

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Pd nanoparticles supported on Mg-Al-CO ₃ layered double hydroxide
2	as an effective catalyst for methanol electro-oxidation
3	Zhijun Jia, Yi Wang*, Tao Qi
4	National Engineering Laboratory for Hydrometallurgical Cleaner Production
5	Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing
6	100190, China
7	*Corresponding authors: Y. Wang, Fax: (+86) 10 82544848-802, Tel: (+86) 10
8	82544967, E-mail: <u>wangvi@ipe.ac.cn</u>
9	
10	Abstract: Pd/C and Pd/Mg-Al-CO ₃ LDH (Pd/LDH) catalysts were prepared and their
11	catalytic performances for methanol electro-oxidation in the alkaline solution were
12	investigated in this work. The result of cyclic voltammograms proves that Pd/LDH
13	has a much higher specific activity than Pd/C. CO stripping results indicate that
14	Mg-Al-CO ₃ LDH could facilitate the oxidative removal of adsorbed CO and improve
15	the CO poison resistance of Pd/LDH catalysts. The chronoamperograms also indicate
16	Pd/LDH has a better stability. All the results imply that Pd/LDH is very promising for
17	probable application in DMFC field. Furthermore, the insight for the increase of the
18	specific activity is discussed in this work.
19	Keywords: Palladium nanoparticles; Layered double hydroxide; Electro-catalyst;
20	Methanol electro-oxidation
21	

1 **1. Introduction**

Direct methanol fuel cells (DMFCs) are attractive as portable power sources 2 primarily owing to their low operating temperature, high energy conversion efficiency, 3 low pollutant emission, low cost and ease of storage [1]. Currently, platinum (Pt) and 4 its allows are the best electrocatalysts for methanol oxidation but they suffer from high 5 6 cost, limited reserve and serious poisoning by the strong adsorption of oxidation 7 intermediates, such as CO [2]. Up to date, palladium (Pd), with a similar crystal 8 structure as well as electronic properties as Pt, is a promising alternative to Pt-based 9 electrocatalysts due to its relatively lower cost, good catalytic activity in alkaline media and higher resistance to CO poisoning towards methanol electro-oxidation 10 [2-4]. Although a number of Pd-based catalysts, such as Pd-C and Pd-oxides, have 11 12 been developed for enhancing the methanol oxidation activity [5-8], it remains challenging to develop excellent catalysts with high electrocatalytic activities which 13 14 are feasible for practical applications.

Layered double hydroxides (LDHs), also known as anionic clays, are a family of 15 layered materials consisting of positively charged brucite-type octahedral layers 16 where the charge-balancing anions and water molecules occupy the interlayer space 17 [9-12]. In recent years, LDHs have attracted growing interest for applications in 18 numerous fields owing to their desirable properties, such as good anion-exchange 19 ability, high thermal stability, and good catalytic activity. For example, Mg-Al-CO₃ 20 21 LDH was manifested as a hydroxide ion conductor due to its anion-exchange ability. An alkaline-type direct ethanol fuel cell (DEFC), using this kind of LDHs as the 22

electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of
fuel, exhibits excellent electrochemical performance from room temperature to 80°C:
open circuit voltage of 0.87 V and electric power of more than 65 W cm⁻² were
obtained [9]. Methanol or ethanol electro-oxidation process is a hydroxide ion related
reaction and Mg-Al-CO₃ LDH is a hydroxide ion conductor. Therefore, it will be
interesting to see if the incorporation of Pd particles into LDH is a good way to
fabricate a new effective catalyst for DMFCs.

8 Herein, we utilized the hydroxide conductor (Mg-Al-CO₃ LDH) and carbon black 9 (XC-72, Gashub), as support materials, synthesized Pd/Mg-Al-CO₃ LDH and Pd/C 10 catalysts and investigated the electrocatalytic activity of the as-prepared catalysts for 11 methanol oxidation. Furthermore, the insight for the increase of the specific activity 12 was also discussed in this work.

13

14 **2.** Experimental

15 2.1 Preparation of Mg-Al-CO₃ LDH

In a typical synthesis, co-precipitated Mg-Al-CO₃ LDH was synthesized by simultaneous dropwise addition of 30 mL of 1.0 M Mg(NO₃)₂ and 30 mL of 0.5 M Al(NO₃)₃ solutions to 100 mL of 1.5 M Na₂CO₃ solution during constant stirring. The pH was adjusted to ~10 by addition of NaOH solution. Then the vessel was transferred to water bath kept at 65 °C for 6 hours. Finally the precipitate was filtered, washed with deionized water, and dried in air at 80 °C.

