This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Combining PeT and ICT Mechanism into One Chemosensor for the Highly Sensitive and Selective Detection of Zinc

Ting Wei, Jinglu Wang, Yu Chen, Yifeng Han*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A novel fluorescent sensor (ZS1) based on dual-mechanism of PeT/ICT for the highly sensitive and selective detection of Zn$^{2+}$ was designed and synthesized. ZS1 displays remarkable selectivity for Zn$^{2+}$ with an enhanced red-shift in both absorption and emission resulting from the Zn$^{2+}$-triggered deprotonation of amide group. ZS1 could detect as low as 7.2×10^{-9} M Zn$^{2+}$ with an association constant value of 6.27×10^{4} M$^{-1}$. More importantly, it displayed specific and sensitive recognition to Zn$^{2+}$ and especially avoided the interference of Cd$^{2+}$ in aqueous solution. The probe is also demonstrated to detect Zn$^{2+}$ in living cells.

Introduction

Zinc, widely distributed in the air, water, and solid, is the second most abundant transition metal ions in organisms. Zinc plays crucial roles in many important biological processes such as the structural and catalytic cofactors, neural signal transmitters, and gene expression regulators. The normal concentration range for zinc ions in biological systems is narrow, with both deficiencies and excesses causing many pathological states, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), epilepsy, Parkinson's disease, ischemic stroke, and infantile diarrhea. Accordingly, it is desirable to develop new analytical methods for detecting and monitoring zinc ions in vitro and in vivo.

In fact, numerous fluorescent sensors have been developed to detect and analyze zinc ions for its simplicity, high sensitivity, and real-time detection. Unfortunately, only few zinc ion fluorescent sensors that can distinguish Zn$^{2+}$ from Cd$^{2+}$ with high selectivity have been reported. Zn$^{2+}$ and Cd$^{2+}$ are in the same group of periodic table and have similar properties which will cause similar spectral changes while coordinated with fluorescent sensors. Therefore, for practical applications, it is still strongly desirable to develop fluorescent chemosensors with excellent performance for Zn$^{2+}$ under physiological conditions.

It should be noted that compared with conventional one mechanism such as photo-induced electron transfer (PeT), excited-state intramolecular proton transfer (ESIPT), intramolecular charge transfer (ICT), and aggregation-induced emission (AIE) based sensors which usually give one single signaling response, the combination of two or more mechanisms based sensors would be more attractive since such a multi-mechanism will usually produce multiple signals to amplify recognition events to a greater extent and finally improve selectivity and sensitivity. To date, several fluorescent sensors have been developed on the basis of multi-mechanism. For example, Akkaya et al. reported BODIPY-derived probes to sensing of Hg$^{2+}$, GSH, and biological thiols based on PeT/ICT dual-mechanism. Wang and Zhang et al. applied PeT/ESIPT dual-mechanism to design a 3-hydroxyflavone based probe for thiols. However, the combination of PeT/ICT dual-mechanism based zinc sensors have scarcely explored. Recently, Yoon, Shin, and Xu et al. developed a novel PeT/ICT dual-mechanism based fluorescent sensor by Zn$^{2+}$-triggered amide tautomerization for highly selectivity of zinc, which is difficult to accomplish via a single mechanism.

Inspired by all of these works, we report here a novel PeT/ICT dual-mechanism based fluorescence turn-on zinc sensor ZS1, 2-picolylamine (PA) derivative of 4-aminonaphthalimide, for the detection of Zn$^{2+}$. In ZS1, an amide group has been inserted to link the 1, 8-naphthalimide fluorophore and PA chelator. We envisioned that the fluorescence of ZS1 would be quenched by PeT effect from PA chelator but also by ICT effect from 4-amide
group. However, the capture of Zn$^{2+}$ by the amide-PA receptor resulted in red shifts in both absorption and fluorescence spectra due to the repressed PeT process from the N atoms of PA to the fluorophore and the enhanced ICT process from N atom in 4 position of ZS1 to the 1, 8-naphthalimide by the deprotonation of the NH in 4-amide group. This kind of binary effects of PeT/ICT mechanisms of Zn$^{2+}$ to ZS1 exhibits high binding affinity and selectivity towards Zn$^{2+}$ (Scheme 1).

Results and discussion

ZS1 can be readily prepared in two convenient steps under facile reaction conditions with high yield starting with 4-amino-N-butyl-1, 8-naphthalimide (1). The product (ZS1) was well characterized by 1H, 13C NMR, and HR-MS (Scheme 2).

