared with deionized water (DW, 18 M Ω cm).
121	
122	2.2. Apparatus
123	Electrochemical impedance spectroscopy (EIS) and DPV experiments were
124	performed with a CHI 660E Electrochemical Workstation from Shanghai Chenhua
125	Instrument (Shanghai, China) and conducted using a three-electrode system, with the
126	modified GCE as working electrode, a platinum wire as the counter electrode, a
127	saturated calomel electrode (SCE) as the reference electrode. The morphologies of the
128	prepared samples were characterized by a QUNT200 scanning electron microscopy
129	(SEM, USA). UV-visible spectra were analyzed in a U-2001 Hitachi (Tokyo, Japan)
130	UV spectrophotometer. Fourier transform infrared (FTIR) study was performed over
131	the wavenumber, range of 4000–400 cm ⁻¹ by a Thermo Fisher SCIENTIFIC Nicolet

IS10 (Thermo Fisher, Massachusetts, USA) FTIR impact 410 spectrophotometer 132

131

133	using KBr pellets. Raman spectra were obtained on a 400F PERKINELMER Raman
134	spectrometer (USA) with 514.5 nm wavelength incident laser light.
135	
136	2.3. Molecular docking
137	The crystal structures of β -CD (ID: IHEGEI) and cholesterol (ID: CHOEST21)
138	were obtained from Cambridge Crystallographic Data Centre (CCDC) and optimized
139	using molecular dynamics simulation with the Gaussian 03 program. Both the
140	optimized structures were used as a starting structure in the docking study.
141	AutoDock4.2 with Lamarckian Genetic Algorithm (LGA) was used for docking study.
142	An initial population of 150 individuals with a maximum number of energy
143	evaluations of 25,000,000 and a maximal number of generations of 27,000 were used
144	as an end criterion. An elitism value of one was used and a probability of mutation
145	and crossing-over of 0.02 and 0.8 was used, respectively. We have defined the
146	conformational search space implementing an $60 \times 60 \times 60$ grid and 0.375 Å spacing
147	between each point in such a way that it covered both the external surface and the
148	internal cavity of the β -CD. A total of 50 docking runs were carried out. At the end of
149	each run, the solutions were separated into clusters according to their lowest RMSD
150	and the best energy score value based on an empirical free energy function. Clustering
151	was performed on the docked complexes with a cut-off of 2 Å. From the docking
152	calculations, the lowest energy conformation was selected as the cholesterol/ β -CD
153	binding mode, and the binding free energy of the cholesterol/ β -CD complex was
154	calculated by using the semi-empirical method PM3.

RSC Advances Accepted Manuscript

155

156 **2.4. Preparation of the Gra**

157	The graphite oxide was exfoliated into graphene oxide (GO) sheets by
158	ultrasonication at room temperature for one hour. The as-obtained yellow-brown
159	aqueous suspension of GO was stored at room temperature and used for further
160	experiment. Compared with the traditional procedure using highly toxic hydrazine as
161	reductant, ascorbic acid (AA) was used as reducing agent to prepare Gra in DW at
162	room temperature. In a typical experiment, 50 mg of AA was added into 10.0 mL of
163	0.5 mg mL ⁻¹ GO aqueous suspension and stirred for 48 h at room temperature. After
164	centrifuging and washing with DW for three times, the resulting Gra material was
165	obtained by freeze-drying.
166	

167 **2.5. Preparation of the modified electrodes**

168	Glassy carbon electrode (GCE, 3 mm in diameter) was polished with 0.3 and 0.05
169	$\mu m \ Al_2O_3$ powder respectively and subsequently sonicated in ethanol and DW to
170	remove the adsorbed substance and dried in air. The Gra was dissolved in DW at a
171	concentration of 0.5 mg mL ^{-1} with the aid of ultrasonic agitation for 20 min, resulting
172	in a homogeneous suspension. To prepare the Gra modified electrode, 5 μL of the Gra
173	suspension was dropped onto the electrode surface and dried at room temperature.
174	The obtained electrode was noted as Gra/GCE. In order to prepare the
175	PNAANI/Gra/GCE, the Gra/GCE was held at a constant voltage of 1.0 V for 1 min in
176	a mixture solution containing 0.1 M NAANI and 1.0 M HClO ₄ aqueous solution, and

