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Abstract 25 

The potential of partial least squares regression (PLSR) and multivariate curve resolution 26 

alternating least squares (MCR-ALS) is evaluated for simultaneous determination of 27 

diclofenac (DCF), naproxen (NAP), mefenamic acid (MEF) and carbamazepine (CBZ) 28 

as target analytes and gemfibrozil (GEM) as interference in synthetic and real 29 

environmental samples. The analysis of first-order UV-Vis spectra is performed using 30 

PLSR with different variable selection methods including variable importance in 31 

projection (VIP), recursive partial least squares (rPLS), regression coefficient (RV) and 32 

uninformative variable elimination (UVE) and using MCR-ALS with correlation 33 

constraint (MCR-ALS-CC). The obtained statistical parameters in terms of relative error 34 

(RE), regression coefficient (R2) and root mean square error (RMSE) were satisfactory 35 

for calibration and validation sets. Furthermore, in real environmental samples, the 36 

obtained statistical parameters of PLSR using VIP and rPLS and also MCR-ALS-CC 37 

were reasonable by considering the heavy overlap of target analytes and complex 38 

samples matrices. In general, PLSR showed better performance for determination of 39 

analytes in samples which are free of interference or contains calibrated interference(s). 40 

On the other hand, MCR-ALS-CC allowed for the accurate determination of analytes in 41 

the presence of unknown interference and more complex sample matrices. 42 

Keywords: Multivariate calibration; Partial least squares; Multivariate curve resolution; 43 

Pharmaceuticals; Spectrophotometry. 44 
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1. Introduction 54 

Analytical chemistry involves samples that are far from simple and often contain many 55 

components or a few sought analytes in the presence of other chemical interferences. 56 

Pharmaceuticals are synthetic chemicals which may react differently in the environment 57 

and some of them enter into the environment and are persistent, therefore, determination 58 

of this new class of pollutants which are used in a large volume every year is of prime 59 

importance.1-4 60 

A critical aspect in quantitative analysis with first-order data (e.g., UV-Vis spectra) is the 61 

occurrence of overlapping spectra and matrix effects, which may lead to a significant 62 

difference in the response of an analyte in a sample as compared to a pure standard 63 

solution.5, 6 Multivariate calibration methods have been proposed to overcome 64 

fundamental mathematical challenges occurred during analysis of these mixtures. Among 65 

different multivariate calibration methods, partial least squares regression (PLSR) and 66 

multivariate curve resolution-alternating least squares (MCR-ALS) have attracted 67 

attention in chemistry in recent years.7 68 

PLSR has become the most popular multivariate calibration method because of the 69 

quality of its calibration models and the ease of its implementation.8 PLSR has been 70 

frequently used in the spectrophotometric analysis of pharmaceuticals in complex 71 

biological and environmental samples.9-12
 However, the performance of PLSR method is 72 

strongly depends on the quality of variable selection methods. If most significant 73 

variables are included in the model, thus, the potential of the model in prediction of the 74 

desired properties in unknown samples will increase.13
 Popular variable selection methods 75 

include: variable importance in projection (VIP)14, 15, regression vector (RV), 76 

uninformative variable elimination (UVE)16, 17 and recursive weighted PLS (rPLS).18
 To 77 
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the best of our knowledge, there is no clear study showing the pros and cons of different 78 

variable selection methods in spectroscopic data.   79 

 In this study, the aforementioned PLSR techniques are directly compared with MCR- 80 

ALS, which tries to solve the mixture analysis problems into a bilinear model of 81 

meaningful pure component contributions.19
 MCR-ALS has been frequently used to 82 

resolve and provide pure concentration and spectral profiles of target compounds 83 

indifferent types of complex processes and mixtures for determination of pharmaceuticals 84 

in environmental matrices.20, 21 The MCR-ALS with correlation constraint (MCR-ALS- 85 

CC) can be used as a useful tool for quantitative spectroscopic measurements. This 86 

constraint is extended to quantitative analysis of spectral data in the simultaneous analysis 87 

of different analytes in samples of increasing complexity, including pharmaceutical and 88 

agricultural samples.20, 22-24 Generally, the predictive capability of MCR-ALS-CC for 89 

determination a particular analyte in unknown mixtures and natural samples especially in 90 

presence of interferences is comparable to the results obtained by PLSR calibration 91 

approaches using proper variable selection methods. The main advantage of using MCR- 92 

