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Abstract  24 

A urinary metabolomics method based on ultra-performance liquid chromatography coupled with 25 

quadrupole/time-of-flight mass spectrometry (UPLC-QTOF/MS) was employed to investigate the 26 

pathogenesis and therapeutic effects of a Baixiangdan capsule on rats undergoing electric-induced stress 27 

for five days. Multivariate analysis techniques, such as principal component analysis (PCA) and partial least 28 

squares-discriminant analysis (PLS-DA), were applied to observe the temporal changes in the metabolic 29 

states of the electric-stressed rats visually, as well as the recovering tendency of the rats treated with the 30 

Baixiangdan capsule. Artificial intelligence technology (artificial neural networks and neurofuzzy logic) 31 

was used to identify the potential biomarkers, and the results showed a high overlap with the PLS-DA 32 

model. A total of 14 potential biomarkers representing major cause-effect relationships between the 33 

variations in the endogenous metabolites and the dynamic pathological processes associated with the 34 

stress induced by the electric stimulation were identified, including amino acid metabolites, such as 35 

2-aminoadipic acid, hippuric acid, spermine, 4-hydroxyglutamate and L-phenylalanine, in addition to 36 

prostaglandin F3a and melatonin. The results indicated that the pathways corresponding to 37 

L-phenylalanine, tyrosine, tryptophan, arginine, proline metabolism, pantothenic acid, and coenzyme A 38 

synthesis were disturbed in the electric-stressed rats, and the application of the Baixiangdan capsule may 39 

regulate the aforementioned metabolic pathways back to their initial states. The application of artificial 40 

intelligence technologies provided powerful and promising tools to model the complex metabolomic 41 

data and to discover hidden knowledge regarding the potential biomarkers associated with the 42 

development of disease, which is also suitable for other complex biological data sets. 43 

Keywords: metabolomics, urine, premenstrual syndrome, UPLC-QTOF/MS, artificial intelligence, 44 

biomarkers  45 
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1. Introduction 46 

Metabolomics, one of the major platforms in systems biology, is used to study perturbations in response 47 

to physiological challenges, toxic insults or disease processes by measuring low-molecular-weight 48 

metabolites (<1 kDa) and their dynamic changes in complex biological samples 1-3. Recently, an 49 

increasing number of publications described the application of metabolomics approaches in traditional 50 

Chinese medicine (TCM) research, which demonstrates that metabolomics is a powerful tool for 51 

assessing the holistic efficacy of TCM formulae because the global metabolic state of an entire organism 52 

can be represented via a single metabolic profile analysis 4-6. Normally, information-rich metabolomics 53 

data are acquired from high-field nuclear magnetic resonance (NMR) 7, gas chromatography mass 54 

spectrometry (GC-MS) 8, or/and UPLC-QTOF/MS 9. Furthermore, many multivariate analysis 55 

techniques, such as principal component analysis (PCA), partial least squares discriminant analysis 56 

(PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA) and support vector 57 

machine recursive feature elimination (SVM-RFE), are commonly used to find informative biomarkers 58 

for subsequent studies 10-11.  59 

Neurofuzzy logic, which combines the adaptive learning capabilities of artificial neural networks (ANNs) 60 

with the generality of representation from fuzzy logic, is one of the artificial intelligence (AI) 61 

technologies that had proven to be an effective tool for analysing complex biological data sets 12. Fuzzy 62 

logic modelling implementing the adaptive B-spline modelling of observation data (ASMOD) algorithm 63 

can be applied to generate a number of training models and perform training tests to determine which 64 

one best fits the data. The quality of the models is assessed using various statistical fitness criteria, e.g., 65 

Akaike’s Information Theoretic Criterion (AIC), final prediction error (FPE), cross validation (CV), 66 

generalised cross validation (GCV), minimum descriptor length (MDL) and structure risk minimization 67 

(SRM). These aim at minimizing a criterion containing two terms—one involving the prediction errors 68 
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computed in the data set and the other involving the complexity of the structure of the trained models. 69 

These training parameters are then investigated to obtain the ideal model with best predictions of the 70 

validation data, as well as generating intelligible rules in an “if then” format that explicitly represents the 71 

cause-effect relationships contained in the experimental data. During the training process, the 72 

improvement of the model training is assessed via these fitness criteria, which is different from the cross 73 

validation approach commonly applied in neural networks, where the test data are used. In this method, 74 

neural networks are used to optimise certain parameters of the fuzzy systems and automatically extract 75 

fuzzy rules from the numerical data. Five back propagation learning algorithms, including Standard 76 

Incremental, Standard Batch, RPROP, Quickprop, and Angle Driven Learning, are used to adjust the 77 

weights of the network connections during the training. A change in the weights will affect the 78 

contribution of each input variable and therefore largely influence the way that a trained network gives 79 

predictions 13. Neurofuzzy logic had been successfully applied in tablet film coatings, pharmaceutical 80 

formulations and processing 14. However, the application of neurofuzzy logic in metabolomics data 81 

analysis to discover hidden knowledge regarding potential biomarkers associated with the development 82 

of disease remains relatively new. 83 

Premenstrual syndrome (PMS), a typical stress-related emotional disease affecting 8 % of women of 84 

child bearing age, is a collection of emotional symptoms, with or without physical symptoms, related to 85 

a woman’s menstrual cycle. Emotional symptoms, referred to as premenstrual dysphoric disorder 86 