178electro-oxidation of the PNAANI/Gra/GCE at a constant potential of 1.2 V for 12179by amperometric i–t curve technique in a mixture solution containing 0.05 M β-C180and 0.1 M LiClO4 in DMSO, the β-CD/PNAANI/Gra/GCE was obtained success181For comparison, a similar procedure was used to prepare PNAANI/Gra/GCE182and β-CD/PNAANI/GCE.183184184 2.6. Electrochemical measurements 185DPV was applied in 0.1 M pH 7.0 PBS from -0.7 to 0.7 V with a pulse amplit186of 0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range from187 10^{-1} to 10^5 Hz with an amplitude of 5 mV using 2.0 mM [Fe(CN) ₆] ^{3-/4-} redox coup	2 min 2D fully. tude
by amperometric i–t curve technique in a mixture solution containing 0.05 M β-C and 0.1 M LiClO ₄ in DMSO, the β-CD/PNAANI/Gra/GCE was obtained success For comparison, a similar procedure was used to prepare PNAANI/Gra/GCE and β-CD/PNAANI/GCE. 2.6. Electrochemical measurements DPV was applied in 0.1 M pH 7.0 PBS from –0.7 to 0.7 V with a pulse amplit of 0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range fro 10 ⁻¹ to 10 ⁵ Hz with an amplitude of 5 mV using 2.0 mM [Fe(CN) ₆] ^{3./4.} redox coup	D fully. tude
180and 0.1 M LiClO ₄ in DMSO, the β-CD/PNAANI/Gra/GCE was obtained success181For comparison, a similar procedure was used to prepare PNAANI/Gra/GCE182and β-CD/PNAANI/GCE.1831842.6. Electrochemical measurements185DPV was applied in 0.1 M pH 7.0 PBS from -0.7 to 0.7 V with a pulse amplit186of 0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range from187 10^{-1} to 10^5 Hz with an amplitude of 5 mV using 2.0 mM [Fe(CN) ₆] ^{3-/4-} redox coup	fully. tude
 For comparison, a similar procedure was used to prepare PNAANI/Gra/GCE and β-CD/PNAANI/GCE. 2.6. Electrochemical measurements DPV was applied in 0.1 M pH 7.0 PBS from -0.7 to 0.7 V with a pulse amplit of 0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range from 10⁻¹ to 10⁵ Hz with an amplitude of 5 mV using 2.0 mM [Fe(CN)₆]^{3-/4-} redox coup 	tude
 and β-CD/PNAANI/GCE. 2.6. Electrochemical measurements DPV was applied in 0.1 M pH 7.0 PBS from -0.7 to 0.7 V with a pulse amplit of 0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range from 10⁻¹ to 10⁵ Hz with an amplitude of 5 mV using 2.0 mM [Fe(CN)₆]^{3./4-} redox coup 	tude
 183 184 2.6. Electrochemical measurements 185 DPV was applied in 0.1 M pH 7.0 PBS from -0.7 to 0.7 V with a pulse amplit 186 of 0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range from 187 10⁻¹ to 10⁵ Hz with an amplitude of 5 mV using 2.0 mM [Fe(CN)₆]^{3-/4-} redox coup 	tude
 184 2.6. Electrochemical measurements 185 DPV was applied in 0.1 M pH 7.0 PBS from -0.7 to 0.7 V with a pulse amplit 186 of 0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range from 187 10⁻¹ to 10⁵ Hz with an amplitude of 5 mV using 2.0 mM [Fe(CN)₆]^{3-/4-} redox coup 	tude
DPV was applied in 0.1 M pH 7.0 PBS from -0.7 to 0.7 V with a pulse amplit of 0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range fro 10^{-1} to 10^{5} Hz with an amplitude of 5 mV using 2.0 mM [Fe(CN) ₆] ^{3-/4-} redox coup	tude
of 0.05 V and a pulse width of 0.05 s. EIS was recorded in the frequency range from 10^{-1} to 10^{5} Hz with an amplitude of 5 mV using 2.0 mM $[Fe(CN)_6]^{3-/4-}$ redox couplete the transformation of transformation of the transformation of the transformation of the transformation of the transformation of transformation of the transformation of transformation of the transformation of transformat	om
187 10^{-1} to 10^{5} Hz with an amplitude of 5 mV using 2.0 mM $[Fe(CN)_6]^{3-/4-}$ redox coup	0111
	ple
188 (1:1) with 0.1 M KCl as supporting electrolyte. All the measurements were carried	d out
189 at room temperature. As cholesterol has very low solubility in water, 1.0 mM stoc	:k
solution of cholesterol was prepared in ethanol and diluted to different concentration	ions
by 0.1 M pH 7.0 PBS for further use. Before electrochemical measurements, the	
192 β -CD/PNAANI/Gra/GCE was incubated with 1.0 mM MB solution (in 0.1 M pH	7.0
193 PBS) for a definite time, and rinsed gently with ultrapure water. Then, the electrod	de
194 was further incubated with different concentrations of cholesterol solution. After t	that,
 was further incubated with different concentrations of cholesterol solution. After t the electrode was rinsed gently with ultrapure water and the current response of th 	that, ne
 was further incubated with different concentrations of cholesterol solution. After t the electrode was rinsed gently with ultrapure water and the current response of th MB-bound β-CD/PNAANI/Gra/GCE were investigated by DPV in 0.1 M pH 7.0 	that, ne

199 **3. Results and Discussion**

200 **3.1. Design strategy of the electrochemical sensor**

201	Scheme 1 illustrates the assay protocol of the proposed electrochemical sensor
202	based on the competitive host–guest interaction between β -CD and MB (signal
203	probe)/cholesterol (target). MB molecules can enter into the inner cavity of β -CD due
204	to the host–guest interaction, and the MB-bound β -CD/PNAANI/Gra/GCE displays a
205	remarkable oxidation peak due to MB. However, in the presence of cholesterol,
206	competitive association to the β -CD occurs and the MB molecules are displaced by
207	cholesterol. This results in a decrease of the oxidation peak current of the MB probe.
208	
209	3.2. Molecular docking
210	In recent years, widespread use has been made of computer aided molecular
211	modeling to rapidly and simply obtain a three dimensional image of the most likely
212	structure of the inclusion complex. Typically, the more negative the binding energy is,
213	the stronger interaction is between the host and guest molecules. As listed in Table 1,
214	the lowest binding free energy (ΔE) was -6.68 kcal/mol for the host-guest complex
215	of cholesterol and β -CD with 1:1 stoichiometry calculated by PM3 method. The
216	lowest energy docked conformation for 1:1 complex of cholesterol and β -CD, shown
217	in Fig. 1A, reveals that the B-, C-, and D-rings of cholesterol molecule inserted into
218	β -CD cavity due to hydrophobic interactions, however, the cyclohexanol part (A-ring)
219	and the alkyl chain of the cholesterol molecule located just outside the β -CD host. The