In the UV-vis absorption spectra (Fig. 1), ZS1 exhibits a broad band from 300 to 450 nm with its maximum centered at 360 nm, which is assigned to the π-π* transitions of the 1, 8-naphthalimide. Upon addition of Zn$^{2+}$ (0-10.0 equiv.), this band red-shifts to 366 nm, accompanying three clear isosbestic points at 266, 342, and 407 nm, respectively, which was due to the deprotonation of amide NH group and this deprotonation process strengthens the electron-donating ability from the nitrogen atom of 4-amide group to the 1,8-naphthalimide. Furthermore, a good linear relationship ($R^2 = 0.994$) was observed between the changes in the absorbance at 366 nm with Zn$^{2+}$ in the range of 0-120.0 μM (Fig. S1, ESI†).

As expected, ZS1 alone is weak blue fluorescence ($ε = 11598 M^{-1} cm^{-1}$, $Φ_0 = 0.033$, $λ_{em} = 360$ nm, $λ_{ex} = 465$ nm, Table S1, ESI†) in neutral aqueous solution (10 mM Tirs-HCl buffer, pH 7.2, containing 1% CH$_3$CN). While addition of 10.0 equiv. of Zn$^{2+}$ induced a red-shift in the emission of ZS1 to 522 nm and triggered a ca. 5.3-fold (green fluorescence, $ε = 12145 M^{-1} cm^{-1}$, $Φ_0 = 0.175$, $λ_{em} = 360$ nm, $λ_{ex} = 522$ nm, Table S1, ESI†) increase in integrated emission for ZS1 (Fig. 2a). These fluorescence behaviors were attributed to the coordination of the PA chelator and the deprotonated amid nitrogen of ZS1 with Zn$^{2+}$ which repressed the PeT effect from PA chelator and enhanced the ICT process from the deprotonated 4-amide group, simultaneously.

Tirration of ZS1 with Zn$^{2+}$ was followed by fluorescence to determine the ZS1/Zn$^{2+}$ binding ratio and association constant (K_a). K_a of ZS1/Zn$^{2+}$ was determined to be 6.27×104 M$^{-1}$ by a Hill plot analysis (Fig. 3a). Moreover, a Job’s plot, which exhibits a maximum at 0.34 M fraction of Zn$^{2+}$, indicated that a 2:1 complex is formed between ZS1 and Zn$^{2+}$ (Fig. 3b). We also carried out the HPLC-MS measurements for the ZS1-Zn$^{2+}$ solution (Fig. S3, ESI†). All those results agree well with the proposed structure of the ZS1-Zn$^{2+}$ complex (Fig. S4, ESI†).

To clarify the actual ZS1/Zn$^{2+}$ interaction, 1H NMR titration

Scheme 2 Synthesis of ZS1: (a) 2-chloroacetyl chloride/NEt$_3$, DCM, reflux, 1h, 89%; (b) 2-picolylamine/DIPEA/KI, CH$_3$CN, reflux, 10h, 48%.
Fig. 3 (a) Hill plot of sensor ZS1. Fluorescence intensity at 522 nm responses as a function of Zn$^{2+}$ concentration (10 mM Tirs-HCl buffer, pH 7.2, containing 1% CH$_3$CN, λ_{ex} = 360 nm). The solid line represents a linear fit to the experimental data. (b) Job’s plot of sensor ZS1, the total concentration of the sensor and Zn$^{2+}$ is 100.0 µM (10 mM Tirs-HCl buffer, pH 7.2, containing 1% CH$_3$CN, λ_{ex} = 360 nm).

Fig. 4 1H NMR titration experiment of ZS1 in the presence of different concentrations of Zn$^{2+}$ (0-10.0 equiv. of Zn$^{2+}$, in d$_6$-DMSO).
Our delight, the examined alkali, alkaline-earth metal ions, and transition metal ions showed nominal changes in the fluorescence of spectra of ZS1. The competing experiments were then tested in the presence of Zn\(^{2+}\) mixed with other competing metal ions (Fig. 5a and 5b). Except for Cu\(^{2+}\), other background metal ions had no obvious interference with the detection of Zn\(^{2+}\) ions. It should be noted that ZS1 has displayed a considerable ability to distinguish Zn\(^{2+}\) from Cd\(^{2+}\), which have similar properties to Zn\(^{2+}\) and generally cause a strong interference.

pH effects on the fluorescence of ZS1 and the ZS1-Zn\(^{2+}\) system were also investigated. As depicted in Fig. 6, ZS1 alone is inert to pH in the range of 12.0–6.0, but the fluorescent intensity dramatically increased from pH 6.0 to 3.0 due to the inhibited PeT process by protonation of the two nitrogen atoms of PA chelator. However, satisfactory Zn\(^{2+}\)-sensing abilities were exhibited in a range of pH from 6.0 to 9.0, indicating that ZS1 could be used in neutral natural systems, or a mildly acidic or basic environment.

For practical purposes, the detection limit of ZS1 for the analysis of Zn\(^{2+}\) was also an important parameter. The fluorescence titration curve revealed that the fluorescence intensity of ZS1 at 522 nm increased linearly with the amount of Zn\(^{2+}\) in the range of 0–5.0 µM (R\(^2\) = 0.99) (Fig. S2, ESIF). Thus, the detection limit of ZS1 for Zn\(^{2+}\) was calculated to be 7.2×10\(^{-9}\) M, which reveals the high sensitivity for the analysis of zinc ions by using the ZS1.

