This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Abstract

In this report, a sensitive and selective chemiluminescence (CL) biosensor for bovine serum albumin (BSA) coupled with surface molecularly imprinted polymer nanocomplex using β-cyclodextrin/chitosan-magnetic graphene oxide as backbone material (β-CD/CsMGO-SMIP) was promoted. Then, the material β-CD/CsMGO in which β-cyclodextrin, chitosan and graphene oxide was used to provide multi-imprinting sites and large surface area was characterized by SEM, XRD and FTIR, and then it was found that β-CD/CsMGO-SMIP followed Langmuir isotherm equation and pseudo-second order sorption kinetics when binding the template. It demonstrated fast mass transfer, promoted rate of removal of the biomacromolecule and excellent recognition and adsorption ability for the imprinting cavities situated at the surface of the β-CD/CsMGO, which enabled easy access to BSA. Subsequently, a high sensitive CL biosensor to BSA based on the strong recognition effect between β-CD/CsMGO-SMIP and BSA which decided the high selectivity has been proposed and the proposed biosensor could be assay in the range of $5.0 \times 10^{-7} - 1.0 \times 10^{-4}$
mg/mL with a detection limit of 1.1×10^{-7} mg/mL. The obtained recoveries were between 94% and 106% when determining samples.

Keywords: chemiluminescence biosensor; bovine serum albumin; magnetic graphene oxide; β-cyclodextrin; chitosan; surface molecularly imprinted polymer

1 Introduction

Bovine serum albumin (BSA), implicated to be a potential autoimmune trigger of insulin-dependent diabetes mellitus (IDDM) though the causal association remained a controversial topic [1], was a component of the whey protein system in cows' milk, bovine milk or milk-based paediatric formula during infancy [2]. The level of BSA in bovine milk has been used as a marker of the health of the mammary gland and of milk quality [3]. Analytical approaches for the determination of bovine serum albumin were proposed to be chemometrics [2], optical biosensor [3] and so on. A cheap, convenient and sensitive chemiluminescence (CL) [4] biosensor for selective determination of BSA was intentionally developed, but specific molecular recognition ability was required. Thus, novel receptor-like techniques for biological recognition were emerged rapidly to specificity recognize BSA.

For this purpose, surface molecular imprinting technique was considered as a promising way to design a synthetic receptor in which the space structure of mimicking biomolecules was recorded and the specific recognition was achieved definitely [5]. Certainly, the synthesis of surface molecular imprinting supporting materials that could improve the selectivity and adsorbing capacity to target biomacromolecule was particularly important [6].
Recently, chitosan (Cs) has attached considerable attention [7] as one of the most promising materials due to its biodegradability, biocompatibility and non-toxicity [8]. With a natural mucopolysaccharide with similar structural characteristics to cellulose, Cs has been applied in preparation of molecularly imprinted resin [9], integrated-optical sensors [10] and porous membrane [11]. On account of the abundant hydroxyl and amino group, when preparing surface molecular imprinting polymer (SMIP), Cs was full of the advantages of multiple imprinting sites which would accelerate the imprinting process, improve the selectivity and adsorbing capacity [12].

β-cyclodextrin (β-CD), with a lipophilic inner cavity with hydrophilic outer surfaces which was able to interact with a large variety of guest molecules forming non-covalent inclusion complexes [13], had already demonstrated its potential in separation and analytical application since it could bind angstrom-sized guests through apolar interaction in protic media [14]. As a supramolecular host compound, β-CD was willing to be chosen as functional monomer to prepare MIP to achieve high selectivity and great adsorption capacity [15].

In current century, as a fascinating new carbon materials with honeycomb and one-atom-thick structure, graphene oxidened (GO) has attracted worldwide attention [16]. Due to its large specific surface area, good biocompatibility and chemical stability, GO was used as supporting material to prepare SMIP [17]. Moreover, for the abundant of hydroxyl and carboxyl, integration of GO with other materials, such as organic functional material, was always highly desirable [18-19]. In this case, a
method to improve the properties of GO was that coprecipitating Fe₃O₄ nanoparticles onto GO sheets surface to obtain magnetic graphene oxiede (MGO) which possessed the merits of GO of high adsorption capacity and Fe₃O₄ nanoparticles of easy separation [20-21].