ALS instead of PLSR is the possible recovery of the spectral information of target 93 

analytes and unknown interferences.20  94 

In the present contribution, simultaneous analysis of pharmaceuticals in aquatic media in 95 

the presence of interferences and matrix effects was considered as an example for 96 

evaluation of the potential of MCR-ALS and PLSR combined with various variable 97 

selection methods for simultaneous spectrophotometric determination of constituents with 98 

heavy overlap in the spectral direction. In this regard, performance of different algorithms 99 
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were compared using statistical parameters, such as relative error (RE, %), root-mean 100 

square error (RMSE) and coefficient of multiple determination (R2).  101 

2. Theory 102 

2.1 Partial least squares (PLS) 103 

PLSR is a multivariate method that finds a linear regression model by projecting 104 

the predicted variables and the observable variables to a new space. In the original PLS 105 

method all variables can be used.8 However, to have a robust and stable model, only 106 

significant variables should be kept in the model. In this regard, various variable selection 107 

methods, such as variable importance in projection (VIP)15, regression vector (RV) 8, 108 

uninformative variable elimination (UVE) 16and recently developed recursive weighted 109 

partial least squares (rPLS) 18 have been proposed. Among these methods, rPLS which 110 

iteratively reweights the variables using the PLS regression coefficients can be considered 111 

as a new idea for variable selection. More details regarding the PLSR model and 112 

performance of different variable selection methods in PLS can be found elsewhere.15, 25- 113 

27 However, a brief description of rPLS method is presented owing to its novelty. 114 

In rPLS, two different models of independent variables, X, are used, ��� the original 115 

model and ��� the alternative model. In this regard,���is an approximation of the original 116 

data and ���is an approximation of ���: 117 

��� = ���
� (1) 118 

��� = ���
�             (2) 119 

where W(J×F) and A(J×1) denote the loading weights in the original model and the 120 

alternative model, respectively. The difference between the alternative model and the 121 

original model is calculated as follows: 122 
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� = ��� − ��� = ���
�-���� (4) 123 

The optimization is performed using the goal of minimization of the objective function 124 

which is the square of the Frobenius norm of residual matrix, E as follows: 125 


���‖���
� − ����‖�

�           (5) 126 

After each weighting, some variables have been amplified, and others have become 127 

attenuated. This is the basis of variable selection by rPLS method.18 128 

 129 

2.2 Multivariate curve resolution-alternating least squares (MCR-ALS) 130 

MCR is based on a bilinear additive model which can be expressed by the following 131 

expression: 132 

X=CS
T
+E (6) 133 

where X(I×J) is a data matrix containing the UV–Vis spectra. The C matrix contains the 134 

concentration profiles of all components and ST the corresponding pure spectra. Also, E 135 

contains the unmodelled part of the data not explained by the bilinear model.19
 The 136 

readers encourage reading references 5, 19 and 20to get more information about MCR- 137 

ALS.  138 

The number of components can be obtained by singular value decomposition (SVD).19 To 139 

start ALS optimization, an initial estimate of concentration or spectral profiles based on 140 

variable selection methods, such as simple-to-use interactive self-modelling mixture 141 

analysis (SIMPLISMA) is needed.28
 Various constraints can be used during ALS 142 

optimization, such as non-negativity 29, spectral normalization, known spectral profiles 143 

(equality constraint), and correlation constraint. Correlation constraint builds local 144 

internal univariate calibration models between reference concentration values in 145 
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calibration samples and values obtained by MCR.20, 22 Using this local model the 146 

concentration of calibration samples is calculated and then, in order to predict the 147 

concentration of target analytes in prediction samples, the parameters of calibration model 148 

are used. In the same way, each ALS iteration is completed after updating the obtained 149 

values of prediction. Also, this constraint can be used to correct matrix effects.23, 24 In 150 

detail,	����
��� the concentrations estimated by ALS for the calibration set are regressed 151 

against ����
���,	the known values (reference concentrations), in each iteration: 152 

����
��� = b����

��� + b�              (7) 153 

where the slope b and offset b0 are obtained by fitting regression model. The predicted 154 

concentration vector, ������, obtained by: 155 

������ =
�����
��� !"