(PMDD), such as depression and anxiety, must be consistently present to diagnose PMS 15. Although 87 

the duration of PMS symptoms are shorter than depression due to other etiologies, such as severe 88 

depression, post-traumatic stress disorder and anxiety disorders, their influences on the quality of life of 89 

a patient in the luteal phase can be as great as or worse than other disorders. PMS has attracted much 90 

attention in the international medical community, though the exact etiology remains unclear even after 91 
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more than 40 years of systematic research 16. The theory of TCM believes that the pathogenesis of PMS 92 

is closely related to liver dysfunction, in which liver-Qi invasion syndrome and liver-Qi depression 93 

syndrome are the two principal subtypes 17. Therefore, TCM formulae that function to smooth the liver 94 

and regulate vital energy are normally used to relieve the symptoms of PMS 18. The Baixiangdan 95 

capsule is a novel modernised composite medicine prepared using Radix Paeoniae alba and Cortex 96 

moutan radicis extracts, together with Rhizoma Cyperi volatile oil, which exhibits a favourable efficacy 97 

for the treatment of PMS due to liver-Qi invasion syndrome 19.  98 

The electrical stimulation of female Sprague-Dawley (SD) rats produces a series of abnormal 99 

behavioural and physiological responses similar to the symptoms of liver-Qi invasion syndrome PMS 100 

in humans, and it is often used as an animal model to study the pathogenesis of PMS 20. The feasibility 101 

of establishing a model of liver-Qi invasion syndrome PMS in SD rats using electrical stimulation has 102 

been proven 21. Previously, a serum metabolomics approach based on UPLC/QTOF-MS was developed 103 

to evaluate the therapeutic effects of the Baixiangdan capsule on liver-Qi invasion syndrome PMS in 104 

rats. The therapeutic mechanism of the Baixiangdan capsule is related to the regulation of metabolism 105 

by corticosteroids (e.g., tetrahydrodeoxycorticosterone, 5α-tetrahydrocortisol, epinephrine), oestrogen 106 

(e.g., pregnanediol, estrone) and excitatory/ inhibitory amino acid neurotransmitters (e.g., lysine, 107 

5-hydroxylysine, acetylcysteine) 22. In the present study, we applied a urinary metabolomics method to 108 

investigate the time-related biochemical abnormalities in liver-Qi invasion syndrome PMS due to 109 

electrical stimulation for 5 days and assessed the therapeutic effects of the Baixiangdan capsule. 110 

Artificial intelligence technology (artificial neural networks and neurofuzzy logic) was used to identify 111 

the metabolic pathways and the potential biomarkers related to PMS to achieve the most comprehensive 112 

metabolome coverage and provide a more in-depth understanding of the pathophysiological processes of 113 

PMS. 114 
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 115 

2. Material and methods  116 

Chemicals and reagents 117 

HPLC-grade acetonitrile was purchased from J. T. Baker (Phillipsburg, NJ, USA). The following 118 

compounds were obtained from Sigma-Aldrich (Louis, Mo, USA): 2-aminoadipic acid, hippuric acid, 119 

spermine, 4-hydroxyglutamate, L-phenylalanine, melatonin, L-methionine, proline, genistein and 120 

leucine-enkephalin. Ultrapure water (18.2 MΩ) was prepared using a Milli-Q water purification system 121 

(Millipore, France). All of the other chemicals that were used were analytical grade.  122 

The Baixiangdan capsule was a TCM prescription prepared using Radix Paeoniae alba extract, Cortex 123 

moutan radices extract and Rhizoma Cyperi volatile oil, which was provided by Shandong Traditional 124 

Chinese Medicine University. The preparation process was strictly carried out according to the fixed 125 

processing parameters. The Baixiangdan capsules used in this study were placed under a careful quality 126 

control to ensure their identity throughout all of the experiments. Three representative components 127 

(paeoniflorin, paeonol and α-cyperone) were used as quality indicators during the HPLC evaluation 23. 128 

 129 

Animal handling and sample collection 130 

Healthy and non-pregnant female Sprague-Dawley rats (190-200 g in weight) were supplied by the 131 

Experimental Animal Center of Shandong Traditional Chinese Medicine University (serial number 132 

SCXK (Lu) 20050015 on the certificate of conformity, Jinan, China). All of the animals were 133 

maintained in an environmentally controlled room under a controlled temperature (22–25°C) and 134 

relative humidity (50 ± 5 %) on a 12 h light/dark cycle (lights on from 08:00 to 20:00). The experiments 135 

were conducted in a specific pathogen free (SPF) grade laboratory according to the guidelines provided 136 

in the Guiding Principles for the Care and Use of Laboratory Animals approved by the Committee for 137 
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Animal Experiments at Shandong Traditional Chinese Medicine University (Jinan, China). The animals 138 

were acclimated for 1 week before use. A standard diet and water were provided to the rats ad libitum. 139 

A total of 30 animals in diestrus and metestrus were selected using vaginal smears together with the 140 

behavioural assessment described previously 20. The animals were randomly divided into the following 141 

3 groups with 10 rats in each group: (1) control group (CG), (2) stress group (SG), (3) Baixiangdan 142 

capsule-dosed group (BCDG). Each rat was maintained in an individual tailor-made cage. The PMS rat 143 

model was produced using electrically induced stimuli with a digital pulse stimulator 21. The SG and 144 

BCDG rats were treated with the electrically induced stimuli (0.5 mA pulses at a voltage of 2700~3300 145 

V and a pulse width of 0.3 s) continuously for 5 days. Each application of the electric stimuli lasted for 146 

5 minutes twice during the day and for 10 minutes three times in the evening. The BCDG rats were 147 

administered a water solution of the Baixiangdan capsule at a dose of 10 mL/ kg·w·d (1 mL of the 148 

solution is equivalent to 1 g of the crude herbs) via an intra-gastric gavage once a day, amounting to 149 

eight times the clinical dosage. Meanwhile, the CG and SG rats were administered the same volume of 150 

water via oral gavage. The 24-h urine samples were collected over the 5-day electric-stimuli period. 151 

The urine samples at the starting point (without electric stimuli, day 0) were collected 24-h prior to the 152 

start of the experiment. The collected urine samples were stored at -80°C until the sample preparation. 153 

Because of the individual differences between the rats, not all of the rats urinated regularly every 24 h. 154 

At the end of the experiment, only 140 urine samples were collected for the UPLC-QTOF/MS analysis. 155 

 156 

Sample preparation 157 

Prior to the analyses, the samples were thawed at room temperature. The urine samples were 158 

centrifuged at 13000 rpm for 20 min at 4°C, then the supernatant was analysed via UPLC-QTOF/MS. 159 