In particular, the combination of β-CD, Cs and MGO (β-CD/Cs-MGO) serving as supporting material in the preparing process of SMIP made the recognition of nanocomplex (β-CD/Cs-MGO- SMIP) to BSA selectively and efficiently for its exhaustless binding sites. Accordingly, fast mass transfer, promoted rate of removal of the biomolecule and excellent recognition and adsorption ability for the imprinting cavities in the proximity of the surface of the β-CD/Cs-MGO was achieved, which enabled easy access to BSA. When the synthesized β-CD/Cs-MGO-SMIP, as potential optical receptor, was introduced in CL analytical method for the detection of biomacromolecular BSA, nice analytical performance characteristics such as selectivity and sensitivity were obtained. Finally, the proposed β-CD/Cs-MGO-SMIP-CL biosensor was applied to detect BSA in samples.

2 Experiment

2.1 Materials

BSA (96%), N-N methylene double acrylamide (MBA, A.R), N,N,N′,N′-tetramethyl ethylenediamine (TEMED, A.R) and Diethyl amino ethyl methacrylate (DMAEMA, 99%) were purchased from Aladdin Industrial Co. (China); β-CD, Cs, Ferrous sulfate(A.R) and Ammonium persulphate (APS, AR) were supplied by Sinopharm Chemical Reagent Co. Ltd (China); The ethanol, acetic acid, luminol and all the other chemicals unless specified were of analytical reagent grade.
Redistilled water was used throughout the work. Phosphate buffer (PBS, pH=7.4, 0.01 mol/L) solution was used to prepare all BSA solutions which were stored in refrigerator (4°C).

2.3 Apparatus

The IFFMTE flow injection CL analyser (Xi’an Remex Electronic instrument High-Tech Ltd., China) was equipped with an automatic injection system and a detection system. PTFE tubes (0.8 mm i.d.) were used to connect all of the components in the flow system. 50 mg β-CD/Cs-MGO-SMIP and non-imprinted polymer (β-CD/Cs-MGO-SNIP) was filled in capillary, and was collected between pump and CL analyser with PTFE tubes as recognition elements. A magnet was placed by the side to fix the β-CD/Cs-MGO-SMIP (β-CD/Cs-MGO-SNIP) on the capillary to preventing its run off with solutions. When BSA solution ran through the capillary, BSA molecule could be absorbed by β-CD/Cs-MGO-SMIP selectivity, a CL signal I_1 was obtained, while β-CD/Cs-MGO-SNIP could not absorb BSA molecule, another CL signal I_2 was obtained. Then the difference $\Delta I = I_2 - I_1$ was the concentration of BSA in the linear relationship. In this way, the specific recognition and measuring system was obtained. XRD measurement was made on a D8 focus spectrometer (Brooke AXS, Germany). A FEI QUANTA FEG250 field emission scanning electron microscopy (SEM, USA) was employed to observe the morphology of the nanoparticles. A vibrating-sample magnetometer (VSM) (MAG-3110, Freescale) was used at 300 K to characterize the magnetic properties of β-CD/Cs-MGO-SMIP.

2.3 Preparation of MGO

MGO was prepared by modified Hummers method [22] and our group. Firstly, 120 mL of H$_2$SO$_4$ was added into 5.0 g nature graphite powder and 2.5 g of NaNO$_3$ subsequently. Then, 6.0 g of KMnO$_4$ was added gradually under stirring and the
diluted suspension was stirred at 98°C. Subsequently, 50 mL of 30% H$_2$O$_2$ was added drop by drop. Finally, the mixture was filtered and washed till the pH = 7.0. MGO was synthesized according to a modified procedure described in our group [23]. While suspending 0.5 g GO in 200 mL of solution containing 5.1 g (NH$_4$)$_2$Fe(SO$_4$)$_2$·6H$_2$O and 7.5 g NH$_4$Fe(SO$_4$)$_2$·12H$_2$O under N$_2$ atmosphere, the solution was sonicated. Then, 10 mL of 8 mol/L NH$_4$OH aqueous solutions was added drop wise to precipitate the iron oxides till the pH = 11.5. The reaction was maintained at 80°C for 30 min. The obtained black precipitation was separated, washed and then dried under vacuum at 60°C.