A-, B-, C-, and D-rings of cholesterol were indicated in Scheme 2. Among all the

221	docking conformations of cholesterol and β -CD, two other conformations capture our
222	attention. One is the cyclohexanol part (A-ring) that inserted into the cavity of β -CD,
223	the other is the alkyl chain of the cholesterol that inserted into β -CD cavity. Thus, we
224	speculated that one cholesterol molecule may bind with two β -CD molecules to form
225	a 1:2 inclusion complex. So we have further studied the interaction between one
226	cholesterol and two β -CD molecules. The crystal structure of two adjacent β -CDs (ID:
227	WISRIZ) was obtained from Cambridge Crystallographic Data Centre (CCDC) and
228	also optimized using molecular dynamics simulation with the Gaussian 03 program.
229	The docked conformation was displayed in Fig. 1B, indicating that the cyclohexanol
230	(A-ring) and the alkyl chain of cholesterol molecule inserted into the cavities of two
231	β-CD molecules, respectively. The ΔE calculated by PM3 method was –10.45
232	kcal/mol, which is much lower than that that of a 1:1 inclusion complex, indicating
233	that a 1:2 guest-host binding mode is more stable. Analysis of host-guest interaction
234	as obtained from the docking studies reveals that hydrogen bonding, electrostatic
235	interactions, and hydrophobic interactions are the predominant driving forces of the
236	1:2 guest-host complex. Firstly, the hydroxyl on A-ring of the cholesterol molecule
237	formed hydrogen bonding with the hydroxyl of β -CD and the bond length is 2.0 Å.
238	Secondly, as shown in Fig. 1C, the surface of cholesterol molecule is mainly
239	negatively charged, while the internal cavities of the two adjacent β -CDs are mainly
240	positively charged. Thus, strong electrostatic interactions formed between cholesterol
241	molecule and the two β -CDs. Thirdly, as revealed in Fig. 1D, strong hydrophobic
242	interactions also formed between cholesterol molecule and the two β -CDs. The

RSC Advances Accepted Manuscript

243	cyclohexanol and the alkyl chain groups of the cholesterol molecule inserted into the
244	hydrophobic cavities of two β -CD molecules, respectively. Recently, Cheng et al. ¹⁸
245	proposed a similar 1:2 cholesterol/ β -CD complex structure based on the 2D 1 H
246	ROESY results. This result is in accordance with that of our obtained from molecular
247	docking.
248	
249	3.3. Characterization of the β-CD/PNAANI/Gra/GCE film
250	The reduction of the GO was characterized by UV-visible spectroscopy, FTIR
251	spectroscopy, and Raman spectroscopy, respectively. Initially, UV-visible
252	spectroscopy was used to study the reduction of GO. As shown in Fig. 2A, the GO
253	shows a strong absorption at 230 nm and a shoulder at 300 nm, which correspond to
254	the π - π * transition of the aromatic C=C bond and the n- π * transition of the C=O
255	bond, respectively. After reduction, the peak at 230 nm shifts to 260 nm indicating the
256	restoration of the π -conjugation network of the Gra. The disappearance of the peak at
257	300 nm reflects the effect of deoxygenation. To further illustrate the formation of Gra,
258	FTIR spectra were employed to investigate the reduction of GO. Fig. 2B shows the
259	FTIR spectra of the GO and Gra. As observed, the GO displays several characteristic
260	bands at approximately 3425, 1724, 1617, 1213, and 1052 cm ⁻¹ , which are caused by
261	the stretching vibrations of -OH, C=O, C=C, C-O-C, and C-O, respectively. After
262	reduction, the band at 1724 cm ⁻¹ corresponding to the C=O stretch vanishes, and the
263	bands at 3425 and 1213 cm ⁻¹ decreases dramatically, confirming that the GO was
264	reduced to Gra by AA. Raman spectroscopy is one of the most widely used techniques