!
  (8) 156 

These models are then used to predict concentration in validation and test samples. 157 

 158 

3. Experimental 159 

3.1 Chemicals and solvents 160 

Analytical standards of diclofenac (DCF), naproxen (NAP), mefenamic acid (MEF), 161 

carbamazepine (CBZ) and gemfibrozil (GMF) were provided by RouzDarou 162 

Pharmaceutical Company (Tehran, Iran).Selected pharmaceuticals as target analytes and 163 

their physic-chemical properties are shown in Table 1. 164 

Table 1 near here 165 
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Spectroscopy grade methanol was purchased from Merck (Darmstadt, Germany). Also, 166 

formic acid (analytical grade) for sample preparation and pH adjustment was provided 167 

from Merck (Darmstadt, Germany).  168 

 169 

3.2 Preparation of standard and real samples 170 

Stock standard solutions of pharmaceuticals were prepared in methanol-water (77:23) at 171 

concentration 1250.0 µgmL-1 adjusted at pH=5.0 by formic acid buffer and were kept in 172 

refrigerator at 4 °C in the dark. The river, well and tap waters samples were filtered 173 

through a 0.45 µm filters. The composition of the real samples was fixed by mixing 174 

methanol to obtain 77:23% ratio. Thirty-eight synthetic mixtures were prepared in the 175 

concentration range of 1.0 and 30.0 µg mL-1 and divided to calibration (22 samples), 176 

validation (7 samples) and test (9 samples) sets. In order to reduce the effects of 177 

uncontrolled factors, central composite design (CCD) 30 with five concentration levels 178 

was used to build the calibration set. The CCD was used to control the effects of 179 

uncontrollable factors, to have a randomized calibration set, and to have an orthogonal 180 

and rotatable calibration design. Concentration of validation set adopted randomly and 181 

test set fixed at three concentration levels. Standard solutions were obtained by adding 182 

required volumes of pharmaceutical stock solution. Table 2 shows the concentration 183 

matrix used to prepare calibration, validation and test set. 184 

Table 2 near here 185 

 186 

3.3 Instrumentation 187 
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Absorbance measurements were performed on a Lambda 25 spectrophotometer 188 

(PerkinElmer, USA) with the use of 1.0 cm glass cell. The spectra were acquired in a 189 

wavelength range from 200 to 411 nm with a resolution of 1 nm. The pH measurements 190 

were taken with a pH-meter AZ 86502 (Taichung, Taiwan). All data were recorded at 191 

room temperature. For the preparation of all samples, deionised water purified with 192 

cartridges from Millipore (Milli-Q) to a resistivity of 18.2 MΩ.cm was used. 193 

 194 

3.4 Data analysis 195 

Data analyses were performed on an Intel Core i7 based ASUS personal computer. All 196 

calculations were performed in MATLAB R2013a (Mathworks, Natick, MA, USA). The 197 

MCR–ALS and PLS toolboxes were used for building calibration models.31, 32 Design- 198 

Expert 7.0.0 Trial (Stat-Ease Inc., Minneapolis, USA) was used for designing calibration 199 

and validation sets.33 The MATLAB codes for rPLS and UVE used for building their 200 

calibration models were obtained from corresponding references.18, 34, 35 201 

 202 

4. Results and discussion 203 

4.1 Calibration set 204 

The raw spectra of different samples of calibration set are shown in Figure 1inwavelength 205 

range 240–411 nm with 1nm resolution and in concentration range of 1.0 and 30.0 µg mL- 206 

1. Figure 1(a)-(c) shows the raw spectra of different samples in calibration, validation and 207 

test sets, respectively. Also, Figure 1(d) shows pure spectra of four target analytes (CBZ, 208 

NAP, DIC and MEF) and GMF as calibrated interference at concentration of 15 µgmL-1. 209 

The obtained UV-Vis spectra showed some problems, such as peak overlap, noise and 210 
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narrow band scanned wavelengths. Consequently, only wavelengths in ranges 200-225 211 

and 241-411nm were kept and wavelengths with noisy absorbance and absorbance 212 

outside of linear range of instrument were eliminated. As shown in Figure 1(d), there is a 213 

heavy overlap between pure spectra of target analytes. In addition, GMF (interference) 214 

has low absorbance intensity compare to other analytes and also a heavy overlap with 215 

them. As it can be seen from pure spectra and mixtures, obtaining pure qualitative and 216 

quantitative results from target compounds using conventional tools seems impossible. As 217 

a result, multivariate calibration using PLSR and MCR-ALS may address this complex 218 

situation. 219 

Figure 1 near here 220 

At first, PLS was applied to develop a multivariate model using calibration set data. The 221 

