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The knowledge about the toxicity of nanomaterials and factors responsible for such phenomena are important tasks 

necessary for efficient human health protection and safety risk estimation associated with nanotechnology. In this study, 

the causation interference method within structure-activity relationship modeling for nanomaterials was introduced to 

elucidate underlying structure of the nanotoxicity data. As case studies the structure-activity relationships for toxicity of 

metal oxide nanoparticles (nano-SARs) towards BEAS-2B and RAW 264.7 cell lines were established. To describe the 

nanoparticles, the simple geometric, fragmental and “liquid drop model” based descriptors that represent the 

nanoparticles’ structure and characteristics were applied. The developed classification nano-SAR models were validated to 

confirm reliability of predicting toxicity for all studied metal oxide nanoparticles. Developed models suggest different 

mechanisms of nanotoxicity for the two types of cells. 
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Introduction 

For the last decade researchers have been dedicated 

considerable efforts towards synthesis and experimental 

analysis of various nanomaterials and development of species 

characterized by different, desired properties.
1, 2

 As it is well 

known, peculiar physical and chemical properties of 

nanoparticles occur as a manifestation of surface and quantum 

size effects.
3
 For many of complex chemical entities, 

experimental testing of nanoparticles is costly and time-

consuming.
4
 This fact limits the development and further 

testing of new nanoparticles with better properties. One of the 

very fast alternative solutions is the in vitro testing using 

different types of cells and cell lines.
5
 However, the problem 

lies in insufficiency and inconsistency of experimental toxicity 

data for nanoparticles.
6
 Moreover, this problem is amplified by 

differences between criteria and protocols developed for 

various cell lines, differences in methods of expressing 

concentration of nanoparticles and the procedures for the 

estimation of toxicological effects. For some nanoparticles 

data is available in reports performed by different 

laboratories. As a consecuence, different results in different 

reports are obtained for the same composition, where the 

diversity could be due to the methods for handling 

nanoparticles and preparing dispersions, variation in size 

distribution and dispersion stability, and different exposure 

conditions. Considering the important role of different factors 

in the diversities of results, it is essential to characterize 

nanoparticles in the relevant medium and to apply appropriate 

treatment conditions. In this connection, intra-laboratory 

reproducibility should at least be evaluated in order to obtain 

robust results.
7
 

 Simultaneously, there is an increasing interest towards in 

silico prediction of activity and toxicity.
8-18

 The (Quantitative) 

Structure-Activity Relationship ([Q]SAR) modeling plays 

currently an important role as an efficient tool for various 

properties prediction. However, the main purpose of this 

approach is not only development of (Q)SARs that have 

predictive power, but also obtaining  models maintaining the 

ability of mechanistic interpretation.
9, 13, 16

  

 The well-known phrase says “Correlation is not causation”, 

and traditional approaches towards the interpretation do not 

show existing ‘cause-effect” relationships. Causal molecular 

interactions can be discovered using randomized experiments; 

however such experiments are often costly, infeasible, or 

limited by biological ethical issues. Algorithms that infer causal 

interactions have only recently been applied to genomics 

data,
19

 but never before proposed within the framework of 

(Q)SAR studies. 

 The aim of current study is to demonstrate usefulness of 

methods of causal discovery to elucidate the underlying 

structure of the nanotoxicity data and retrieve additional, 

more robust interpretation for the developed (Q)SAR models. 

To make this, we have developed nano-SAR models for toxicity 

of metal oxides nanoparticles towards BEAS-2B cells and RAW 

264.7 cells using simple geometric, fragmental and physical 

descriptors and applied the causal interference methods to 

provide mechanistic interpretation of results. 

Theory of causal inference methods 

Causal inference models can be approximately described as in 

silico way to match the notion of randomized controlled 

experiment, which is the standard for evaluating causation 

scientifically.
20, 21

 However, as indicated above, real-life 

randomized experiments are costly, time-consuming and can 

be unethical. Let us assume that in a hypothetical experiment, 

there is a certain distribution of a variable X. It is implied that 

X is a cause of Y (and Y is a dependent of X) and denote this by 

X→Y if the probability distribution of Y changes for some 

experimental manipulation of X. 