22 2.2 Preparation of catalysts

To synthesize the electrocatalysts, 100 mg support materials including carbon black
and Mg-Al-CO ₃ LDH were added into 75 mL deionized water and ultra-sonicated for
8 min, respectively. Then 41.7 mg $PdCl_2$ and 103.7 mg sodium citrate
(Na ₃ C ₆ H ₅ O ₇ ·2H ₂ O) were added into above suspensions. Afterwards, excess amount of
0.01 M NaBH ₄ aqueous solution (freshly prepared) was added dropwise, followed by
stirring for 6 hours at room temperature. Finally, the suspensions were filtered and
washed several times with deionized water, and the remaining solids were dried at 60° C
overnight. The catalysts were harvested and denoted as Pd/C and Pd/LDH,
respectively. The theoretical content of Pd is 20 wt%.
2.3 Characterization of catalysts
Structure and morphology of the catalysts were investigated by X-ray diffraction
(XRD, Smartlab (9 kw), Cu K α) and transmission electron microscopy (TEM,
JEM-2100, 200 kV). The elemental analysis was performed by Inductively Coupled
Plasma Atomic Emission Spectrometry (ICP-AES, IRIS Intrepid II XSP
(ThermoFisher)). The nature of surface species of catalysts was investigated by X-ray
photoelectron spectroscopy (XPS, Escalab 250Xi).

17 The electrochemical measurements were conducted on an electrochemical 18 workstation system (CHI760D, Chenhua, Shanghai, China) with a three-electrode cell 19 using Pt foil and HgO/Hg electrode as the counter and reference electrodes, 20 respectively. The working electrode was prepared by dropping 5 μ L of the 21 electrocatalyst ink onto glassy carbon electrode (GCE). The ink was prepared by 22 ultrasonically mixing 5 mg electrocatalyst sample in 2 mL of ethanol for 8 min. Then

1	2μ L of Nation solution was dropped on top to fix the electrocatalysts. All potentials in
2	this work were given versus HgO/Hg electrode. Cyclic voltammetry (CV)was
3	performed in a 1.0 M KOH+1.0 M methanol solution, where oxygen was removed by
4	purging N_2 for 15 min. The CV experiments were conducted at a sweep rate of 50 mV
5	$s^{-1}\!,$ with potentials ranging from –0.8 V to 0.3 V. Electrochemial impedance
6	spectrums (EIS) were measured at -0.2 V from 100 KHz to 0.01 Hz and the perturbing
7	AC amplitude was 5 mV. CO stripping experiments were performed as follows: after
8	purging the solution with N_2 for 20 min, gaseous CO was bubbled for 15 min to form
9	CO adlayer on catalysts while maintaining potential at -0.8 V. Then excess CO in
10	solution was purged with $N_{\rm 2}$ for 20 min and CO stripping voltammetry was recorded
11	in 1 M KOH solution at 50 mV s ^{-1} . The chronoamperometry (CA) was conducted at
12	-0.15 V for 3600 s.

13

14 **3. Results and discussion**

15 3.1 Structural and compositional analysis

16 XRD patterns of the Pd/C and Pd/LDH catalysts are shown in Fig. 1(a). There are 17 five diffraction peaks corresponding to (111), (200), (220), (311) and (222) planes of 18 Pd at ca. 40.1, 46.6, 68.1, 82.1 and 86.6°, respectively [13-15]. The diffraction peak at 19 ca. 25° in the pattern of Pd/C belongs to the characteristic peak of carbon [15]. For 20 Pd/LDH catalyst, other peaks except that associated with metallic Pd are well 21 matched with the characteristic peaks of Mg-Al-CO₃ LDH [9]. According to 22 Debye-Scherrer equation, the diameters of Pd particles on Pd/C and Pd/LDH are