X- and Y-block data sets were prepared before any PLS modelling using different 222 

preprocessing and variable selection methods. Various preprocessing methods including 223 

mean-centring, auto-scaling 8 and orthogonal signal correction (OSC)13, 36 were tested and 224 

mean-centring was chosen as the most proper one because of the higher sensitivity and 225 

better statistical parameters than other preprocessing methods. As it has been already 226 

mentioned, variable selection methods of VIP14, 15, RV, UVE16, 17 and rPLS18
 were taken 227 

into account for PLS modelling in this study. In order to select the number of factors in 228 

PLS modelling, leave-one-out cross validation (LOO-CV)37 was used and five latent 229 

variables (LVs) were chosen for UVE, VIP, RV and rPLS according to the minimum 230 

values of RMSE of cross-validation (RMSE-CV). It is important to point out that using 231 

LOO-CV helps us to select the significant number of components in the model and 232 

therefore, to avoid model overfitting. Table 3 shows obtained statistical parameters for 233 
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calibration set. Table 3 compares different PLSR variable selection methods in terms of 234 

R2, RMSE and RE. The obtained statistical parameters of PLSR were RE 1.4 to 10.8%, 235 

R20.93 to 0.99and RMSE between 0.25 and 1.87. These parameters confirm better 236 

performance of rPLS than other methods almost for all analytes. 237 

Table 3 near here 238 

On the other hand, MCR-ALS was applied to develop a multivariate model using 239 

calibration set data under application of proper constraints, such as non-negativity29, 240 

spectral normalization, known pure spectral profiles (equality constraint)19, and 241 

correlation constraint. In addition, SIMPLISMA28
 was used for calculation of the initial 242 

estimate of spectral profiles. Furthermore, the pure spectral profiles of standard 243 

compounds were used as initial estimates to check the MCR-ALS solutions and also to 244 

reduce the effects of rotational ambiguities.19
 In order to test MCR-ALS-CC ability to 245 

predict the calibration set itself and also to make a comparison between the results 246 

obtained by PLSR modelling with MCR-ALS-CC, calibration data set was used as second 247 

subset to perform validation. It is important to note that the results obtained by MCR-ALS 248 

with the correlation constraint was used to correct sample matrix effects by using the 249 

regression model for calibration set as a reference for validation and test sets. Table 3 250 

shows the statistical parameters for calibration set. The obtained statistical parameters for 251 

MCR-ALS-CC were 2.7 to 13.7% RE, R2 between 0.89 and 0.99 and RMSE values 0.46 252 

to 2.35 which are comparable with PLSR.  253 

In general, DCF shows worst statistical parameters for all methods and MEF shows the 254 

best ones. In this regard, DCF shows RE values 6.7% for PLS (rPLS as variable selection) 255 

and 11.5% for MCR-ALS and R2 values 0.97 for PLS and 0.92 for MCR-ALS, 256 
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respectively. The possible reasons for this trend can be interpreted using Figure 1(d).In 257 

this figure, the UV-Vis spectrum of DCF depicts low absorbance intensity, lack of 258 

selective region and heavy overlap with other analytes. In contrast to DCF, MEF shows 259 

RE values 1.4% for PLS (rPLS as variable selection) and 2.67% for MCR-ALS and 260 

R2values 0.99 for both methods. In MEF UV-Vis spectrum in Figure 1(d), there is a 261 

selective region for this component in wavelength window 340-390 nm. In addition, 262 

despite the existence of other analytes, the MEF signal is simply recognisable in five 263 

concentration levels in calibration set spectra (Figure 1(a)). 264 

On the other hand, inspection of statistical parameters of calibration set in terms of RE, R2 265 

and RMSE for different variable selection methods showed that rPLS method has a better 266 

performance in comparison to three other variable selection methods for accurate 267 

calibrating of analytes. However, the performance of VIP, RV and UVE are also 268 

acceptable at a specified level. In addition, MCR-ALS with correlation constraint showed 269 

reasonable statistical performance for calibration set but not better than PLS with four 270 

different variable selection methods.  271 

In summary, PLS showed better performance than MCR for calibration samples where 272 

the effect of matrix and possible interfering components do not exist. Now, it is important 273 

to test the prediction ability of PLSR and MCR-ALS-CC models with external sets (i.e., 274 

validation and test sets) which may include different matrix effects. The sample matrix 275 