2.4 Preparation of β-CD/Cs-MGO

In a typical procedure, 0.1 g newly obtained MGO was added to the molten Cs colloidal acetic acid solution and the pH of the solution was adjusted to be 5.5. Then, 80 mg β-CD was added to the mixture with vigorous stirring. After that, 3 mL glutaraldehyde was added. The reaction was carried out at 70°C for 60 min under constant mechanical stirring. The precipitate was isolated in the magnetic field and washed with double-distilled water. The obtained composites β-CD/Cs-MGO was then dried under vacuum.

2.5 Preparation of β-CD/Cs-MGO-SMIP

A modified procedure described in our work and previous literature was used to synthesize β-CD/Cs-MGO-SMIP [23]. The preparing process was shown in Fig. 1. MBA (64 mg) were dissolved in 35 mL PBS solution by ultrasonication. Subsequently, 32 mg of BSA was dissolved to the solution. Then, 15 mL of β-CD/Cs-MGO (150 mg) dispersed in 10 mL ethanol and 5 mL PBS solution by ultrasonication was added into above solution. The mixture was degassed for 10 min and purged with nitrogen stream for 10 min. Then, the solution was shaked for 0.5 h
to preassemble. By adding 30 mg of APS and 0.2 mL TEMED to the mixture, polymerization was initiated and continued under shaking at 25°C for 10 min. The particles were collected by magnetic separation and washed with NaCl solution until no BSA in the supernatant. Finally, they were washed with PBS solution and dried. The β-CD/Cs-MGO-SNIP was in exactly the same, yet without addition of BSA.

Fig. 1 The preparing process of β-CD/Cs-MGO-SMIP

2.6 Adsorbing properties of β-CD/Cs-MGO-SMIP and β-CD/Cs-MGO-SNIP

Adsorption isotherm: 100 mg β-CD/Cs-MGO-SMIP and β-CD/Cs-MGO-SNIP nanoparticles were placed into 10 mL centrifuge tubes respectively. Then, 8.0 mL of different concentration solution of BSA was added into the tube and shaked at 25°C for 1 h. After magnetic separation, the concentration of the supernatant in the tube was determined by CL instrument and the adsorbing capacities were calculated.

Rebinding dynamics: 100 mg β-CD/Cs-MGO-SMIP and β-CD/Cs-MGO-SNIP nanoparticles were dispersed in 8.0 mL 2.0 mg/mL BSA solution. Immediately, the solution was shaked at 25°C for 2.5 min, 5 min, 7.5 min, 10 min, 20 min, 40 min and 60 min respectively. After magnetic separation, the concentration of the supernatant in
the tube was determined by CL instrument and the adsorbing capacities were calculated. The adsorbing capacity was calculated from the following formula:

\[Q_e = \frac{(c_0 - c_e)V}{m} \]

Where \(Q_e \) (mg/g) was the mass of protein adsorbed by unit mass of dry particles, \(c_0 \) (mg/mL) and \(c_e \) (mg/mL) were the concentrations of the initial and balance solution, respectively, \(V \) (mL) was the total volume of the adsorption mixture, and \(m \) (g) was the mass of the \(\beta \)-CD/Cs-MGO-SMIP (\(\beta \)-CD/Cs-MGO-SMIP) added.

2.7 Selectivity studies of \(\beta \)-CD/Cs-MGO-SMIP and \(\beta \)-CD/Cs-MGO-SNIP

100 mg \(\beta \)-CD/Cs-MGO-SMIP and \(\beta \)-CD/Cs-MGO-SNIP nanoparticles were placed into 10 mL centrifuge tubes respectively. Then, 8.0 mL 2.0 mg/mL BSA solution, Bovine hemoglobin (BHb) solution, Lysozyme (Lys) solution, Cytochrome C (CyC) solution and Ribonuclease A (RNase A) solution were added into the tube respectively. The solution was shaked at 25°C for 30 min. After magnetic separation, the concentration of the supernatant in the tube was determined and the adsorbing capacity of \(\beta \)-CD/Cs-MGO-SMIP and \(\beta \)-CD/Cs-MGO-SNIP nanoparticles to BSA, BHb, Lys, CyC and RNase A were determined.