 During the last two decades many algorithms that infer 

causal interactions from observational data have been 

developed.
22-27

 An excellent review discussing the details can 

be recommended.
22

 

 Causal inference methods are based on several 

fundamental mathematical concepts, which include 

conditional probability and its joint distribution, directed and 

undirected graphs. As these are fundamental and wide 

concepts, format of this article does not allow describing them 

in details, but some basics are provided below. 

 A conditional probability measures the probability of an 

event given that (by assumption, presumption, assertion or 

evidence) another event has occurred. If the events are 

denoted as A and B, respectively, this is said to be "the 

probability of A given B". In statistical inference, the 

conditional probability is an update of the probability of an 

event based on new information. It is commonly denoted by 

P(A|B), or sometimes PB(A). Given two jointly distributed 

random variables X and Y, the conditional probability 

distribution of Y given X is the probability distribution of Y 

when X is known to be a particular value. 

 The purpose of the tested causal orientation methods is to 

separate the cause from the effect of given data for just two 

variables X and Y that have a causal relation (i.e., in the 

underlying data generative distribution, either X → Y or X ← 

Y). Most of these techniques are based on the idea that the 

factorization of the joint probability distribution P(cause, 
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effect) into P(cause) P(effect|cause) yields a simpler 

representation than the factorization into 

P(effect)P(cause|effect). One can furthermore show that, if the 

marginal probability distribution of the cause – P(cause) is 

independent of the causal mechanism P(effect|cause), then the 

factorization P(cause)P(effect|cause) has lower complexity 

than the factorization P(effect)P(cause|effect). Given two 

causally related variables X and Y, estimating the complexity 

of the two different factorizations of P(X,Y) or determining 

independence between marginal and conditional distributions 

can thus provide the basis for causal orientation techniques.  

 In practice, however, it is difficult to directly test 

independence between P(X) and P(Y|X) or estimate (or even 

define a measure of) their complexity; hence the methods 

typically use simplifying assumptions or rely on approximate  

formulations. Some causal orientation methods output two 

scores indicating likelihood of the forward causal model (X 

→Y) and the backward one (X←Y). Other methods output 

two p-values indicating significance of the forward and 

backward causal models. 

 Well-known Peter Spirtes and Clark Glymour (PC) 

algorithm
24

 is based on conditional independence tests. To 

apply it, sufficient statistics should be calculated and a 

conditional independence test function specified. PC starts 

with a complete undirected graph (Figure 1).  

 

Figure 1. Complete undirected graph. 

Then, a series of conditional independence tests is done and 

edges are deleted. The result is a skeleton, in which every edge 

is still undirected. In the next step orientation of edges is 

found by repeatedly applying rules (i.e. one can deduce that 

one of the two possible directions of the edge is invalid 

because it introduces a directed cycle). Hypothetic directed 

graph obtained based on the above approach is presented in 

Figure 2. 

 

Figure 2. Hypothetic directed graph. 

  

As we can see, the map here represents a graph consisting of 

nodes and directed edges (← or →). Figure 3 depicts possible 

relations. First case refers to A as a cause of B, second to B as a 

cause of A, in the third case variables A and B have the 

common cause C, but are independent, the fourth case 

describes two independent variables, and in the fifth case 

nothing can be implied about the direction of causal 

relationship. 

 Unfortunately more detailed description of the methods 

used is beyond the scope of this paper. The relevant articles 

and source code are available on the website of the Max-

Planck-Institute for Intelligent Systems Tübingen. 
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Figure 3. Directed acyclic graph model. 

Case study: toxicity of metal oxide 

nanoparticles  

Materials and methods 

Target properties dataset 

Endpoints were taken from literature and consist of the 

toxicity of nano-sized metal oxides based on MTS assay on 

human bronchial epithelial cell line BEAS-2B and murine 

myeloid cell line RAW 264.7.
28

 In current study experimental 

data were expressed in binary rank scale, where “0” – non-

toxic compounds, “1” – toxic compounds. Original 

experimental details and binary data are provided in ESI 1. 

Descriptors 

Each compound can be described by the set of mathematical 

representations of properties and structure (descriptors). 

Descriptors calculated within this contribution can be divided 

into four groups: 

• Simplex Representations of  Molecular Structure 

(SiRMS)-based descriptors;
29

 

• metal-ligand binding descriptors;
30, 31

 

• “liquid drop” model (LDM) derived descriptors;
16, 32

 

• integral (constitutional) descriptors for each 

molecule, such as molecular weight, mass density and 

aligned electronegativity of oxide.  