265	to characterize the structural and electronic properties of Gra including disordered and
266	defective structures, defect density, and doping levels. Fig. 2C shows the typical
267	Raman spectra of GO and Gra. As expected, GO displays two prominent peaks at
268	1360 and 1602 cm^{-1} corresponding to the D and G bands, respectively. The Gra shows
269	two prominent peaks at 1355 and 1589 cm ⁻¹ , corresponding to the breathing mode of
270	k-point phonons of A_{1g} symmetry (D band) and the E_{2g} phonons of C sp ² atoms (G
271	band) of Gra, respectively. The intensity ratio of the D band to the G band (I_D/I_G) is
272	clearly higher when compared with that of GO (0.97 vs. 0.78), suggesting a decrease
273	in sp ² domains and a partially ordered crystal structure of Gra induced by AA
274	reduction.
275	Because the PNAANI and β -CD were immobilized on the Gra/GCE by
276	electro-polymerization electro-oxidation, respectively. It is difficult to characterize by
277	FTIR. Thus, the Gra/GCE, PNAANI/Gra/GCE, and β -CD/PNAANI/Gra/GCE films
278	were investigated using SEM. As shown in Fig. 3A, the microstructure image reveals
279	that after reduction the Gra material consists of randomly aggregated thin, wrinkled
280	sheets closely associated with each other. It is noted that after polymerization of
281	NAANI on the surface of Gra/GCE, a layer of PNAANI was densely covered on the
282	surface of Gra/GCE (Fig. 3B). Besides, it can be seen from Fig. 3C that a layer of
283	β -CD thin films was uniformly covered on the surface of PNAANI/Gra/GCE,
284	indicating that the β -CD/PNAANI/Gra/GCE film was successfully obtained.
285	
286	3.4. Electrochemical characterization of the modified electrodes

287	EIS was performed at the potential of 0.1 V and the frequency ranges was from
288	10^{1} to 10^{5} Hz, using 2.0 mM [Fe(CN) ₆] ^{3-/4-} redox couple (1:1) with 0.1 M KCl as
289	supporting electrolyte. The value of the electron-transfer resistance (R_{ct}) of the
290	modified electrode was estimated by the semicircle diameter. Fig. 4A illustrates the
291	EIS of the bare GCE, Gra/GCE, β -CD/PNAANI/GCE, and β -CD/PNAANI/Gra/GCE.
292	Obviously, the bare GCE exhibited a semicircle portion and the value of R_{ct} was
293	estimated to be 750 Ω . While the R_{ct} decreased remarkably at Gra/GCE, indicating
294	that Gra had good conductivity and improved obviously the diffusion of ferricyanide
295	toward the electrode interface. In the case of β -CD/PNAANI/GCE, its R_{ct} further
296	increased to 1500 Ω due to the poor conductivity of β -CD, suggesting that large
297	amount of β -CD molecules were successfully immobilized on the surface of
298	PNAANI/GCE. Furthermore, the R_{ct} of the β -CD/PNAANI/GCE is much larger than
299	that of the β -CD/PNAANI/Gra/GCE, although the introduction of β -CD results in the
300	increase of the semicircle diameter. These results indicate that the Gra film can
301	significantly accelerate the interfacial charge transfer between the electrochemical
302	probe $[Fe(CN)_6]^{3-/4-}$ and the modified electrode, which will be beneficial to the good
303	analytical performance of the electrode.
304	Fig. 4B shows the DPV responses of different electrodes in 0.1M pH 7.0 PBS
305	after incubation with 1.0 mM MB. On the Gra/GCE (curve a), an oxidation peak was
306	observed due to the non-specific adsorption of MB on Gra via π - π stacking. However,
307	there is no oxidation peak of MB on the PNAANI/Gra/GCE (curve b), indicating that
308	the adsorption of MB was restrained by PNAANI film. Furthermore, on the