was changed to test the applicability of the developed calibration model in the cases with 276 

different sample matrices. 277 

 278 

 279 
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4.2 Validation set 280 

The raw spectra of different samples of validation set are shown in Figure 1(b) in wavelength 281 

range 240–411 nm. Table 2 shows the different concentration of validation set which adopted 282 

randomly in seven different samples. As same as calibration set, the absorbance data of 283 

validation set was optimized before any PLS modeling by preprocessing and variables selection 284 

methods. Table 3 shows statistical parameters for validation set in terms of RE, R2 and RMSE, 285 

which provided a basis for comparison between PLSR (with different variable selection 286 

methods) and MCR-ALS-CC. The obtained statistical parameters of PLSR using rPLS, VIP, 287 

UVE and RV are approximately the same, shows 5.9 to 22.0% RE, 0.42 to 0.99 R2 and 0.67 to 288 

4.71 RMSE. The MCR-ALS algorithm was performed under application of same constraints as 289 

calibration set. The obtained statistical parameters for MCR-ALS-CC were 6.0 to 24.3% RE, R2 290 

between 0.3 and 0.99 and RMSE values between 0.71 to 5.23. As it can be seen, the statistical 291 

parameters for validation set get worse and this is due to the change in composition and 292 

concentration levels of the included samples. Again, PLSR shows a better performance than 293 

MCR-ALS. However, the main priority of MCR-ALS over PLS is the ability to recover the pure 294 

resolved spectral profile for each component even interference(s). As an instance, Figure2 shows 295 

the resolved MCR–ALS spectral profiles for validation set. This is one of the most important 296 

features of MCR-ALS which compensate the worse statistical parameters of this method over 297 

PLS for calibration and validation samples. Furthermore, the resolved spectral profile of 298 

interference(s) can help for identification of these compounds (for example GEM in this study).  299 

  300 

Figure 2 near here 301 

 302 
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4.3 Real environmental samples 303 

To test the applicability of the developed models to quantify target analytes in complex samples, 304 

three different environmental samples (tap, well and farm waters) were used as test set. Figure 305 

1(c) shows the raw UV-Vis spectra of these samples in wavelength range 240–411 nm. Also, 306 

Table 2 shows the different spiked concentrations of test set which fixed at three concentration 307 

levels include 5, 15 and 25 ppm. The same preprocessing methods of calibration and validation 308 

sets were used for test set. Table 4shows statistical parameters for test set, which again provided 309 

a comparison between different models. However, in this case, only the best variable selection 310 

methods for PLS confirmed by in previous steps are kept (i.e., VIP and rPLS).  311 

Table 4 near here 312 

The obtained statistical parameters of PLSR using VIP and rPLS and also MCR-ALS were 313 

satisfactory by considering the heavy overlap of target analytes and complex samples matrices. 314 

The vast range of errors clarifies the difference between these models.  315 

Figure 3 near here 316 

As shown in Figure3 the maximum absorbance of matrix interferences in test set samples 317 

especially in well water samples, occurs in 280 nm where the maximum absorbance of DCF 318 

occurred (Figure 1(d)). It can be concluded that this overlapping is the main source of DCF 319 

prediction error. In contrast to PLSR which is more sensible to the existence of interference, 320 

MCR-ALS has better performance due to its nature. Therefore, the results of MCR-ALS for DCF 321 

and CBZ are much better than PLS by VIP and rPLS as variable selection methods. For NAP, 322 

the results of three methods are comparable. However, in case of MEF, PLS give much better 323 

results than MCR-ALS. In this case, PLS-VIP has better performance than rPLS. 324 
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Although, there is no clear trend whether use PLSR or MCR-ALS-CC, but generally 325 

PLSR preferred for determination of analytes in samples which are free of interference 326 

and have simple matrixes using proper data preprocessing and variable selection. In this 327 

study PLS-VIP shows better performance than other analysed methods. On the other 328 

hand, MCR-ALS using correlation constraint allowed for the accurate determination of 329 

analytes in the presence of unknown interference and more complex matrix. Note that 330 

additional advantage of MCR-ALS was the possible recovery of the spectral information 331 

of analytes and of possible unknown interferences (GMF in this study). 332 

It should be pointed out that combination of a simple spectrophotometric method and 333 

multivariate calibration for simultaneous analysis of a complex mixture of five pharmaceuticals 334 

is comparable with the performance of sophisticated instrumental techniques, such as high- 335 