 Simplex Representation of Molecular Structure (SiRMS). 

In the current study we utilized a 2D level of Simplex 

Representation of Molecular Structure (SiRMS)
29

 theory to 

generate are two-, tri- and tetra-atomic molecular fragments 

(simplexes). Atomic electronegativity, the Lennard-Jones 

potential and partial charges was expressed within intervals. 

For readers who interested in calculating SiRMS-based 

descriptors the in-house software can be provided by request. 

 Metal-ligand Binding (MLB) characteristics. To get a 

complete picture describing the toxic action, descriptors 

related to ionic characteristics were utilized. Metal-ligand 

binding (MLB) theory assumes that binding of metals to soft 

ligands at biomolecules plays an important role in exhibition of 

toxicity.
30,31

 In the current study, two ion characteristics were 

used: covalent index (CI) and cation polarizing power (CPP). 

 «Liquid Drop» Model (LDM). To describe the geometric 

and volume features of studied nanoparticles, the physical 

model of "liquid drop" was used.
32, 34

 Within LDM the 

minimum radius of the interactions between elementary 

particles is described by so-called Wigner-Seitz radius.
32, 34 

Shape
 
of nanoparticle is represented as a spherical drop. Based 

on geometric nature of LDM, transformations allowed 

calculating the number of molecules in the nanocluster, the 

volume of the nanoparticle, aggregation parameter, the 

nanoparticle’s surface area, the number of surface molecules 

and the surface-area-to-volume ratio. More details on these 

transformations are presented in our recent paper.
16

 

 Several calculated descriptors in current study were the 

same as in Liu et al. paper.
33

 All the formulas and full list of 

utilized descriptors are presented in ESI 1 and ESI 2. 

Model development and validation procedures 

Structure-activity relationships between endpoints and 

calculated descriptors were established by Random Forest (RF) 

method using the RandomForest package.
36, 37

  

 RF is an ensemble classifier proposed by Breiman.
36

 It 

constructs a series of decision trees. Several developed 

decision trees are combined to consensus forest. Influence of 

each descriptor has the relative value on the basis of the 

average of the individual tree predictions.
36

 

 Initial datasets were splitted into training and test sets. 

Quality of developed models were analyzed both for training 

and test sets using several statistical measures: 

����������� 	 
�

��
�

∗ 100 (1) 

where: TP – number of true positive classifications (toxic 

substance), FN – the number of false negative classifications. 
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����������� 	 
�

��
�

∗ 100 (2) 

where: TN – number of true negative classifications (non-toxic 

substance), FP – number of false positive classifications. 

��������	�������� 	 ����� �!� "��#�$�%�$� "
&

 (3) 

 Domain applicability (DA) was measured based on 

minimum-cost-tree of variable importance values in space of 

descriptors considering their relative importance.
37

 

 Correlation between target properties was evaluated via φ-

coefficient:
38

 

�' 	 ()*+$

,((�+)((�$)(+�))($�))
 (4) 

where: � – proportion of ones that the variables share in the 

same positions; / – proportion of ones in the first variable and  

zeros in second variable in the same positions; � – proportion 

of zeros in the first variable and ones in second variable in the 

same positions; � – proportion of zeros that both variables 

share in the same positions. 

Results and discussion 

Model development 

The information about correlation between two binary 

sequences of toxicity (for BEAS-2B and RAW264.7 cells) was 

summarized by defining the four dependent quantities (Table 

1). Since φ-coefficient for investigated data of toxicity is equal 

0.51, there is an average degree of association between two 

types of toxicity. 

Table 1. Contingency table of values of toxicity for BEAS-2B and RAW 264.7 cells 

RAW 264.7 cells 

BEAS-2B value 1 value 0 

value 1 8 (�) 4 (/) 

value 0 2 (�) 10 (�) 

 

After calculating all the descriptors, variables having zero-

variance, and highly cross-correlating variables (with the 

Pearson’s pair correlation coefficient |r|> 0.9) were eliminated. 