3 Results and discussion

3.1 Characterization of GO, MGO and \(\beta \)-CD/Cs-MGO

Fig. 2 (A) illustrated the XRD patterns of obtained GO and MGO particles. Obviously, MGO displayed several diffraction rings at \(2\theta = 30.2^\circ, 35.6^\circ, 43.4^\circ, 53.3^\circ, 57.5^\circ \) and \(63.1^\circ \) which were corresponded to (220), (311), (400), (422), (511), and (440) the six indices of the \(\text{Fe}_3\text{O}_4 \) inverse spinel structure and the characteristic peak of GO at \(2\theta = 10.1^\circ \). The satisfying result provided a remarkable support that MGO was successful prepared. As indicated in Fig. 2 B, the magnetization measurement performed that the saturation magnetization of \(\beta \)-CD/Cs-MGO-SMIP was 18.9 emu/g,
which was sufficient to meet the need of magnetic separation process. Fig. 2 C showed the Fourier Transform Infrared Spectroscopy (FTIR) of MGO and \(\beta\)-CD/Cs-MGO. The peaks at 1400-1600 cm\(^{-1}\) were the characteristic peaks of benzene ring. In the spectrum of MGO, the peak at 620 cm\(^{-1}\) was the characteristics of Fe\(_3\)O\(_4\) nanoparticles. The strong intensity and shape absorption band at 1736 cm\(^{-1}\) was attributed to the stretching vibration of C=O band. In the spectrum of \(\beta\)-CD/Cs-MGO, the board and moderate intensity peak at 620 cm\(^{-1}\) contain the characteristic peak of Fe\(_3\)O\(_4\) nanoparticles and the flexural vibration of N-H in acid amide. The peak at 1126 cm\(^{-1}\) was on account of the stretching vibration of C-N. When reacted with -NH\(_2\), the peak of C=O at 1736 cm\(^{-1}\) shifted to 1680 cm\(^{-1}\) which confirmed the reaction of MGO and \(\beta\)-CD/Cs.

![Fig. 2 XRD patterns of obtained GO and MGO (A), VSM magnetization curves of \(\beta\)-CD/Cs-MGO-SMIP (B) and FTIR of MGO and \(\beta\)-CD/Cs-MGO (C)](image)

Scanning Electron Microscope (SEM) was used to characterize the surface morphology of the GO, MGO and \(\beta\)-CD/Cs-MGO. As shown in Fig. 3 A, a wrinkle and thin film was observed in the image of GO. A loose 3D network structure consisting of 2D GO sheets was displayed clearly. Fig. 3 B clearly revealed that Fe\(_3\)O\(_4\) nanoparticles were decorated on the GO surface which did not alter the microstructure of GO significantly and the incorporation of Fe\(_3\)O\(_4\) on GO sheets enabled the maximum utilization of GO. Obviously, a large amount of Fe\(_3\)O\(_4\) nanoparticles were
immobilized onto the GO films. As shown in Fig. 3 C, the obvious difference on the surface of β-CD/Cs-MGO compared with MGO indicated interaction between GO and β-CD, Cs. A higher surface area which was served as supporting interface to get more binding sites in SMIP was obtained after the immobilization of β-CD and Cs onto the MGO.

![Image](image_url)

Fig. 3 The surface morphology of GO (A), MGO (B) and β-CD/Cs-MGO (C) in SEM images

3.2 Batch binding properties of β-CD/Cs-MGO-SMIP

The adsorption results were shown in Fig. 4. The adsorption isotherm (Fig 4 A) to BSA increased with the increasing of the BSA concentration before reaching maximum 58 mg/g ($Q_m = 58$ mg/g). Obviously, β-CD/Cs-MGO-SMIP exhibited a significant imprinting effect binding more than thrice as much BSA compared to its SNIP which was prepared at the same conditions. As we could observe in Fig. 4 (B), both the SMIP and SNIP particles could reach the maximum adsorption within 20 min for the imprinting cavities on the surface or in the proximity of the surface of β-CD/Cs-MGO-SMIP.
Fig. 4 Binding properties of β-CD/Cs-MGO-SMIP: adsorbing capacity (A) and adsorbing time (B)

3.2.1 Adsorption isotherms equation of β-CD/Cs-MGO-SMIP

Adsorption isotherms equation of β-CD/Cs-MGO-SMIP to BSA was described by Langmuir isotherm equation and Freundlich isotherm equation showed in Fig. 5 A B respectively. The Langmuir and Freundlich equations which were used for modeling adsorption isotherms were expressed in following formulas were.