Three parallel sample solutions were prepared and analysed for accuracy.  160 
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 161 

UPLC-QTOF/MS Analysis 162 

The chromatographic separation was performed on an ACQUITY UPLC BEH C18 column (2.1×100 163 

mm, 1.7 µm, Waters Corp, Milford, MA, USA) using a Waters ACQUITY UPLCTM system equipped 164 

with a binary solvent delivery system, an auto-sampler, and a PDA detector. The column was 165 

maintained at 30°C and eluted at a flow rate of 0.4 mL/min, using a mobile phase of water with 0.2 % 166 

(by volume) formic acid (A) and acetonitrile (B). The gradient program was optimised as follows: 0-18 167 

min, 0 % B to 35 % B; 18-20 min, 35 % B to 95 % B; 20-22 min, 95 % B; 22-25 min, 95 % B to 0 % B; 168 

25-28 min, equilibration with 0 % B. The column eluent was directed to the mass spectrometer without 169 

a split.  170 

The mass spectrometry was performed on a Waters Q-TOF Premier mass spectrometer (Waters Corp., 171 

Manchester, UK) with the electrospray ionization source (ESI) operation in the positive ion mode (“V” 172 

mode of operation). The ESI-MS parameters for LC/TOF-MS were: capillary voltage 3200 V; cone 173 

voltage 35 V; nitrogen was used as the drying gas, and the desolvation gas flow rate was set as 700 L/h 174 

at a temperature of 350°C; cone gas rate was 50 L/h; source temperature 110°C; The scan time was 0.1s; 175 

inter-scan delay was 0.02 s. All of the analyses were acquired using an independent reference 176 

lock-mass ion via the LockSprayTM interface to ensure accuracy and reproducibility. 177 

Leucine-enkephalin was used as the reference compound (m/z 556.2771 for the negative-ion mode) at a 178 

concentration of 50 pg/µL and flow rate of 10 µL/min. The data were collected in the centroid mode 179 

from m/z 50 to m/z 1000 using a LockSpray frequency of 10 s, and the data were averaged over 10 180 

scans for the correction.  181 

 182 

Data Processing 183 
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The data were combined into a single matrix by aligning the peaks with the exact mass / retention time 184 

pair (EMRT) from each data file along with their associated intensities using MarkerLynx Applications 185 

Manager version 4.1 (Waters Corp., Manchester, UK). The parameters included a retention time (tR) 186 

range from 0 to 28 min, a mass range from 50 to 1000 Da, and the mass tolerance was 0.02 Da. The 187 

minimum intensity was set at 15 % of the base peak intensity, the maximum mass per tR was set at 6, 188 

and the tR tolerance was set at 0.02 min. An original data list was obtained using a database (peak 189 

matrix) containing 421 data records (144 data records were obtained from the stress group, 127 data 190 

records were obtained from the Baixiangdan capsule-dosed group and 150 data records were obtained 191 

from the control group) and 4000 independent variables (biochemical substances). Prior to the 192 

multivariate statistical analyses, the data from each chromatogram were normalised to a constant 193 

integrated intensity relative to the number of peaks to partially compensate for the concentration bias of 194 

each sample. The processing of the data normalization had little effect on the conclusion of the 195 

trajectory analysis, which aimed to improve the clustering tightness in the PLS-DA model by 196 

comparing the results of the area-normalised data model with that of the non-normalised data model 197 

(data were not shown). The between-subject data X was then Pareto-scaled to facilitate the analyses of 198 

the major effects in the data. Upon grouping the information, the processed original data list was then 199 

divided into three datasets and exported and processed via PCA and PLS-DA analyses using the 200 

software package SIMCA-P version 11.5 (Umetrics AB, Umeå, Sweden).  201 

Two commercial AI software tools representing the two technologies were used in this study: 202 

INForm4.3 for the neural networks and FormRules 3.0 for the neurofuzzy logic. Both software 203 

packages were provided by Intelligensys Ltd., UK. The algorithm and data processing methods of these 204 

two software programs are as follows, and have also been described previously 13-14, 23. For the data 205 

prepossessing of the AI analysis, PCA was initially applied to reduce the dimensions of the SG dataset 206 
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containing the 144 data records, from 4000 independent variables to 140, according to the significance 207 

of the contribution to the PCA model. FormRules 3.0 implements the ASMOD algorithm to generate 208 

the neurofuzzy logic model, which enables the discovery of differential features (potential biomarkers). 209 

The reduced variable dataset containing only the discovered differential features as independent 210 

variables was established during the neurofuzzy logic modelling, and the hidden relationships among 211 

the these differential features were also discovered. Structure Risk Minimization (SRM) was used to 212 

assess the quality of the models in this study. INForm 4.3, which is embedded with a multi-layer 213 

perceptron neural network, was applied to validate the robustness of the discovered differential features 214 

by comparing the quality of the models based upon the original dataset and the reduced variable dataset. 215 

One of the back-propagation learning algorithms, such as Standard Incremental, Standard Batch, 216 

RPROP, Quickprop and Angle Driven Learning, was selected to obtain the optimal prediction accuracy. 217 

The work flow of the data analyses using the AI techniques is shown in Figure 1. 218 

 219 

 220 

 221 

 222 

3. Results 223 

Establishment of the metabolic fingerprints 224 

To optimize the experimental conditions, a pre-investigation had been conducted before the full study. 225 

The fingerprints of a small batch of test urinary samples were acquired in both the positive and negative 226 

mode. Higher noise and matrix effect in ESI negative mode had been observed. The higher baseline in 227 

ESI negative mode led to the neglect of some low abundance metabolites and the concomitance of 228 

multiple adduction ions. After considering the maximization of the number of detectable metabolites and 229 

Figure 1 The work flow of the data analyses using AI techniques, including reducing the 

variables using a neurofuzzy logic model and the predictive ability assessment using 

a neural network model. 