309	β -CD/PNAANI/Gra/GCE (curve d), the oxidation peak current of MB increases
310	obviously due to the good molecular recognition property and high enrichment
311	capability of β -CD compared to all the other electrodes. As a comparison, the DPV
312	response of MB on the β -CD/PNAANI/GCE was also investigated (curve c). It is
313	noted that the peak current is smaller than that on the β -CD/PNAANI/Gra/GCE.
314	These imply that the large specific surface area and good electron transfer property of
315	Gra are important to improve the electrochemical performance of the modified
316	electrode. In general, it can be concluded that the introduction of Gra film is
317	beneficial to enhancing the electron transfer of the electrochemical sensor, and the
318	PNAANI film can avoid successfully the non-specific adsorption of MB on Gra film
319	via π - π stacking interaction.
320	
320 321	3.5. Feasibility of the electrochemical sensor
320321322	3.5. Feasibility of the electrochemical sensor To demonstrate the assay feasibility of the proposed sensor, DPV response of the
320321322323	3.5. Feasibility of the electrochemical sensor To demonstrate the assay feasibility of the proposed sensor, DPV response of the β-CD/PNAANI/Gra/GCE was investigated in 0.1 M pH 7.0 PBS. As can be seen from
 320 321 322 323 324 	3.5. Feasibility of the electrochemical sensor To demonstrate the assay feasibility of the proposed sensor, DPV response of the β-CD/PNAANI/Gra/GCE was investigated in 0.1 M pH 7.0 PBS. As can be seen from Fig. 4C , no detectable signal (curve a) is observed for the β-CD/PNAANI/Gra/GCE
 320 321 322 323 324 325 	3.5. Feasibility of the electrochemical sensor To demonstrate the assay feasibility of the proposed sensor, DPV response of the β-CD/PNAANI/Gra/GCE was investigated in 0.1 M pH 7.0 PBS. As can be seen from Fig. 4C , no detectable signal (curve a) is observed for the β-CD/PNAANI/Gra/GCE in 0.1 M pH 7.0 PBS due to the absence of the redox mediator MB. After incubated in
 320 321 322 323 324 325 326 	3.5. Feasibility of the electrochemical sensor To demonstrate the assay feasibility of the proposed sensor, DPV response of theβ-CD/PNAANI/Gra/GCE was investigated in 0.1 M pH 7.0 PBS. As can be seen from Fig. 4C , no detectable signal (curve a) is observed for the β-CD/PNAANI/Gra/GCEin 0.1 M pH 7.0 PBS due to the absence of the redox mediator MB. After incubated in1.0 mM MB solution for 25 min, the MB-bound β-CD/PNAANI/Gra/GCE was then
 320 321 322 323 324 325 326 327 	3.5. Feasibility of the electrochemical sensor To demonstrate the assay feasibility of the proposed sensor, DPV response of theβ-CD/PNAANI/Gra/GCE was investigated in 0.1 M pH 7.0 PBS. As can be seen from Fig. 4C , no detectable signal (curve a) is observed for the β-CD/PNAANI/Gra/GCEin 0.1 M pH 7.0 PBS due to the absence of the redox mediator MB. After incubated in1.0 mM MB solution for 25 min, the MB-bound β-CD/PNAANI/Gra/GCE was thentested in 0.1 M pH 7.0 PBS and an obvious oxidation peak of MB (curve b) can be
 320 321 322 323 324 325 326 327 328 	3.5. Feasibility of the electrochemical sensor To demonstrate the assay feasibility of the proposed sensor, DPV response of theβ-CD/PNAANI/Gra/GCE was investigated in 0.1 M pH 7.0 PBS. As can be seen from Fig. 4C , no detectable signal (curve a) is observed for the β-CD/PNAANI/Gra/GCEin 0.1 M pH 7.0 PBS due to the absence of the redox mediator MB. After incubated in1.0 mM MB solution for 25 min, the MB-bound β-CD/PNAANI/Gra/GCE was thentested in 0.1 M pH 7.0 PBS and an obvious oxidation peak of MB (curve b) can beobserved at about -0.1 V. When the β-CD/PNAANI/Gra/GCE was first incubated in
 320 321 322 323 324 325 326 327 328 329 	3.5. Feasibility of the electrochemical sensor To demonstrate the assay feasibility of the proposed sensor, DPV response of theβ-CD/PNAANI/Gra/GCE was investigated in 0.1 M pH 7.0 PBS. As can be seen from Fig. 4C , no detectable signal (curve a) is observed for the β-CD/PNAANI/Gra/GCEin 0.1 M pH 7.0 PBS due to the absence of the redox mediator MB. After incubated in1.0 mM MB solution for 25 min, the MB-bound β-CD/PNAANI/Gra/GCE was thentested in 0.1 M pH 7.0 PBS and an obvious oxidation peak of MB (curve b) can beobserved at about -0.1 V. When the β-CD/PNAANI/Gra/GCE was first incubated in1.0 mM MB solution for 25 min and further incubated in 10 µM cholesterol solution

331	was obtained due to competitive association of cholesterol/MB to the β -CD occurs.
332	This is because cholesterol has higher binding affinity to β -CD cavity due to its
333	hydrophobic nature. This suggests that the MB molecules present inside the
334	β -CD/PNAANI/Gra/GCE host can be replaced by cholesterol and the MB-bound
335	β -CD/PNAANI/Gra/GCE can be used to sensitively detect cholesterol by the
336	competitive electrochemical sensing strategy.
337	
338	3.6. Optimization of experimental conditions
339	Several control experiments were carried out to determine the optimum reaction
340	conditions. Fig. 5A shows the effect of the potential cycle number of the
341	electrodeposition of PNAANI film on the DPV peak current of the
342	PNAANI/Gra/GCE in 0.1 M pH 7.0 PBS after incubation in 1.0 mM MB solution. It
343	is noted that the oxidation peak current of MB decreases with an increase of the cycle
344	number and reaches about 0 at 25 cycles, indicating that the surface of Gra/GCE is
345	covered completely by PNAANI film and that the PNAANI/Gra/GCE can
346	successfully avoid the non-specific adsorption of MB on the surface of Gra by π – π
347	stacking interactions. Therefore, a cycle number of 25 was selected for further study.
348	Moreover, the effect of the electro-oxidation time of β -CD on the DPV peak current
349	of the β -CD/PNAANI/Gra/GCE was also investigated (Fig. 5B). Due to the
350	host-guest interaction between MB and β -CD, it was found that the peak current of
351	MB increases with the increase of the deposition time and a maximum is observed at
352	12 min. This suggests that the immobilized amount of β -CD is at a maximum at 12

353	min. Thus, this time was selected as the optimum electro-oxidation time for β -CD on
354	the PNAANI/Gra/GCE. In addition, the incubation time of the modified electrode in
355	MB solution is one of the key parameters that will affect the response performance of
356	the electrode. Fig. 5C shows that the oxidation peak current of the electrode increases
357	with the increase of the incubation time and reaches a maximum at 25 min for MB
358	incubation. Therefore, 25 min is selected as the optimum incubation time for the
359	as-prepared electrode in MB solution. Similarly, the effect of the incubation time of
360	the modified electrode in cholesterol solution was also studied. Fig. 5D shows that the
361	oxidation peak current of the electrode decreases with the increase of the incubation
362	time and reaches about 0 at 30 min for cholesterol incubation. Therefore, 30 min is
363	selected as the optimum incubation time for the as-prepared electrode in cholesterol
364	solution.