performance liquid chromatography-diode array detector (HPLC-DAD).21 As an example, in one 336 

of the recent studies, same pharmaceuticals were extracted using solid-phase extraction (SPE) 337 

from water matrices and then were analyzed using HPLC-DAD.21 The predicted concentrations 338 

obtained for spiked river and well water samples showed 5.0 to 9.3%  and 6.33 to 10.67% RE, 339 

respectively which are comparable with the results of this study (Table 4). Therefore, in spite of 340 

the heavy overlap of the spectral profiles of target compounds and the lack of selectivity, 341 

multivariate calibration methods can get unbiased results. RE is a quantitative measure of the 342 

bias of an analytical method. According to the results in Table 4 for different spiked test 343 

samples, the RE values are acceptable. 344 

 345 

 346 

 347 
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Conclusions 348 

 Combination of multivariate calibration methods to spectroscopic techniques can be an 349 

instrumentally straight-forward and rapid technique to improve the identification and 350 

quantification ability of these methods for simultaneous determination of target 351 

compounds in different sample matrices. In this study, PLSR and MCR-ALS were used 352 

for determination of five pharmaceuticals in different environmental samples. PLSR 353 

performance was evaluated using different data preprocessing and variable selection 354 

methods including VIP, RV, UVE and rPLS. Also, MCR-ALS was evaluated using 355 

correlation constraint. Evaluating these methods based on statistical parameters of RE, R2 356 

and RMSE showed that PLSR with VIP and rPLS as variable selection methods are 357 

appropriate for accurate determination of analytes in samples containing simple matrices. 358 

On the other hand, MCR-ALS-CC preferred for determination of analytes in more 359 

complex sample matrices owing to additional advantage of MCR-ALS method for 360 

possible recovery of the spectral information of analytes and of possible unknown 361 

interferences in the analysed samples. 362 
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Figure captions 

Figure 1 The raw UV-Vis spectra of different samples. (a) Calibration set, (b) validation set, (c) test set (tap, well and farm waters at 

three concentration levels 5, 15 and 25 µgmL
-1
) and (d) pure standards at concentration of 15.0 µgmL

-1
. 

 

Figure 2 Resolved MCR–ALS-CC spectral profiles for four target analytes DCF, NAP, MEF and CBZ and interference GEM in 

standard samples. The summation of the spectra for five components is also shown.  

 

Figure 3 UV-Vis spectra for tap, well and farm water samples as test set without pharmaceuticals.  
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Figure 1 
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Figure 2 
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Figure 3 
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                    Table 1 Pharmaceuticals selected as target analytes and their physicochemical properties. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name Purity (%) Molecular Mass (gmol
-1
) Molecular Formula pKa 

Diclofenac 99.66 296.148 C14H11Cl2NO2 4.15 

Naproxen 99.6 230.259 C14H14O3 4.15 

Mefenamic Acid 99.76 241.285 C15H15NO2 4.18 

Gemfibrozil 99.8 250.333 C15H22O3 4.75 

Carbamazepine 99.6 236.269 C15H12N2O 13.94 
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                 Table 2 The concentration matrix used to prepare calibration, validation and test set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set Number DCF(ppm) NAP(ppm) MEF(ppm) GMF(ppm) CBZ(ppm) Matrix 