Page 10 of 34RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



11 

 

the quality of the acquired data, the full-scan detection was eventually set in ESI positive mode. After a 230 

careful optimisation of the flow rate and the column temperature for the chromatography and the 231 

capillary voltage, flow, and the temperature of the desolvation gas for the mass spectrometry detector, 232 

the optimal parameters were fixed as listed in section 2.4. As a result, a higher flow rate (0.4 mL/min) 233 

was used to achieve higher analysis efficiency on the UPLC column and to reduce the run time. 234 

Meanwhile, the tolerance in the backpressure elevation and the effect on the spray and desolvation were 235 

also considered. The flow and temperature of the desolvation gas were set at 700 L/h and 350°C, 236 

respectively, to remove any redundant solvent resulting from the high flow rate and to improve the 237 

efficiency of the desolvation and ionization. Using the optimised conditions, the representative base 238 

peak intensity chromatograms of the rat urine obtained in ESI positive mode for the different groups are 239 

shown in Figure 2. After completing the processing described in Section 2.5, a list of 4000 compounds 240 

was exported for each sample, and the standard quality control (QC) samples were pooled (small 241 

aliquots of each biological sample to be studied were pooled and thoroughly mixed). Between each 242 

analytical unit of 20 analytes, the QC sample was analysed to provide a robust quality assurance for 243 

each metabolic feature that was detected. The precision and repeatability of the UPLC-MS method 244 

were validated via a duplicate analysis of six injections of the same QC sample and six parallel samples 245 

prepared using the same preparation protocol, respectively. The relative standard deviations of the 246 

retention time and area were less than 5.0 %. The resulting data showed that the precision and 247 

repeatability of the proposed method were satisfactory for metabolomics analysis.  248 

 249 

 250 

 251 

 252 

Figure 2 Representative base peak intensity chromatogram of the rat urine obtained in ESI positive 

mode based of UPLC-QTOF/MS. (A) control group (CG); (B) stress group; (C) Baixiangdan capsule 

dosed group (BCDG). 
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 253 

Urinary metabolic profiling data processing using PCA and PLS-DA 254 

The PCA and PLS-DA analyses of the dataset containing 144 data records obtained from the SG rats on 255 

days 0 (prior to the electrically induced stress), 1, 2, 3, 4 and 5 were performed first. The PCA score 256 

plot (Figure S1) showed clear differences between the urine samples collected on days 0, 1, 2, 3, 4, and 257 

5, which visualised the general changes in the holistic metabolic profile of the endogenous metabolites 258 

during the electric stimulations.  259 

The supervised pattern recognition (PLS-DA) was more focused on the actual class discriminating 260 

variations compared to the unsupervised approach (PCA). Figure S2 (A) shows the score plot of the 261 

PLS-DA model using the dataset from the SG rat urine samples to discriminate between the different 262 

days of induced stress, and it is similar to the PCA result. The parameters of this PLS-DA model were 263 

R2X(cum)=0.427, R2Y(cum)=0.952, Q2Y(cum)=0.912, which means that 42.7 % of the independent variables 264 

were applied to construct the model, 95.2 % of the samples (data records) fit the established discriminant 265 

mathematic model, and the prediction accuracy of this model was 91.2 %. After being processed via 266 

PLS-DA in SIMCA-P, the mean-centred PLS-DA score plots were generated to trace and compare the 267 

dynamic changes in the metabolic events in the rats undergoing electric stimulation for 5 days. In the 268 

PLS-DA graph, each spot represented a sample and each assembly of samples indicated a particular 269 

metabolic pattern at a different time point. The loci marked by arrows represent the trend of the mean 270 

metabolite pattern changes. As shown in Figure S2 (A), the metabolic state of each group on day 1 had 271 

deviated from the initial position (day 0, prior to the electrically induced stress), and the greatest 272 

difference was observed on day 2, which indicates that in response to the electric stimulation, the 273 

metabolism of the endogenous substances and the metabolic profiles of the urine compared to the initial 274 

state (day 0) were significantly altered. From day 3 to day 5, the trajectory direction gradually returned 275 
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to that observed on day 1, indicating the recovery of the disturbed metabolic state. The VIP (variable 276 

importance in the projection) value of each variable in the model was ranked according to its 277 

contribution to the classification. The VIP list of the retention time-exact mass pairs was obtained from 278 

the PLS-DA using SIMCA-P. To select the potential biomarkers worthy of preferential study in the next 279 

step, these differential metabolites were validated using Student’s t test. The critical p-value was set to 280 

0.05 for the significantly different variables in this study. Following the criteria listed above, 14 281 

significantly different endogenous metabolites present in the urine of on the 5th day were selected for 282 

further study. The identification of the potential biomarkers was then carried out as follows, and the 283 

results are listed in Table 1. The possible elemental compositions of the selected compounds were 284 

generated using the software program Masslynx according to the following procedure: the calculated 285 

mass, mass deviation (mDa and ppm), double-bond equivalent, formula, and i-fit value (the isotopic 286 

pattern of the selected ion) were calculated using the selected m/z ions. A lower i-fit value and smaller 287 

mass deviation indicate a more accurate elemental composition. The structural information was 288 

obtained by searching freely accessible databases (KEGG (http://www.genome.jp) and HMDB 289 

(http://www.hmdb.ca)) using the detected molecular weights and elemental compositions. 290 

As a result, 14 potential biomarkers were identified based on the accurate elemental compositions and 291 

the retention time and 9 were confirmed using the available reference standards by matching their 292 

retention time and accurate mass measurement. Among them, 2-aminoadipic acid (1), 5-oxoproline (2), 293 

shikimate-5-phosphate (4), 4-hydroxyglutamate (5), hippuric acid (10), 5-(2-hydroxyethyl)-4- 294 

methyliazole (11) and melatonin (13) were found to be increased in the urine samples from the 295 

electric-stressed rats compared to their initial state. Conversely, prostaglandin F3α (3), biocytin (6), 296 

genistein (7), deoxyadenosine (8), 6-keto-prostagladin F1α (9), 2,3-diaminopropionic acid (12) and 297 