365

366 3.7. Quantitative analysis of the electrochemical sensor toward cholesterol

Under optimal conditions, DPV was used to determine the concentrations of 367 368 cholesterol because it is a highly sensitive and low-detection limit electrochemical 369 method. Fig. 6A shows the DPV curves of electrochemical signal on the MB-bound 370 β-CD/PNAANI/Gra/GCE under different concentrations of cholesterol solution. The 371 oxidation peak currents of MB decreased with increased cholesterol concentrations. 372 Fig. 6B shows the corresponding calibration curve for cholesterol quantification. The peak currents were proportional to the cholesterol concentrations between 1.00 and 373 374 50.00 μ M with a detection limit of 0.50 μ M (S/N=3). The corresponding regression

equation was calculated as $\Delta I (\mu A) = 0.154C (\mu M) + 0.588$ with correlation coefficients of 0.998. Detection limit was less than 1.0 μ M which was quite low and satisfactory with respect to other recently reported articles. **Table 2** illustrates few of the recent literatures on cholesterol sensing platforms, through both enzymatic and non-enzymatic sensing routes. The detection limit and sensitivity of the present sensing strategy is comparatively better than the reported ones.

382 **3.8. Selectivity, reproducibility, and stability**

383 As we know, human blood serum contains many more biocomponents like salts, 384 amino acids, carbohydrates, lipids etc., those can interfere with cholesterol detection 385 and hamper the selectivity of the electrochemical sensor. Therefore, we have tested 386 interference from common molecules present in human blood serum and found very 387 negligible interference. As shown in Fig. 6C, some salts, carbohydrates, protein, 388 anionic surfactant, etc. including glucose, AA, bovine serum albumin (BSA), sodium 389 dodecyl sulphate (SDS), NaCl, KCl, and, MgCl₂ showed negligible interference even 390 at the concentration of 2.0 mM, compared to cholesterol detected for only 30 µM 391 concentration. Six equal MB-bound β-CD/PNAANI/Gra/GCEs were used to evaluate 392 the fabrication reproducibility of the present method for cholesterol detection. The six 393 modified electrodes exhibited similar signals with a relative standard deviation of 394 3.9%, indicating satisfactory reproducibility. Additionally, a long-term stability 395 experiment was performed intermittently (every 5 days) and used to examine the stability of the MB-bound β-CD/PNAANI/Gra/GCE. The constructed sensor was 396

RSC Advances Accepted Manuscript

397	stored in a refrigerator at 4 °C when not in use. Initial responses of over 94.3% and
398	85.6% remained after storage for 15 and 30 days, respectively, indicating an
399	acceptable stability of the MB-bound β -CD/PNAANI/Gra/GCE.
400	
401	3.9. Real sample analysis
402	The proposed method was used to detect cholesterol in serum samples using
403	standard addition methods to evaluate the feasibility of the MB-bound
404	β -CD/PNAANI/Gra/GCE for real sample analysis. The serum sample was diluted
405	fifty times with 0.1 M pH 7.0 PBS. Results showed recoveries ranging from 98.4% to
406	105.2% and RSDs ranging from 2.6% to 4.5% (Table 3). The results demonstrated
407	that this method can be extended for cholesterol detection in blood.
408	The proposed sensing platform may also be expanded to wide and potential
409	applications in biological and environmental samples. It is worthy note that, as an
410	oligosaccharide, β -CD is more stable than cholesterol selective enzymes (mostly
411	oxidase) under complex conditions. Thus the present sensing platform seems to be
412	more suitable for analysis of practical cholesterol samples than traditional
413	enzyme-based biosensor.
414	
415	4. Conclusions
416	In conclusion, based on a competitive host-guest interaction between β -CD and
417	signal probe/target molecules, a new electrochemical approach for cholesterol sensing

418 using β -CD/PNAANI/Gra-modified electrode was developed. Due to the good

419	electron transfer property of the Gra, the excellent inhibiting ability of PNAANI film
420	for the non-specific adsorption of MB, and the excellent host-guest recognition of
421	β -CD, the developed β -CD/PNAANI/Gra/GCE displays excellent analytical
422	performance for the electrochemical detection of cholesterol: the linear response
423	range is 1.00–50.00 μ M and the LOD is 0.50 μ M (<i>S/N</i> =3). In addition, the developed
424	electrochemical sensing platform is important as it does not use any enzyme or
425	antibody for detection of cholesterol efficiently with outstanding selectivity over the
426	common interfering species. Besides, the host-guest interaction between cholesterol
427	and β -CD was studied by molecular modeling calculations, which revealed that the
428	complexation could reduce the energy of the system and the complex of 2:1
429	host–guest stoichiometry had the lowest ΔE value of –10.45 kcal/mol. The molecular
430	docking studies suggested that hydrogen bonding, electrostatic interactions, and
431	hydrophobic interactions should be the predominant driving forces for the formation
432	of the inclusion complex.
433	
434	Acknowledgements
435	This work was supported by the Natural Science Foundation of China (31160334)
436	and the Natural Science Foundation of Yunnan Province (2012FB112, 2014RA022),
437	People's Republic of China.
438	

439 **References:**

440 1 N. Batra, M. Tomar, V. Gupta, Biosens. Bioelectron., 2015, 67, 263–271.