Langmuir equations: \[
\frac{c_e}{Q_e} = \frac{c_e}{Q_{tm}} + \frac{1}{Q_{tm}k_L}
\]

Freundlich equation: \[
\ln Q_e = \ln k_F + \frac{\ln c_e}{n}
\]

Where \(c_e\) (mg/mL) is the equilibrium concentration of BSA, \(Q_e\) (mg/g) is the adsorption capacity, \(Q_{tm}\) (mg/g) is the theoretical saturation adsorption capacity, \(k_L\) is the Langmuir constant, \(k_F\) is the binding energy constant and \(n\) is the Freundlich constant.

As shown in Fig. 5, the fit of a Langmuir model provided a substantially higher correlation coefficient. Accordingly, Langmuir isotherm equations (\(R^2 = 0.9879\)) were more appropriate than the Freundlich isotherm equations (\(R^2 = 0.9302\)) at present temperature. Therefore, the adsorption of β-CD/Cs-MGO-SMIP to BSA was monolayer uniform adsorption and the imprinting sites on the surface of β-CD/Cs-MGO-SMIP were homogeneous distribution. Theory adsorption capacity \((Q_{tm})\) of β-CD/Cs-MGO-SMIP was obtained to be 60 mg/g which was approximate to the experimental result 58 mg/g.
3.2.2 Adsorption kinetics of β-CD/Cs-MGO-SMIP

In Fig. 6, two adsorption kinetics equations (i.e., Pseudo-first order (A) and pseudo-second order (B)) were applied to model the kinetics of BSA adsorption at β-CD/Cs-MGO-SMIP particles, providing more detailed insight on the adsorption processes. A better correlation was observed in the pseudo-second order model ($R^2 = 0.9874$). It was confirmed that the obtained β-CD/Cs-MGO-SMIP follow pseudo-second order sorption kinetics when binding BSA. Theory adsorption capacity (Q_{tm}) of β-CD/Cs-MGO-SMIP was obtained to be 63 mg/g which was also approximate to the experimental result 58 mg/g.
3.3 Batch binding properties of β-CD/Cs-MGO-SMIP

Fig. 7 A showed the adsorption capacities of β-CD/Cs-MGO-SMIP and β-CD/Cs-MGO-SMIP nanoparticles to BSA, BHb, Lys, CyC and RNase A in PBS solutions with a feed concentration of 0.4 mg/mL. Evidently, all SMIP exhibited more binding capacity compared to its NIP for the macro imprinting caves which would absorb biomacromolecule more or less while no imprinting caves existed in SNIP. Certainly from the figure, BSA-β-CD/Cs-MGO-SMIP binded much more BSA compared to the other four proteins, which was of significant interest in terms of their selectivity.

Fig. 7 Binding amounts of different proteins on the imprinted particles (A); The regression equation of the β-CD/Cs-MGO-SMIP-CL biosensor (B); Interferences study of the β-CD/Cs-MGO-SMIP-CL biosensor (C)

3.4 Analytical performance of β-CD/Cs-MGO-SMIP-CL biosensor

BSA could enhance the CL intensity of luminol in the presence of H$_2$O$_2$ and NaOH. In order to establish the optimum experiment conditions, the parameters affecting the performance of CL were then studied. Firstly, the effect of NaOH on the CL intensity was investigated and the optimal concentration of NaOH was fixed at 4.0 × 10$^{-5}$ mol/L. Subsequently, the effect of H$_2$O$_2$ on the CL intensity was studied and approached maximum intensity value was obtained 1.2 × 10$^{-2}$ mol/L. Then, the concentration of luminol was employed to be 5.0 × 10$^{-3}$ mol/L in subsequent experiments. Thus, under above conditions, the calibration curve of CL intensity against BSA concentration was invested to be linear in the range of 5.0 × 10$^{-7}$ - 1.0 ×
10^{-4} mg/mL, and the correlation coefficient was 0.9877 with a detection limit of 1.1×10^{-7} mg/mL shown in Fig. 7 (B). As shown in Tab. 1, the result showed that our work was superior in both linear range and detection limit compared with other methods.