5-amino-valerate (14) were decreased 23. 298 
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Meanwhile, the MS spectra dataset of the CG rats during the five testing days were also analysed using 299 

PLS-DA. Compared to the pathological variations observed in the SG rats, the trajectory of the CG rats 300 

was irregular, as shown in supporting information Figure S3, which suggests that the electric stimuli on 301 

female rats may lead to systemic metabolic variation. To determine the treatment-related metabolic 302 

pattern alterations, another PLS-DA model (R2X(cum)=0.423, R2Y(cum)=0.973, Q2Y(cum)=0.877) was 303 

constructed with a dataset containing 127 data records obtained from the BCDG rats. As shown in 304 

Figure S2 (B), a classification between different treatment days was clearly achieved, and the trajectory 305 

of the metabolic profiles illustrated the temporal metabolic variations in the urine metabolites and 306 

exhibited a recovering tendency back to the initial state (day 0) following treatment with the 307 

Baixiangdan capsule. 308 

 309 

Feature selection and identification of the significant metabolites using AI technology 310 

Due to the complexity and nonlinearity of metabolomics data, AI technologies provide a meaningful 311 

method for the discovery of feature information hidden in data. Neural networks are computational 312 

systems capable of mimicking the mechanisms of human learning. They enable the detection of 313 

complex relationships between a set of inputs and outputs and estimate the magnitude of the 314 

relationships without requiring a mathematical description of how the output is functionally dependent 315 

on the input. They are useful for processing unstructured and nonlinear data for the recognition of 316 

patterns in high-dimensional data. Neurofuzzy logic is a hybrid AI technology that combines the 317 

learning capabilities of neural networks with the generality of fuzzy logic, and it is able to generate 318 

knowledge regarding the patterns hidden in data in an interpretable format 13. 319 

In this study, the top 140 independent variables were selected from the ranking order generated by the 320 

PCA according to the significance of its contribution to the PCA model. A reduced variable dataset was 321 
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then formed, which included the 140 independent variables from the original dataset. Further data 322 

mining activities were then conducted using this new dataset, and the ASMOD algorithm was applied 323 

to generate the neurofuzzy logic model. A total of 14 independent variables were discovered to be 324 

differential features. Therefore, two datasets that included the same data records but different 325 

dimensions (number of independent variables), in which one contained the 140 variables and the other 326 

contained the 14 selected differential features as independent variables, have been established. Next, a 327 

further investigation using a multi-layer perceptron neural network was carried out to validate the 328 

robustness of the discovered reduced variable dataset by comparing the quality of the models based on 329 

the two established datasets. During the modelling process, the two datasets were both randomly 330 

divided into a validation set (28 data records, 20 % of the 144 data records were selected using the 331 

“Smart Selection” function in INForm4.3) and a training set (116 data records, the remaining 80 % of 332 

the 144 data records). Two neural network models were generated using the two selected training set 333 

datasets. Then, the predictabilities of these two neural network models were tested against the validation 334 

datasets. The validation R2 that was computed using the validation dataset was used to evaluate the 335 

predictability of the neural network model. As shown in Figures 5, the validation R2 of the validation 336 

dataset containing the 140 independent variables is 0.9506 (Figures 3A), and it is 0.9539 (Figures 3 B) 337 

for the 14 discovered differential features (independent variables) after reducing the dimensions using 338 

neurofuzzy logic. The similarity between the validation R2 values indicates that the predictability of the 339 

neural network model did not deteriorated by reducing the dimension. The major knowledge of the 340 

relationships between the independent variables and the dependent variables (Grouping Information) 341 

still remains in the reduced variable dataset. The 14 discovered differential features are sufficient to 342 

explain the variability associated with the relationship between the independent and dependent variables 343 

(Grouping Information) and to represent the cause-effect relationships between the variations in the 344 
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endogenous metabolites and the dynamic pathological processes associated with the stress induced by 345 

the electric stimulation. Therefore, the 14 differential feature metabolites discovered via AI analysis 346 

were considered to be potential biomarkers related to the development of induced stress. They were 347 

identified using the methods described in section 3.3. As shown in Table 1, eight of the potential 348 

biomarkers, including 2-aminoadipic acid (1), prostaglandin F3α (3), shikimate-5-phosphate (4), 349 

4-hydroxyglutamate (5), genistein (7), hippuric acid (10), 2,3-diaminopropionic acid (12) and 350 

melatonin (13), were discovered by both the PLS-DA and the AI analysis. The six remaining 351 

differential metabolites were only discovered by the AI, of which, spermine (15), L-phenylalanine (16), 352 

pantothenol (18) and xanthosine (20) were significantly decreased in the electric-stressed rats, whereas 353 

proline (17) and L-methionine (19) were significantly increased. 354 

 355 

 356 

 357 

 358 

 359 

 360 

4. Discussion 361 

PMS is a typical stress-related emotional disease that affects 8 % of women of child-bearing age. 362 

Emotional symptoms, such as anxiety, must be consistently present to diagnose PMS. The electrical 363 

stimulation on female SD rats can produce a series of abnormal behavioural and physiological 364 

responses that are similar to the emotional symptoms of PMS, including a reduction in exploratory 365 

behaviour and plasma hormone level alterations (prolactin, estradiol and progesterone) 20. Previously, a 366 

serum metabolomics approach based on UPLC/QTOF-MS had been developed to evaluate the 367 

Table 1 Identification of the Significantly Different Endogenous Metabolites in the Model Rats’ 

Urine. 