RSC Advances Accepted Manuscript

- 441 2 J. Motonaka, L. R. Faulkner, Anal. Chem., 1993, 65, 3258–3261.
- 442 3 A. Mondal, N. R. Jana, *Chem. Commun.*, 2012, **48**, 7316–7318.
- 443 4 S. K. Arya, M. Datta, B. D. Malhotra, *Biosens. Bioelectron.*, 2008, 23,
- 444 1083–1100.
- 445 5 U. Saxena, M. Chakraborty, P. Goswami, *Biosens. Bioelectron.*, 2011, 26,
 446 3037–3043.
- 447 6 F. Biedermann, V. D. Uzunova, O. A. Scherman, W. M. Nau, A. D. Simone, J.
- 448 *Am. Chem. Soc.*, 2012, **134**, 15318–15323.
- F. Biedermann, M. Vendruscolo, O. A. Scherman, A. D. Simone, W. M. Nau, J. *Am. Chem. Soc.*, 2013, 135, 14879–14888.
- 451 8 G. Ghale, W. M. Nau, Acc. Chem. Res., 2014, 47, 2150–2159.
- 452 9 Y. Guo, S. Guo, J. Ren, Y. Zhai, S. Dong, E. Wang, ACS Nano, 2010, 4,
- 453 4001–4010.
- 454 10 G. B. Zhu, X. Zhang, P. B. Gai, X. H. Zhang, J. H. Chen, *Nanoscale*, 2012, 4,
 455 5703–5709.
- 456 11 F. Biedermann, W. M. Nau, Angew. Chem. Int. Ed., 2014, 53, 5694 5699.
- 457 12 C. Li, J. Feng, H. X. Ju, Analyst, 2015, 140, 230–235.
- 458 13 G. Ghale, V. Ramalingam, A. R. Urbach, W. M. Nau, *J. Am. Chem. Soc.*, 2011,
- **133**, 7528–7535.
- 460 14 J. M. Chinai, A. B. Taylor, L. M. Ryno, N. D. Hargreaves, C. A. Morris, P. John
- 461 Hart, A. R. Urbach, J. Am. Chem. Soc., 2011, **133**, 8810–8813.
- 462 15 X. Mao, D. Tian, H. Li, Chem. Commun., 2012, 48, 4851-4853.

RSC Advances Accepted Manuscript

- 463 16 G. B. Zhu, L. Wu, X. Zhang, W. Liu, X. H. Zhang, J. H. Chen, Chem. Eur. J.,
- 464 2013, **19**, 6368 6373.
- 465 17 N. Agnihotri, A. D. Chowdhury, A. De, *Biosens. Bioelectron.*, 2015, **63**,
- 466 212–217.
- 467 18 Y. Cheng, P. Jiang, S. Lin, Y. Li, X. Dong, *Sens. Actuators B*, 2014, 193,
 468 838–843.
- 469 19 L. Zhu, L. Xu, L. Tan, H. Tan, S. Yang, S. Yao, *Talanta*, 2013, **106**, 192–199.
- 470 20 C. Z. Zhao, L. Wan, L. Jiang, Q. Wang, K. Jiao, Anal. Biochem., 2008, 383,
- 471 25–30.
- 472 21 N. Ruecha, R. Rangkupan, N. Rodthongkum, O. Chailapakul, *Biosens*.
- 473 *Bioelectron.*, 2014, **52**, 13–19.
- 474 22 A. Ahmadalinezhad, A. C. Chen, *Biosens. Bioelectron.*, 2011, **26**, 4508–4513.
- 475 23 A. K. Giri, A. Sinhamahapatra, S. Prakash, J. Chaudhari, V. K. Shahi, A. B.
- 476 Panda, J. Mater. Chem. A, 2013, 1, 814–822.
- 477 24 A. Umar, R. Ahmad, S. W. Hwang, S. H. Kim, A. Al-Hajry, Y. B. Hahn,
- 478 *Electrochim. Acta*, 2014, **135**, 396–403.
- 479
- 480 Figure captions:
- 481
- 482 **Scheme 1.** Illustration of the strategy of the proposed electrochemical sensor based on
- 483 the competitive host–guest interaction between β -CD and MB (signal
- 484 probe)/cholesterol (target).

485	
486	Scheme 2. The chemical structure of cholesterol.
487	
488	Fig. 1. Lowest energy cholesterol/ β -CD docked complex for 1:1 (A) and 2:1 (B)
489	host-guest stoichiometry (left is the side view, right is the top view). The electrostatic
490	forces (C, left is the bottom view, right is the top view; red represents the strongest
491	positively charged, blue represents the strongest negatively charged) and hydrophobic
492	forces (D , left is the side view, right is the bottom view; brown represents the
493	strongest hydrophobic, blue represents the strongest hydrophilic) of cholesterol/ β -CD
494	docked complex for 2:1 host-guest stoichiometry.
495	
496	Fig. 2. UV-vis absorption spectra (A), FTIR spectra (B), and Raman spectra (C) of
497	GO and Gra.
498	
499	Fig. 3. SEM images of Gra/GCE (A), PNAANI/Gra/GCE (B), and
500	β-CD/PNAANI/Gra/GCE (C).
501	
502	Fig. 4. (A) EIS characterization of GCE, Gra/GCE, β -CD/PNAANI/GCE, and
503	β -CD/PNAANI/Gra/GCE. using 2.0 mM [Fe(CN) ₆] ^{3-/4-} redox couple (1:1) with 0.1 M
504	KCl as supporting electrolyte. (B) DPV responses of the Gra/GCE (a),
505	PNAANI/Gra/GCE (b), β -CD/PNAANI/GCE (c), and β -CD/PNAANI/Gra/GCE (d)
506	in 0.1M pH 7.0 PBS after incubation with 1.0 mM MB. (C) DPV response of the