Tab.1. Comparing results with conventional methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>Liner Range (mg/mL)</th>
<th>Detection Limit (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our work</td>
<td>5.0×10^{-7} - 1.0×10^{-5}</td>
<td>1.1×10^{-7}</td>
</tr>
<tr>
<td>Chemometrics [2]</td>
<td>3.3×10^{-3} - 2.3×10^{-4}</td>
<td>1.4×10^{-3}</td>
</tr>
<tr>
<td>Optical biosensor [3]</td>
<td>1.0×10^{-5} - 1.0×10^{-3}</td>
<td>2.5×10^{-6}</td>
</tr>
<tr>
<td>Flow injection analysis[24]</td>
<td>0.0 - 28.0</td>
<td>0.76</td>
</tr>
</tbody>
</table>

3.4 Selectivity studies of the β-CD/Cs-MGO-SMIP-CL biosensor

In order to study the recognition properties of the biosensor using β-CD/Cs-MGO-SMIP nanoparticles to BSA, the CL intensity of solutions containing rich amounts of other substance such as Mg$^{2+}$, L-tryptophan, Lys and BHb was researched. It was evident from Fig. 7 C that 370 times Mg$^{2+}$ (compared to the concentration of BSA) would interference the CL biosensor, while interference of 700 times Mg$^{2+}$ was observed in β-CD/Cs-MGO-SMIP-CL biosensor. As anticipated, L-tryptophan exhibited a higher interference compared with Mg$^{2+}$. While almost Lys interfering the detection of BSA apparently in simple CL, interference could be eliminated when employing β-CD/Cs-MGO-SMIP selectivity adsorbing BSA. Certainly, the interferences BHb were relatively more serious. Evidently, the CL method exhibited a significant interference effect more than triple concentration ratio compared to β-CD/Cs-MGO-SMIP-CL biosensor. The exhaustive study was subject to an explanation that specific structure of the MIP matrix in which biomacromolecule BSA could be fixed by the imprinting cavies appropriately.

3.5 Application of β-CD/Cs-MGO-SMIP-CL biosensor

Tab. 2 illustrated the application of β-CD/Cs-MGO-SMIP-CL biosensor in
samples. The results showed that the β-CD/Cs-MGO-SMIP-CL biosensor was capable of detecting BSA with a good recoveries ranging from 94% and 106%. As indicated, that the proposed β-CD/Cs-MGO-SMIP-CL biosensor was highly accurate, precise and selective, and it could be used for the analysis of samples. The application of the proposed biosensor for measuring samples demonstrated the feasibility of β-CD/Cs-MGO-SMIP in CL biosensor.

Tab.2 Assay of BSA in samples by means of β-CD/Cs-MGO-SMIP-CL biosensor

<table>
<thead>
<tr>
<th>Sample</th>
<th>c (10^6 mg/mL)</th>
<th>Added (10^6 mg/mL)</th>
<th>Found (n=6) (10^6 mg/mL)</th>
<th>RSD%</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>1.9</td>
<td>5.0</td>
<td>7.1</td>
<td>3.5</td>
<td>104</td>
</tr>
<tr>
<td>2*</td>
<td>5.4</td>
<td>5.0</td>
<td>10.7</td>
<td>4.0</td>
<td>106</td>
</tr>
<tr>
<td>3*</td>
<td>7.7</td>
<td>5.0</td>
<td>12.4</td>
<td>3.3</td>
<td>94</td>
</tr>
</tbody>
</table>

4 Conclusion

In this paper, using β-CD/Cs-MGO nanocomplex as a new supporting material in the preparing process of SMIP, a new CL biosensor to BSA based on β-CD/Cs-MGO-SMIP has been proposed. The maximum adsorption capacity of β-CD/Cs-MGO-SMIP was 58 mg/g and the obtained β-CD/Cs-MGO-SMIP followed langmuir isotherm equation and pseudo-second order sorption kinetics when binding BSA. Fast mass transfer, promoted rate of removal of the biomolecule and excellent recognition and adsorption ability for the imprinting cavities situated at the surface or in the proximity of the surface of the β-CD/Cs-MGO was achieved, which enabled easy access to the target protein molecules. The combination of high selectivity of SMIP based on the strong recognition effect between SMIP and BSA and the high sensitive CL determination method made the proposed biosensor perform excellent in
the determination of BSA. Based on this, the future work will focused on the
preparation of synthetic receptor materials as SMIP element with higher adsorption
capacity and selectivity for fabrication of biomimetic CL biosensors.
Reference

humidity measurements. Sensor Actuator B 2013, 188: 482-487.