Figure 3 The predictions given by the ANN models generated using a dataset containing various 

numbers of independent variables. (A) 140 independent variables, (B) 14 independent variables 

(reduced dimensions). 
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therapeutic effects of the Baixiangdan capsule on liver-Qi invasion syndrome PMS rats 22. The 368 

therapeutic mechanism of the Baixiangdan capsule is related to the regulation of the metabolism of 369 

corticosteroids, oestrogen and excitatory/inhibitory amino acid neurotransmitters.  370 

The present study developed a urinary metabolomics method on the basis of UPLC-QTOF/MS to 371 

investigate the temporal variations in the metabolic profiles of rats that underwent electric stimulation 372 

in 5 days. AI techniques integrating neurofuzzy logic and neural networks were applied for the first 373 

time here to find and understand the correlation of the selected potential biomarkers to the occurrence 374 

and development of liver-Qi syndrome PMS induced by electric stimulation. The minimal dataset, 375 

containing 14 differential features (metabolites) that are sufficient to explain the variability of the 376 

endogenous metabolites associated with the dynamic pathological processes induced by electric 377 

stimulation, was obtained using neurofuzzy logic modelling. Therefore, the 14 differential feature 378 

metabolites were considered to be potential biomarkers for discriminating the different urine metabolic 379 

profiles in different days. Seven sub-models, implying hidden interactions between 14 potential 380 

biomarkers, were constructed according to the intelligible rules in an “if then” format explicitly 381 

representing the cause-effect relationships contained in the experimental data during the neurofuzzy 382 

logic modelling. However, these important correlations among variables are usually neglected in the 383 

commonly used multivariate analysis with VIP values as the weight sum of the PLS loadings to 384 

evaluate the variable contributions for distinguishing different metabolic states.  385 

As shown in Table 1, nine of the fourteen differential endogenous metabolites discovered using the 386 

neurofuzzy logic model were found to be monoamine neurotransmitter metabolites, including 387 

2-aminoadipic acid (1), hippuric acid (10), 4-hydroxyglutamate (5), 2,3-diaminopropionic acid (12), 388 

spermine (15), L-phenylalanine (16), proline (17), pantothenol (18) and L-methionine (19). These 389 

results are consistent with previous reports regarding the pathogenesis of PMS, which is related to 390 
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amino acid metabolism and neural signal transmission.  391 

Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system, 392 

which is responsible for mediating a broad range of nervous system functions via glutamate receptors. 393 

It may be involved in the metabolism of proteins and glucose in brain, as well as promoting oxidation 394 

and improving the function of the central nervous system24. The previously study have explored the 395 

relationship between pathogenesis of PMS and glutamate by determining the concentrations of 396 

glutamate in serum and different regions of brain (including hypothalamus, limbic lobe, frontal cortex 397 

and hippocampus) using pre-column derivatization HPLC method. The glutamate levels in serum, 398 

hypothalamus and limbic lobe decreased significantly in PMS model rats when compared with normal 399 

ones, while those in frontal cortex and hippocampus were found to be increasing after model 400 

establishment25.  401 

2-aminoadipic acid (1) is a primary metabolite in the lysine metabolic pathway, which antagonizes 402 

neuro-excitatory activity modulated by the glutamate receptor, N-methyl-D-aspartate (NMDA). 403 

Aminoadipic has also been shown to inhibit the production of kynurenic acid, a broad spectrum 404 

excitatory amino acid receptor antagonist 26. The disorder of 2-aminoadipic acid has been associated 405 

with varying neurological symptoms27. Meanwhile, the metabolism of lysine also rely on the regulation 406 

of glutamate receptor, implied that the level of 2-aminoadipic acid in urine should be related to that of 407 

glutamate.  408 

4-hydroxyglutamate (5), an intermediate in the metabolism of gamma-hydroxyglutamic acid. 409 

Specifically 4-hydroxyglutamate combines with 2-oxoglutarate to produce 4-hydroxy-2-oxoglutarate 410 

and glutamate 28. Therefore, the level of 4-hydroxyglutamate should also be closely related to that of 411 

glutamate. Hippuric acid (10) is an acyl glycine formed by the conjugation of benzoic aicd with glycine 412 

on the basis of the action of glycine N-acyltransferase. And glycine combines with α-ketoglutaric acid 413 
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could produce glyoxylic acid and glutamic acid. The up-regulation of these metabolites, including 414 

2-aminoadipic acid (1), 4-hydroxyglutamate (5) and hippuric acid (10), in the urine represent an 415 

increase in the excitatory amino acid glutamate29. 416 

In addition, shikimate-5-phosphate (4), which is the precursor of chorismic acid and tryptophan, was 417 

also discovered by the two data mining approaches. Shikimate-5-phosphate has been reported to 418 

participate in the metabolism of phenylalanine. Both L-phenylalanine (16) and tryptophan are required 419 

for the biosynthesis of monoamine neurotransmitters and play an important role in the pathogenesis of 420 

emotional disorders. Decreased phenylalanine levels were detected in the urine of the electric-stressed 421 

rats, which was in agreement with other reports 13. However, L-phenylalanine was only discovered via 422 

the AI analysis, in addition to spermine (15), proline (17), pantothenol (18), L-methionine (19) and 423 

xanthosine (20). Proline is also a derivative of glutamate, which generates hydroxyproline and then 424 

decomposes into 4-hydroxyglutamate, an excitatory amino acid neurotransmitter.  425 

Melatonin (13), which is involved in the metabolic pathway of 5-HT, was also found using the 426 

neurofuzzy logic model. It has been suggested that PMS is related to a systemic imbalance of the 427 

neurotransmitter 5-hydroxy tryptamine (5-HT) 30-32. The emergence of symptoms such as emotional 428 

instability, irritability, and anxiety are related to a decrease in 5-HT levels 33. The increased melatonin 429 

in the urine of the stressed rat model indicates the down-regulation of 5-HT. Melatonin exhibits 430 

extensive physiological activities, and its daily and seasonal rhythms are considered to be closely 431 

related to the functional regulation of immunity and the neuroendocrine and reproductive systems. The 432 

biosynthesis of melatonin is also rhythmic, in addition to melatonin precursors and its related synthesis 433 

enzymes, e.g., N-acetyltransferase, HIOMT, 5-HT 34. The rhythm of N-acetyltransferase and HIOMT 434 

exhibit the same tendencies as melatonin, while 5-HT is the opposite 35. Therefore, a rise in melatonin 435 

may be attributed to the premenstrual moods of dysphoria and irritability. Other biomarkers, such as 436 
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11-epi-prostagladin F2α (3) and 6-keto-prostagladin F1α (9) have been found to be involved in signal 437 

transduction and the regulation of physiological activities, such as the synthesis of lipoproteins and 438 

carbohydrates, which are related to the development of stress/emotion-related diseases. 439 