RSC Advances Accepted Manuscript

507	β -CD/PNAANI/Gra/GCE in 0.1 M pH 7.0 PBS (a), incubated in 1.0 mM MB solution
508	for 25 min (b), and further incubated in 10 μ M cholesterol solution for 30 min then
509	tested in 0.1 M pH 7.0 PBS (c).
510	
511	Fig. 5. Effects of the cycle number of the CV deposition of PNAANI (A) and the
512	electro-oxidation time of β -CD (B) on the DPV peak currents of the
513	PNAANI/Gra/GCE in 0.1 M pH 7.0 PBS after incubation in 1.0 mM MB solution.
514	Effects of incubation time on the DPV peak currents of the β -CD/PNAANI/Gra/GCE
515	in 0.1 M pH 7.0 PBS after incubation in 1.0 mM MB solution (C) and further
516	incubated in 50 μ M cholesterol solution (D).
517	
518	Fig. 6. (A) DPV curves of the proposed sensing platform under different
519	concentrations of cholesterol. (B) Calibration curves for the determination of
520	cholesterol using the proposed sensor. The error bars represent the standard deviations
521	
	of three parallel tests. (C) Interference studies using different species in the developed
522	of three parallel tests. (C) Interference studies using different species in the developed cholesterol detection method, using DPV and keeping all the parameters constant. The
522 523	of three parallel tests. (C) Interference studies using different species in the developed cholesterol detection method, using DPV and keeping all the parameters constant. The cholesterol concentration is $30 \ \mu M$ against the concentration of all other substances,
522 523 524	of three parallel tests. (C) Interference studies using different species in the developed cholesterol detection method, using DPV and keeping all the parameters constant. The cholesterol concentration is $30 \mu M$ against the concentration of all other substances, which is kept at 2.0 mM.
522 523 524 525	of three parallel tests. (C) Interference studies using different species in the developed cholesterol detection method, using DPV and keeping all the parameters constant. The cholesterol concentration is 30μ M against the concentration of all other substances, which is kept at 2.0 mM.
522 523 524 525 526	of three parallel tests. (C) Interference studies using different species in the developed cholesterol detection method, using DPV and keeping all the parameters constant. The cholesterol concentration is 30μ M against the concentration of all other substances, which is kept at 2.0 mM.
 522 523 524 525 526 527 	of three parallel tests. (C) Interference studies using different species in the developed cholesterol detection method, using DPV and keeping all the parameters constant. The cholesterol concentration is 30μ M against the concentration of all other substances, which is kept at 2.0 mM.

Scheme 1.

RSC Advances Accepted Manuscript

Scheme 2.

RSC Advances Accepted Manuscrip

Fig. 1.

Fig. 2.

Fig. 4.

Fig. 5.

Fig. 6.

by TWB method.			
System	Cluster rank	Number in cluster	ΔE (kcal/mol)
Cholesterol/β-CD	1	23	-6.68
	2	7	-6.45
	3	8	-6.45
	4	4	-6.39
	5	2	-6.32
	6	1	-6.32
	7	2	-6.25
	8	2	-6.24
	9	1	-5.71

Table 1

The interaction energy between cholesterol and β -CD for 1:1 stoichiometry calculated by PM3 method.

Table 2

Comparison of the present work with other recent literatures, using various electrode or matrix for cholesterol sensing.

Electrode or Matrix	Method	Liner range (µM)	LOD (µM)	Ref
Nafion/ChOx/GNPs-MWCNTs/GCE	DPV	10.0-5000.0	4.3	19
Chit-Hb/Chit-ChOx	amperometry	10.0-600.0	9.5	20
ChEt-ChOx/ZnO-CuO/ITO/glass	CV	500.0-12000.0	500.0	1
ChOx/PANI/PVP/Graphene	amperometry	50.0-10000.0	1.0	21
ChOx/Nano-ZnO/ITO	CV	130.0-10360.0	13.0	22
ChOx/ZnO(T)/CT/GCE	CV	400.0-4000.0	200.0	23
Nafion/ChOx/-Fe ₂ O ₃ /Ag	CV	100.0-8000.0	18.0	24
AuE/dithiol/AuNPs/MUA/ChOx	CV	40.0-220.0	34.6	5
Grp/β-CD/Methylene Blue	DPV	1.0-100.0	1.0	17
Grp/β-CD/Rhodamine 6G	Fluorescence	5.0-30.0	5.0	3
β-CD/PNAANI/Gra/GCE	DPV	1.0-50.0	0.50	This work

Table 3

Determination of cholesterol in human serum samples (n=3).

Sample	Added (µM)	Founded (µM)	RSD (%)	Recovery (%)
1	5.0	4.92±0.22	4.47	98.4
2	10.0	10.15±0.35	3.45	101.5
3	20.0	21.03±0.54	2.59	105.2

Tables