Due to the favorable properties of ZS1 in vitro, the potential utility of ZS1 in living cells was studied. HeLa cells were incubated with 5.0 µM of ZS1 for 0.5 h at 37 °C exhibited weak blue fluorescence (Fig. 7a). The cells were then treated with ZnCl\(_2\) (5.0 µM) for 0.5 h at 37 °C and resulted in a dramatic increase of intracellular green fluorescence (Fig. 7d), which indicated that ZS1 was cell membrane permeable and capable of image of Zn\(^{2+}\) in living cells.

Conclusion
In conclusion, we have successfully developed a novel PeT/ICT dual-mechanism based fluorescent probe ZSI for selective detection of Zn2+ in aqueous solution. ZSI displays an excellent fluorescent selectivity for Zn2+ with an enhanced red-shift in both absorption and emission resulting from the Zn2+-triggered deprotonation of amide group. Moreover, based-on this PeT/ICT dual-mechanism, ZSI can easily distinguish Zn2+ from Cd2+ in aqueous solution, which is usually a technique problem for other related probes. Furthermore, fluorescence imaging of Zn2+ in living cells indicated that this probe might be favorable for biological applications. We anticipate that the experimental results of this study will inspire in the future design of metal-ion sensors in water for a variety of chemical and biological applications.

Experimental section

Materials and measurements

All the solvents were of analytic grade. NMR experiments were carried out on a Bruker AV-400 NMR spectrometer with chemical shifts reported in ppm (in CDCl\textsubscript{3}, d\textsubscript{6}-DMSO or TMS as an internal standard). Mass spectrum (MS) was recorded on a SHIMADZU LCMS-2020 spectrometer. All pH measurements were made with a Sartorius basic pH-Meter PB-10. Fluorescence spectra were determined on a PerkinElmer LS55 Fluorescence spectrophotometer. Absorption spectra were determined on a Shimadzu UV 2501(PC) UV-Visible spectrophotometer. Unless otherwise noted, the excitation and emission widths for ZSI were all 3.

Synthesis

4-amino-N-butyl-1, 8-naphthalimide (1): compound 1 was obtained according to published procedure.11 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 8.59 (d, J = 7.2 Hz, 1H), 8.41 (d, J = 8.1 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.64 (t, J = 7.9 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 5.00 (s, 2H), 4.16 (t, J = 7.2 Hz, 2H), 1.71 (m, 2H), 1.30 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H).

4-(2-chloroacetyl) amino-N-butyl-1, 8-naphthalimide (2): 4-amino-N-butyl-1, 8-naphthalimide (1) (500 mg, 1.9 mmol) was dissolved in dry dichloromethane (30 mL), then triethylamine (0.4 mL, 2.9 mmol) and 2-chloroacetyl chloride (0.2 mL, 2.5 mmol) were added under 0 oC and the solution was refluxed for 1 h until all starting material got consumed which was monitored by TLC analysis. The reaction mixture was washed with water (100 mL), extracted with dichloromethane (3 × 50 mL). The extract was dried over sodium sulfate and then concentrated under vacuum. The product was purified by flash chromatography using petroleum ether/dichloromethane (1,2, v/v) as eluant to give 2 as a pale yellow solid (580 mg, 89%); 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 9.14 (brs, 1H), 8.64 (m, 2H), 8.48 (d, J = 7.9 Hz, 1H), 8.19 (d, J = 8.4 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 4.40 (s, 2H), 4.18 (t, J = 7.2 Hz, 2H), 1.71 (m, 2H), 1.45 (m, 2H), 0.98 (t, J = 7.1 Hz, 3H).

4-(2-picolylamino)acetyl)amino-N-butyl-1,8-naphthalimide (3, ZSI): 4-(2-chloroacetyl) amino-N-butyl-1, 8-naphthalimide (2) (300 mg, 0.87 mmol), 2-picolylamine (0.17 mL, 1.65 mmol), N,N-diisopropylamidine (DPEIA) (1.50 mL), and potassium iodide (90 mg) were added to acetonitrile (50 mL). The mixture solution was then refluxed for 10 h until all starting material got consumed which was monitored by TLC analysis. The solvent was then removed under reduced pressure to obtain dark oil, which was purified by flash chromatography using ethyl acetate as eluant to give 3 as a pale yellow solid (173 mg, 48%); R\textsubscript{f} = 0.60 (12:1 dichloromethane: methanol); M.p. = 13191–32

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 20902082), the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y3100416) and the Program for Innovative Research Team of Zhejiang Sci-Tech University (130600529-Y).

Notes and references

1 RSC Advances Accepted Manuscript