 Nanoparticles were splitted into training and test set (18 

and 6 compounds, respectively) in the following way - the 

splitting of the dataset to training and test sets fulfilled three 

conditions: 1) metal oxides from each activity group should be 

presented in both training and test sets; 2) metal oxides 

presented in the test set should cover all types of oxides (MeO, 

Me2O3, MeO2), similarly to the training set; 3) the list of oxides 

in each test set should be identical for both toxicity endpoints.  

   Then, QSAR tasks were processed using Random Forests 

regression (5 trees, 5 descriptors in each). In both cases (BEAS-

2B and RAW 264.7) the number of true negative classifications 

(specificity) and for the training sample corresponds with the 

value of those in the original sample. Model for BEAS-2B also 

has absolute (100 %) sensitivity and balanced accuracy. This 

means that model for BEAS-2B represents an ideal case where 

the model accurately determines the class with absolute 

probability (hundred true results of a hundred). In case of 

model for RAW264.7, there was one false prediction of toxicity 

(toxic Yb2O3 was predicted as non-toxic – see Table 2). Thus, 

sensitivity of training set for RAW 264.7 model was 88 % and 

balanced accuracy was 94 %. 

Table 2. Predictions and domain applicability of developed models 

№ Metal

Oxide 

NP 

BEAS-2B 

(observed/

predicted) 

BEAS-2B 

(DA) 

RAW 264.7 

(observed/

predicted) 

RAW 

264.7 (DA) 

1 Al2O3 0/0 + 0/0 + 

2 CuO 1/1 + 1/1 + 

3 CeO2 1/1 + 0/0 + 

4 Co3O4 1/1 + 1/1 + 

5 CoO 1/1 + 1/1 + 

6 Cr2O3 1/1 + 1/1 + 

7 Fe2O3 0/0 + 0/0 + 

8 Fe3O4 1/1 + 0/0 + 

9 Gd2O3 0/0 + 0/0 + 

10 HfO2 0/0 + 1/1 + 

11 In2O3 0/0 + 0/0 + 

12 La2O3 0/1 + 0/0 + 

13 Mn2O3 1/1 + 1/1 + 

14 NiO 1/1 + 1/1 + 

15 Ni2O3 1/1 + 1/1 + 

16 Sb2O3 0/0 + 0/0 + 

17 SiO2 1/1 + 0/0 + 

18 SnO2 0/0 + 0/0 + 

19 TiO2 0/0 + 0/0 + 

20 Y2O3 1/0 + 0/0 + 

21 Yb2O3 0/0 + 1/0 + 

22 ZnO 1/1 + 1/1 + 

23 ZrO2 0/0 + 0/1 + 

24 WO3 0/0 + 0/0 + 

Test set compounds are marked in bold 

The predictive ability of the obtained models was estimated on 

a test set. For test samples, the sensitivity (ratio of true 

positive classifications) was also 100% for both toxicity 

endpoints. However, specificity (the ratio of true negative 

classifications) in the case of RAW 264.7 was slightly higher 

(75%) than that in the case of BEAS-2B (66%). 

 In the case of theoretical analysis of toxicity such sensitivity 

values mean that developed models with a probability of 25% 

(100% values of initial data minus 75% of true negative 

classifications) and 33% (100% values of initial data minus 66% 

of true negative classifications) do positively predict the 

toxicity of new entities for BEAS-2B and RAW 264.7, 

respectively. Since theoretical analysis methods are mainly 

preclinical, we allow final models to assign toxic mark for some 

ambiguous compounds to prevent toxic compounds be 

marked as non-toxic. The balanced accuracy of test sets was 

83 % and 88 % for BEAS-2B and RAW264.7 models, 

respectively. 

 In Table 2 the data about domain applicability, observed 

and predicted values are provided. More details about 

developed models are available in ESI 2. 
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Model interpretation 

Interpretation and analysis of the classification models allowed 

us to identify a number of structural parameters responsible 

for nanoparticles toxicity. Classification model for BEAS-2B 

includes 7 descriptors, whereas model for RAW 264.7 uses 9 

descriptors (Table 3). 