Calibration 1 15.5 1 15.5 15.5 15.5 - 

  2 23.5 7.5 23.5 23.5 7.5 - 

  3 7.5 23.5 23.5 7.5 23.5 - 

  4 7.5 23.5 23.5 23.5 7.5 - 

  5 15.5 15.5 30 15.5 15.5 - 

  6 23.5 23.5 23.5 7.5 7.5 - 

  7 1 15.5 15.5 15.5 15.5 - 

  8 7.5 7.5 23.5 23.5 23.5 - 

  9 15.5 15.5 15.5 1 15.5 - 

  10 15.5 15.5 1 15.5 15.5 - 

  11 30 15.5 15.5 15.5 15.5 - 

  12 15.5 30 15.5 15.5 15.5 - 

  13 15.5 15.5 15.5 15.5 30 - 

  14 23.5 23.5 7.5 7.5 23.5 - 

  15 7.5 23.5 7.5 23.5 23.5 - 

  16 23.5 23.5 7.5 23.5 7.5 - 

  17 23.5 7.5 23.5 7.5 23.5 - 

  18 15.5 15.5 15.5 15.5 1 - 

  19 23.5 7.5 7.5 23.5 23.5 - 

  20 15.5 15.5 15.5 15.5 15.5 - 

  21 7.5 7.5 7.5 7.5 7.5 - 

  22 15.5 15.5 15.5 30 15.5 - 

Validation 1 24 20 9 23.5 1 - 

  2 19.5 4 6 7 24 - 

  3 16.5 1 14 20.5 8 - 

  4 26.5 21.5 12 18 23 - 

  5 19 11.5 1 6.5 9 - 

  6 15 8 19 14.5 25 - 

  7 26 6 8.5 4.5 10 - 

Test 1 5 5 5 5 5 Tap Water 

  2 15 15 15 15 15 Tap Water 

  3 25 25 25 25 25 Tap Water 

  4 5 5 5 5 5 Well Water 

  5 15 15 15 15 15 Well Water 

  6 25 25 25 25 25 Well Water 

  7 5 5 5 5 5 Farm Water 

  8 15 15 15 15 15 Farm Water 

  9 25 25 25 25 25 Farm Water 
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       Table 3 Comparison of PLSR variable selection methods and MCR-ALS-CC AFOMs for modeling and 

quantification of calibration and validation set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Calibration 

 
Validation 

 

PLS MCR-ALS PLS MCR-ALS 

UVE VIP RV rPLS 
 

UVE VIP RV rPLS 
 

DCF R2 0.93 0.95 0.96 0.97 0.92 
 

0.44 0.42 0.47 0.43 0.30 

 
RMSE 1.87 1.72 1.44 1.17 1.98 

 
4.18 4.40 3.76 4.71 5.23 

 
RE (%) 10.76 9.88 8.27 6.68 11.49 

 
19.58 20.59 17.62 22.06 21.07 

NAP R2 0.97 0.98 0.94 0.98 0.89 
 

0.97 0.96 0.92 0.98 0.85 

 
RMSE 1.24 1.12 1.70 0.95 2.35 

 
1.37 1.32 2.19 1.40 3.49 

 
RE (%) 7.16 6.47 9.82 5.45 13.66 

 
10.89 10.52 17.41 11.10 24.31 

MEF R2 0.99 0.99 0.99 0.99 0.99 
 

0.99 0.99 0.99 0.99 0.99 

 
RMSE 0.43 0.29 0.31 0.25 0.46 

 
0.89 0.70 0.67 0.73 0.71 

 
RE (%) 2.44 1.67 1.79 1.41 2.67 

 
7.84 5.93 5.97 6.45 5.99 

CBZ R2 0.96 0.98 0.95 0.98 0.94 
 

0.98 0.97 0.97 0.98 0.97 

 
RMSE 1.38 1.64 1.55 1.10 1.68 

 
1.25 1.56 1.66 1.37 2.18 

 
RE (%) 7.94 9.42 8.92 6.31 9.71 

 
7.43 9.30 9.89 8.15 14.16 
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Table 4 Comparison of PLSR variable selection methods and MCR-ALS AFOMs for modeling and quantification of test 

set (spiked tap, well and farm waters at three concentration levels 5, 15 and 25 µg.mL
-1

). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Tap water 

 
Well water 

 
Farm water 

  
PLS - VIP rPLS MCR-ALS 

 
PLS - VIP rPLS MCR-ALS 

 
PLS - VIP rPLS MCR-ALS 

DCF R2 0.99 0.99 0.99 
 

0.98 0.48 0.99 
 

0.99 0.93 0.99 

 
RE (%) 16.34 19.79 13.28 

 
18.32 46.05 12.44 

 
11.63 22.41 4.41 

NAP R2 0.97 0.99 0.71 
 

0.91 0.96 0.58 
 

0.86 0.99 0.56 

 
RE (%) 12.30 8.40 32.46 

 
21.70 16.85 37.07 

 
22.62 9.46 37.09 

MEF R2 0.99 0.99 0.99 
 

0.99 0.99 0.99 
 

0.99 0.99 0.99 

 
RE (%) 1.11 1.34 3.02 

 
6.97 5.33 9.79 

 
13.05 15.48 17.00 

CBZ R2 0.99 0.97 0.99 
 

0.99 0.85 0.99 
 

0.99 0.99 0.99 

 
RE (%) 5.33 8.83 2.97 

 
4.22 25.03 3.37 

 
9.39 14.43 7.45 
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