1 11.54 and 7.89 nm, respectively. Fig. 1 (f) presents the morphology of Mg-Al-CO₃ LDH and it is apparent to see the nanosheet structure of this as-prepared sample. 2 Therefore, Mg-Al-CO₃ LDH can be used as a catalyst support material. Fig. 1(b)-(e) 3 show the TEM images and particle size distributions of the as-prepared catalysts. It 4 can be seen that metal nanoparticles are dispersed uniformly on the support materials. 5 The uniform distribution may be attributed to: 1) the support material sheets could 6 7 provide more locations for the reduction reaction; 2) sodium citrate plays an anti-precipitation effect to manipulate the particle size and 3) sodium citrate also 8 9 could inhibit the aggregation of the metal particles and make Pd distribute uniformly on the support materials. The average sizes of Pd particles in Pd/C and Pd/LDH 10 catalysts analyzed from TEM images are 8.86 and 5.96 nm, respectively, which are 11 12 smaller than those obtained from Debye-Scherrer equation. Additionally, according to ICP-AES analysis results, the real mass percentages of Pd in Pd/C and Pd/LDH 13 14 catalysts are 18.83 and 17.68%, respectively.

15 XPS was further employed to examine the surface electron structure of the as-prepared samples. Pd3d core level spectra of Pd/C and Pd/LDH catalysts were 16 presented in Fig. 2 (a) and (b) and were fitted by two pairs of overlapping Lorentzian 17 curves [14-15]. In Pd3d XPS spectra for Pd/C, the more intense peaks (335.87 and 18 340.2 eV) were assigned to metallic palladium, Pd(0). The other set of doublets 19 (336.7 and 341.9 eV) can be attributed to the $Pd(\Box)$ chemical state on PdO or 20 21 Pd(OH)₂. Pd3d XPS spectra on the as-prepared Pd/LDH catalyst, shown in Fig. 2(b), are also constructed by two sets of doublets which are associated with metallic Pd(0)22

and Pd(□). However, the relative intensity of metallic Pd(0) in Pd/LDH is 73.38%,
higher than 51.24% obtained from Pd/C. Table 1 lists the relative intensity of Pd(0)
and Pd(□) of the as-prepared catalysts. The results indicate that Mg-Al LDH can
increase the content of Pd(0) in Pd/LDH catalyst. As shown in Fig. 2 (c) and (d), there
is no obvious change of chemical state for Mg and Al in Pd/LDH and Mg-Al LDH.
Therefore, it suggests that Mg-Al LDH may act as a catalyst to enhance Pd(□)
reduction process.

8 3.2 Electrochemical properties of Pd/Mg-Al-CO₃ LDH catalyst

9 It is known that the activity of a catalyst is not only controlled by its catalytic 10 properties but also by the geometrical properties, and the electrochemical surface area 11 (*ESA*) of the catalysts can be calculated using Pd oxide reduction voltammetry by 12 following equation:

$$13 \qquad ESA = \frac{S_R}{v \times Q_{Pd} \times m_c}$$

where $S_{\rm R}$ is the Pd oxide reduction peak area in voltammetry; v is the scan rate; $Q_{\rm Pd}$ is the charge needed for the reduction of single layer of oxide on Pd, which is 0.000405 C cm⁻² and $m_{\rm c}$ is the loading amount of catalyst.

According to the background cyclic voltammograms of Pd/C and Pd/LDH in 1 M KOH solution at a scan rate of 50 mV s⁻¹, shown in Fig. 3(a), ESAs of Pd/C and Pd/LDH were 28.03 and 29.01 m² g⁻¹, respectively. Therefore, there is no apparent difference in *ESAs* of the as-prepared catalysts.

The cyclic voltammograms of methanol oxidation on these two catalysts are shown in Fig. 3 (b). The magnitude of the peak current on the forward scanning direction

indicates the electrocatalytic activity of the electrocatalyst for methanol oxidation [12]. The forward peak current density of the Pd/LDH is higher than that of Pd/C and the result suggests the electrocatalytic activity of Pd/LDH is much higher than that of

4 Pd/C. Furthermore, the higher anodic current on Pd/LDH indicates the presence of

5 LDH can improve the electrocatalytic activity of Pd/LDH for methanol oxidation.

1

2

3

6 EIS was further applied to analyze the electrocatalytic performance of Pd/C and 7 Pd/LDH. Fig. 4 (a) represents the EIS plots of Pd/C and Pd/LDH at -0.2V in 1.0 M 8 KOH+1.0 M methanol solution and the data was analyzed by the electric equivalent 9 circuit shown in Fig. 4(b). In the electric equivalent circuit, R_s is the sum of resistance of electrolyte, electrode material and the contact resistance at the interface of the 10 active material/current collector; C represents the double layer capacitance; R_t is the 11 12 charge transfer resistance; R_c is the resistance of intermediate adlayer and L is the inductance induced by the intermediate. The values of R_s , C, R_t , R_c and L were 13 calculated from the CNLS fitting of the experimental impedance spectra and their 14 15 resulting values are listed in Table 2.