Genistein (7) was also identified as a differential component, and it has been reported to be related to 440 

energy metabolism. Genistein is also a primary component of rat feed, which is made from soybeans. 441 

The stress experiment may inevitably cause the loss of appetite; therefore, the reduction of genistein in 442 

the urine between the experimental and initial states could be due to various factors.  443 

The predictive abilities of these 14 potential biomarkers were then evaluated using a neural network 444 

model. When using neural network algorithms, intelligible rules are generated on the basis of “unseen” 445 

data to provide accurate predictions. This is different from the cross validation approach that is 446 

commonly applied in multivariate analyses and neurofuzzy logic, where the test data are used. Therefore, 447 

the evaluated results obtained using neural network modelling are more credible. The 14 potential 448 

biomarkers discovered using the AI analysis closely related to the occurrence and development of 449 

liver-Qi syndrome PMS, indicating that the AI appeared to be more effective than the PLS-DA analysis 450 

for the data mining. 451 

Upon analysing the dynamic trajectories of the holistic metabolic profiles for the 5 different days of 452 

electric stimulation in the PLS-DA score plots, the greatest difference was observed on day 2, which 453 

indicates that as a response to the electric stimulation, the metabolism of the endogenous substances 454 

and the metabolic profiles in the urine were significantly altered compared to the initial state. From day 455 

3 to day 5, the trajectory direction gradually moved back to that of day 1, meaning that the 456 

experimental animals accommodated for the electric stimulation, and the stress states were relieved; the 457 

same intensity of stimulation could not cause a similar response. Therefore, with the exception of the 458 

fact that urine metabolites are the final products of all physiological and pathological processes, the 459 
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adaption to the stress state and the potential biomarkers discovered in this study showed significant 460 

differences to the ones that were discovered in previous serum metabolomics studies. 461 

The Baixiangdan capsule is a new TCM prescription that has been used for the treatment of PMS 33-34. 462 

Different urine metabolite patterns were observed via PLS-DA, implicating the potential efficacy of the 463 

Baixiangdan capsule on the electric-stress rat model. As shown in Figure 4, the average intensities of 464 

2-aminoadipic acid, 4-hydroxyglutamate and melatonin in the urine of the different groups (CG, SG 465 

and BCDG) were compared. During the first four days, compared with the levels observed in the CG 466 

rats, the levels of the three metabolites in the SG rats gradually rose. However, in the treatment group 467 

(BCDG), the levels decreased significantly compared to the SG rats. The results suggest that several 468 

relevant mechanisms, such as suppressing glutamine metabolism, inhibiting the activity of glutamate, 469 

and inhibiting the increase of neurotransmitters, may be involved in the treatment process of the 470 

Baixiangdan capsule on PMS. This could be helpful for the regulation of the nervous excitatory state of 471 

patients suffering from PMS; therefore, relieving the typical psychological symptoms, such as 472 

emotional instability, irritability and anxiety.  473 

 474 

 475 

 476 

 477 

In the present study, AI analysis was applied for the discovery of potential biomarkers related to the 478 

dynamic pathological processes of liver-Qi invasion syndrome PMS in an induced-stress rat model for 479 

the first time. The explored potential biomarkers have been proved to be valuable according the 480 

biochemical interpretations referred to the corresponding literatures. However, some remaining 481 

questions would still be necessary and essential to regard the roles of obtained biomarkers in certain 482 

Figure 4 A comparison of the major differential metabolites in the urine of the stress group (SG), the 

control group (CG) and the Baixiangdan capsule-dosed group (BCDG). (A) 2-aminoadipic acid, (B) 

4-hydroxyglutamate, (C) melatonin. #
p <0.05 vs. the CG rats, *p <0.05 vs. the SG rats (student’s 
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metabolic pathways, and better understand the exact pathogenesis of PMS. For example, validation of 483 

these discovered biomarkers on the basis of biological experimental evidences; illustration on 484 

corrections of obtained potential biomarkers in serum/plasma and urine; precise quantitative 485 

determinations of potential biomarkers to give rational thresholds for disease diagnosis and efficacy 486 

evaluation, etc. should be solved in the following investigations. These problems would be solved in 487 

the sequential investigations. 488 

5. Conclusions 489 

A urinary metabolomics method based on ultra-performance liquid chromatography coupled with 490 

quadrupole/time-of-flight mass spectrometry (UPLC-QTOF/MS) was employed to investigate the 491 

pathogenesis and therapeutic effect of the Baixiangdan capsule on electric-induced stress in rats for five 492 

days. Artificial intelligence technology (artificial neural networks and neurofuzzy logic) was used for 493 

the first time for the discovery of the differential metabolites in the data mining of this metabolomics 494 

study. The ANN model exhibited a desirable fitness and predictive ability, and the metabolic signatures 495 

discovered using neurofuzzy logic were helpful for understanding the hidden cause-effect relationships 496 

between the experimental data. The potential mechanism of the electric stress was elucidated, and 497 

excitatory amino acid neurotransmitters related to the typical psychological symptoms of PMS, 498 

including anxiety and irritability, were found to be potential biomarkers for the diagnosis and 499 

therapeutic evaluation of PMS. This research demonstrates that artificial intelligence technologies are 500 

powerful and promising tools for modelling complex metabonomic data and discovering hidden 501 

knowledge regarding potential biomarkers associated with the development of diseases, which is also 502 

suitable for other complex biological data sets.  503 
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Supporting Information Available 513 

Figure S1 The PCA score plot of the rat urine data on days 0 (prior to the electrically induced stress), 1, 514 