Table 3. List of descriptors used in the developed models 

Numbers indicate relative influence of descriptors in Random Forest models 

Difference in the structural parameters used in both models 

suggests that the mechanisms of the toxicity of nanoparticles 

towards both studied cell cultures are also different. Both 

models use mass density. This is fundamental property is 

utilized in the LDM approach. Covalent index (CI) reflecting 

interactions of nanoparticles with protein-bound sulfhydryl’s 

and depleting glutathione has been selected as an important 

variable in a model of toxicity to BEAS-2B cells. Cation 

polarization power (CPP) in both models reflects electrostatic 

interactions between nanoparticles and cells. Also this is in 

agreement with the impact of electronegativity descriptor in 

model for RAW 264.7.  

 We suppose that surface area and surface-area-to-volume 

ratio in the model indirectly describe the ability of 

nanocluster’s surface molecules fraction to leach from the 

surface of nanoparticle. As it is known, surface molecules are 

more reactive and facilitate the massive oxidizing 

capabilities.
39

  

 The aggregation factor (BEAS-2B model) may indirectly 

describe the mechanism of penetration of nanoparticles into 

biological systems, which links damage of organelles, 

depending on the size of nanoparticles.
35

 In the same way, for 

RAW 264.7 the size in DMEM can reflect the mechanism of 

toxicity.  

Causal structures 

In the next step of the study, the causal structures were 

implemented to compare our results with previously published 

data (Figures 4 and 5). To provide causal analyses, all available 

descriptors were used. 

 

Figure 4. Causal structures for BEAS-2B. 

Let’s take a look at developed causal structures. In both cases, 

the electronegativity is mutually related to the point of zero 

zeta-potential (Figures 4 and 5). In case of BEAS-2B cells, Ec has 

mutual relations with SiRMS charges descriptor, wherein Ec 

and PZZP have direct relationships with target toxicities (Fig. 

4). For RAW 264.7 the triatomic SiRMS charges have mutual 

relationship with size of single nanoparticle (Fig. 5). 

Additionally, the size of a single nanoparticle is related to 

target toxicity. 

 There are no causal relations between target properties 

and MLB characteristics. Also not all descriptors included in 

the developed models are causally-dependent with target 

properties and with relation to each other.  

 In fact, there is no direct link between toxicity and any 

descriptor. It means there are only particular causal links and 

the developed models are the collection of the most important 

descriptors, which only represent the conditions for the 

emergence of particular cause of action. 

Group of descriptors Type of descriptor Model 

BEAS-2B RAW 

264.7 

Integral parameters Mass density 0.100 0.022 

Molecular weight  0.022 

Aligned electronegativity  0.011 

MLB characteristics Covalent index  0.083 0.044 

Cation polarizing power 0.017  

LDM-based 

descriptors 

Wigner-Seitz radius  0.033  

Surface area  0.033 

Surface-area-to-volume 

ratio 

0.050 0.011 

Aggregation parameter 0.067  

SiRMS descriptors Two-atomic descriptor of 

van-der-Waals interactions 

 0.033 

Tri-atomic descriptor of 

atomic charges  

0.05  

Tetra-atomic descriptor of 

atomic charges 

 0.011 

 Size in DMEM  0.044 
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Figure 5. Causal structures for RAW 264.7. 

Conclusions 

In conclusion, it can be stated that the causal interference 

method presented in this paper can lead to many valuable 

observations and conclusions. The present study demonstrates 

that causal structures can efficiently be used in nano-SAR 

modeling as additional criteria for quality evaluation. In 

addition we have shown that introducing causation 

interference methods into structure-activity relationship 

modeling for nanomaterials allows to elucidate the underlying 

structure of the nanotoxicity data. A great advantage of 

presented method is the fact that it provides the mechanistic 

interpretation of obtained results. In other words, methods of 

causal discovery open new opportunities to provide useful 

information at the molecular level that could be used to reveal 

mechanisms of toxicity.  

 For the model developing we have utilized a computational 

modeling methodology to build computational classification 

models for quick predictions of the ranks of toxicity. By 

applying causal inference methods it was proved that the 

proposed descriptors and statistical approach provides the 

convenient and efficient tool for prediction of nano-sized 

metal oxides toxicity. The obtained results reveal some new 

aspects of the biological action.  

 We assume that the causal structures are very promising 

tool not only for modeling of biological activity, but also for a 

variety of other properties of nanoparticles which are due to 

the peculiarities of nanostructures. In addition, data 

visualization techniques in causal analyses are very helpful to 

understand special interactions between important 

descriptors in different models. 
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