According to the fitting results in Table 2, it is apparent to see the resistances for Pd/LDH, no matter R_t or R_c , are smaller than that for Pd/C. Therefore, Pd/LDH shows a better performance in methanol electro-oxidation process than Pd/C. Furthermore, Pd/LDH has smaller double layer capacitance (*C*) and inductance (*L*) generated by the intermediate than Pd/C catalyst. It indicates that less amount of intermediate in the methanol electro-oxidation process adsorbed on Pd/LDH surface. Pd/LDH may have a better CO poisoning resistance than Pd/C.

1	To further evaluate the resistance to the CO_{ads} poisoning of each catalyst, the CO
2	stripping voltammograms were recorded, as shown in Fig. 5. It is clear that the onset
3	potential of CO oxidation on Pd/LDH catalyst is more negative than that on Pd/C
4	catalyst, indicating that Mg-Al-CO3 LDH facilitates the removal of CO out of the
5	surface of the Pd/LDH catalyst owing to the potential adsorption and conduction of
6	OH ⁻ . Furthermore, due to the catalytic effect, Mg-Al-CO ₃ LDH could activate water
7	at lower potentials than Pd. The activated water could oxidize the adsorbed CO and
8	liberated Pd active sites [15-16]. This result helped to explain the higher activity of
9	Pd/LDH catalyst for the oxidation of methanol.
10	The above analytic results confirm that Pd/LDH composite has a better
11	electrocatalytic activity for methanol oxidation in KOH. The probable reason for this
12	trend is summarized as follows: 1) content increase of metallic state palladium in the
13	Pd/LDH catalyst, which is well known that the more content of metallic state in
14	catalysts, the better catalytic performance; 2) as a hydroxide ion conductor,

Mg-Al-CO₃ LDH could deliver OH⁻ and increase the concentration of OH⁻ around Pd
particle surface, as shown in scheme 1.

The better CO poisoning resistance of Pd/LDH also can be explained as follows: the surface adsorbed hydroxyl of Mg-Al-CO₃ LDH may remove the adsorbed carbonyl on the surface of Pd, and then dissociation–adsorption of methanol proceeds quickly. The reaction can be written as Equation.1~3.

$$21 LDH + OH^{-} \rightarrow LDH - OH_{ads} + e^{-} (1)$$

$$22 \qquad Pd - (CH_3OH_{ads}) + 4OH^- \rightarrow Pd - CO_{ads} + 4H_2O + 4e^-$$
(2)

$$1 \qquad Pd - CO_{ads} + LDH - OH_{ads} + OH^{-} \rightarrow Pd + LDH + CO_{2} + H_{2}O + e^{-}$$
(3)

Mg-Al-CO₃ LDH would increase the concentration of OH_{ads} species on the catalyst 2 surface, and these OH_{ads} can react with CO-like intermediate species to produce CO₂ 3 or water soluble products, releasing the active sites on Pd for further electrochemical 4 reaction [12]. Furthermore, the other reason for CO tolerance improvement is the 5 6 so-called wetness effect of Mg-Al-CO₃ LDH on the primary Pd-OH oxide spillover, 7 which is considered decisive for CO oxidation [17-18], as shown in the following equation (4). 8 9 $Pd - CO + 2Pd - OH \rightarrow CO_2 + H_2O + 3Pd$ (4) The long-term stability of Pd/C and Pd/LDH catalysts for the oxidation of methanol 10 at a potential of -0.15 V were also investigated and the chronoamperometry curves are 11 12 shown in Fig.6. Due to the formation of some Pd oxides/hydroxides and adsorbed 13 intermediates in the alcohol electro-oxidation reaction, all these catalysts show a current decay before a steady current status was attained [9, 15]. As expected, the 14 current density of Pd/LDH was larger than that of Pd/C in methanol solution. In 15 addition, in the beginning, the current for Pd/LDH declined more slowly than that for 16 Pd/C. This also proves that Pd/LDH has better electrochemical catalytic stability for 17

19

18

20 4. Conclusions

the oxidation of methanol than Pd/C.