2, 3, 4 and 5. The toleration ellipse curve in the PCA score plot was drawn using Hotelling’s T2 with a 515 

confidence value of 95 %.  516 

Figure S2 PLS-DA scores plots of normal rat urine data on days 0, 1, 2, 3, 4 and 5. Figure S2 The 517 

PLS-DA score plots of the rat urine data on days 0 (prior to the electrically induced stress), 1, 2, 3, 4 and 518 

5. (A) The dynamic mean-centred PLS-DA score plot of the rat urine data from the model group and the 519 

control group (Q2Y(cum)=0.912, R2X(cum)=0.427, R2Y(cum)=0.952). (B) The dynamic mean-centred 520 

PLS-DA score plot of the rat urine data from the Baixiangdan-dosed group and the control group 521 

(Q2Y(cum)=0.877, R2X(cum)=0.423, R2Y(cum)=0.973). 522 

Figure S3 PLS-DA scores plots of normal rat urine data on days 0, 1, 2, 3, 4 and 5.  523 
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Table 1 Identification of the Significantly Different Endogenous Metabolites in the Model Rats’ Urine 583 

No. tR (min) m/z Elemental composition identification results Data mining Model
b
 

1 5.75 162.0759 C16H12NO4 2-aminoadipic acid
c
 PLS-DA, ANN +(↑)

a
 

2 6.42 130.0869 C5H8NO3 5-oxoproline PLS-DA +(↑) 

3 19.19 353.2466 C20H33O5 11-epi-prostaglandin F2α PLS-DA, ANN +(↓) 

4 10.54 255.0259 C7H12O8P shikimate-5-phosphate PLS-DA, ANN +(↑) 

5 5.30 164.0805 C5H10NO5 4-hydroxyglutamate
c
 PLS-DA, ANN +(↑) 

6 19.33 373.2744 C16H29N4O4S biocytin PLS-DA +(↓) 

7 12.47 271.0607 C15H11O5 genistein
c
 PLS-DA, ANN +(↓) 

8 8.27 252.1595 C10H14N5O3 deoxyadenosine PLS-DA +(↓) 

9 19.19 371.2589 C20H35O6 6-keto-prostaglandin F1α PLS-DA +(↓) 

10 4.60 180.0619 C9H10NO3 hippuric acid
c
 PLS-DA, ANN +(↑) 

11 5.78 144.0601 C6H10NOS 5-(2-hydroxyethyl)-4-methyliazole PLS-DA +(↑) 

12 4.69 105.0683 C3H8N2O2 2,3-diaminopropionic acid PLS-DA, ANN +(↓) 

13 6.30 233.1219 C13H17N2O2 melatonin
c
 PLS-DA, ANN +(↑) 

14 4.60 118.0921 C5H12NO2 5-amino-valerate PLS-DA +(↓) 

15 16.31 203.1827 C10H27N4 spermine
c
 ANN +(↓) 

16 1.03 166.0808 C9H12NO2 L-phenylalanine
c
 ANN +(↓) 

17 5.78 116.0722 C5H10NO4 proline
c
 ANN +(↑) 

18 8.26 206.1565 C9H20NO4 pantothenol ANN +(↓) 

19 1.06 150.0911 C5H12NO2S L-methionine
c
 ANN +(↑) 

20 11.34 285.0753 C10H12N4O6 xanthosine ANN +(↓) 
a “↑” represents a higher level of metabolites, whereas “↓” represents a lower level of metabolites. All of the data represent the 584 

intensity values of the metabolites on day 5. “+” represents a statistically significant difference (p<0.05).b Compared to the initial state. 585 
c Confirmed using authentic standards.  586 
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Figure legends 

Figure 1 The work flow of the data analyses using AI techniques, including reducing the variables using 

a neurofuzzy logic model and the predictive ability assessment using a neural network model. 

Figure 2 The representative base peak intensity chromatograms of the rat urine obtained using the ESI 

positive mode of the UPLC-QTOF/MS. (A) normal group; (B) model group; (C) Baixiangdan 

capsule-dosed group. 

Figure 3 The predictions given by the ANN models generated using a dataset containing various 

numbers of independent variables. (A) 140 independent variables, (B) 14 independent 

variables. 

Figure 4 A comparison of the major differential metabolites in the urine of the model group (MG), the 

normal group (NG) and the Baixiangdan capsule-dosed group (BADG). (A) 2-aminoadipic acid, 

(B) 4-hydroxyglutamate, (C) melatonin. #
p <0.05 vs. the NG rats, *p <0.05 vs. the MG rats 

(student’s t-test). 
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Figure 1 The work flow of the data analyses using AI techniques, including reducing the variables using 

a neurofuzzy logic model and the predictive ability assessment using a neural network model. 
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Figure 2. The representative base peak intensity chromatograms of the rat urine obtained using the ESI 

positive mode of the UPLC-QTOF/MS. (A) control group (CG); (B) stress group; (C) Baixiangdan 

capsule dosed group (BCDG).  

(A) 

(B) 

(C) 
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Figure 3 The predictions given by the ANN models generated using a dataset containing various 

numbers of independent variables. (A) 140 independent variables, (B) 14 independent variables (reduced 

dimensions). 
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Figure 4 A comparison of the major differential metabolites in the urine of the stress group (SG), the 

control group (CG) and the Baixiangdan capsule-dosed group (BCDG). (A) 2-aminoadipic acid, (B) 

4-hydroxyglutamate, (C) melatonin. #p <0.05 vs. the CG rats, *p <0.05 vs. the SG rats (student’s t-test). 
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Graphical Abstract 

An integrating application of multivariable analysis asn artificial intelligence technology (artificial neural 

networks and neurofuzzy logic) was firstly used to find out potential biomarkers related to the occurrence and 

development of liver-Qi syndrome PMS induced by electric stimulation in rats. 

Multivariable analysis Artificial intelligence analysis

Visualized the general

changes of the holistic

metabolic profiling.

Discover  potential biomarkers.

Integration
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