Pd/C and Pd/Mg-Al-CO₃ LDH catalysts were prepared and their catalytic
 performance for methanol electro-oxidation was compared. Cyclic voltammograms in

1	the alkaline solution showed the much higher specific activity of Pd/LDH than that of					
2	Pd/C. The increase of the specific activity could be attributed to the OH ⁻ conductivity					
3	of Mg-Al-CO3 LDH and the content increase of metallic Pd. According to CO					
4	stripping results, it is found that Mg-Al-CO ₃ LDH facilitates the oxidative removal of					
5	adsorbed CO. The chronoamperograms indicated that Pd/LDH has a better stability.					
6	All the results imply that Pd/LDH is very promising for probable application in					
7	DMFC field. Furthermore, Mg-Al-CO3 LDH may act two important roles in the					
8	Pd/LDH catalyst: 1) catalyst for $Pd(\Box)$ reduction, 2) facilitating hydroxide ion					
9	conduction.					
10						
11	Acknowledgement					
12	The authors are grateful for the financial support by One Hundred Talent Program					
13	of Chinese Academy of Sciences, Chinese National Programs for High Technology					
14	Research and Development (2014AA06A513), as well as by the NSFC (51302264) of					
15	China.					
16						
17						
18	References					
19	1. W. Li, X.S. Zhao, A. Manthiram, Room-temperature synthesis of Pd/C cathode					
20	catalysts with superior performance for direct methanol fuel cells, J. Mater. Chem.					
21	A 2 (2014) 3468-3476.					

1		Pd/MnO ₂ -reduced graphene oxide nanocomposite for methanol electro-oxidation					
2		in alkaline media, Electrochem. Commun. 26 (2013) 63-66.					
3	3.	C.X. Xu, Y.Q. Liu, Q. Hao, H.M. Duan, Nanoporous PdNi alloys as highly active					
4		and methanol-tolerant electrocatalysts towards oxygen reduction reaction, J. Mater.					
5		Chem. A 1 (2013) 13542-13548.					
6	4.	L.Z. Li, M.X. Chen, G.B. Huang, N. Yang, L. Zhang, H. Wang, Y. Liu, W. Wang,					
7		J.P. Gao, A green method to prepare Pd-Ag nanoparticles supported on reduced					
8		graphene oxide and their electrochemical catalysis of methanol and ethanol					
9		oxidation, J. Power Sources 263 (2014) 13-21.					
10	5.	H.R. Zhao, Q.H. Tang, Y. Wang, T. Qi, X. Wang, Pd nanoparticles supported on					
11		PDDA-functionalized Ti_4O_7 as an effective catalyst for formic acid					
12		electrooxidation, ECS Solid State Lett. 3 (2014) M37-M40.					
13	6.	Y.L. Wang, D.D. Zhang, W. Peng, L. Liu, M.G. Li, Electrocatalytic oxidation of					
14		methanol at Ni-Al layered double hydroxide film modified electrode in alkaline					
15		medium, Electrochim. Acta 56 (2011) 5754-5758.					
16	7.	Y.L. Wang, D.D. Zhang, M. Tang, S.D. Xu, M.G. Li, Electrocatalysis of gold					
17		nanoparticles/layered double hydroxides nanocomposites toward methanol					
18		electro-oxidation in alkaline medium, Electrochim. Acta 55 (2010) 4045-4049.					
19	8.	Y.L. Wang, H.Q. Ji, W. Peng, L. Liu, F. Gao, M.G. Li, Gold nanoparticle-coated					
20		Ni/Al layered double hydroxides on glassy carbon electrode for enhanced					
21		methanol electro-oxidation, Int. J. Hydrogen Energ. 37 (2012) 9324-9329.					
22	9.	K. Tdanaga, Y. Furukawa, A. Hayashi, M. Tatsumisago, Direct ethanol fuel cell					

1	using hydrotalcite clay as a hydroxide ion conductive electrolyte, Adv. Mater. 2				
2	(2010): 4401-4404.				
3	10. M.F. Shao, F.Y. Ning, J.W. Zhao, M. Wei, D.G. Evans, X. Duan, Hierarchical				
4	layered double hydroxide microspheres with largely enhanced performance for				
5	ethanol electrooxidation, Adv. Funct. Mater. 23 (2013) 3513-3518.				
6	11. G. Karim-eezhad, S. Pashazadeh, A. Pashazadeh, Electrocatalytic oxidation of				
7	methanol and ethanol by carbon ceramic electrode modified with Ni/Al LDH				
8	nanoparticles, Chin. J. Catal. 33 (2012)1809-1816.				
9	12. Y.C. Zhao, L. Zhan, J.N. Tian, S.L. Nie, Z. Ning, MnO ₂ modified multi-walled				
10	carbon nanotubes supported Pd nanoparticles for methanol electro-oxidation in				
11	alkaline media, Int. J. Hydrogen Energ. 35 (2010) 10522-10526.				
12	13. C.W. Xu, H. Wang, P.K. Shen, S.P. Jiang, Highly ordered Pd nanowire arrays as				
13	effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells, Adv.				
14	Mater. 19 (2007) 4256-4259.				
15	14. L. Wang, Y. Wang, A. Li, Y.S. Yang, J. Wang, H.R. Zhao, X. Du, T. Qi,				
16	Electrocatalysis of carbon black- or chitosan-functionalized activated carbon				
17	nanotubes-supported Pd with a small amount of La2O3 towards methanol				
18	oxidation in alkaline media, Int. J. Hydrogen Energ. 39 (2014) 14730-14738.				
19	15. L. Wang, Y. Wang, A. Li, Y.S. Yang, Q.B. Tang, H.B. Cao, T. Qi, C.M. Li,				
20	Electrocatalysis of carbon black-or poly (diallyldimethyl- ammoniuim				
21	chloride)-functionalized activated carbon nanobutes-supported Pd-Tb towards				
22	methanol oxidation in alkaline media, J. Power Sources 257 (2014) 138-146.				

1	16. H.R. Zhao, Y. Wang, Q.H. Tang, L. Wang, H. Zhang, C. Quan, T. Qi, Pt catalyst
2	supported on titanium suboxide for formic acid electrooxidation reaction, Int. J.
3	Hydrogen Energ. 39 (2014) 9621-9627.
4	17. J.M. Jaksic, Lj. Vracar, S.G. Neophytides, S. Zafeiratos, G. Papakonstantinou, N.V.
5	Krstajic, M.M. Jaksic, Structural effects on kinetic properties for hydrogen
6	electrode reactions and CO tolerance along Mo-Pt phase diagram, Surf. Sci. 598
7	(2005) 156-173.
8	18. J.M. Jaksic, C.M. Lacnjevac, N.V. Krstajic, M.M. Jaksic, Interactive supported
9	electrocatalysts and spillover effect in electrocatalysis for hydrogen and oxygen
10	electrode reaction, Chem. Ind. Chem. Eng. Q. 14 (2008) 119-136.

	0
	5
	ž
	4
	σ
	Ο
	Ð
	Ë
	0
	U
	0
	0
	ດ
	U
	U
	Π
	>
	Ō
9	1
	Y

1	Figure caption
2	Fig.1 (a) XRD patterns of Pd/C and Pd/LDH (inset: XRD pattern of Mg-Al-CO ₃
3	LDH); (b) TEM image of Pd/C; (c) Diameter distribution of Pd Particles on Pd/C; (d)
4	TEM image of Pd/LDH; (e) Diameter distribution of Pd Particles on Pd/LDH and (f)
5	TEM image of Mg-Al-CO ₃ LDH
6	Fig. 2 (a) XPS spectra of Pd of Pd/C; (b) XPS spectra of Pd of Pd/LDH; (c) XPS
7	spectra of Mg of Mg-Al LDH and Pd/LDH; (d) XPS spectra of Al of Mg-Al LDH and
8	Pd/LDH
9	Fig. 3 The cyclic voltammograms of Pd/C and Pd/LDH in 1.0 M KOH (a) and in 1.0
10	M KOH+1.0 M methanol solution (b)
11	Fig. 4 EIS plots of Pd/C and Pd/LDH at different potentials (a, b) and equivalent
12	electrical circuit in 1.0 M KOH+1.0 M methanol solution
13	Fig. 5 CO stripping curves on Pd/C (a) and Pd/LDH (b) catalysts recorded in 1 M
14	KOH solution
15	Scheme 1 Function of Mg-Al-CO ₃ LDH in the methanol electro-oxidation at Pd
16	particle surface
17	Fig.6 Chronoamperograms of Pd/C and Pd/LDH in 1.0 M KOH+1.0 M methanol at
18	operation potential of -0.15 V at 25°C
19	
20	
21	

Fig. 1 (a)

Fig. 1(c)

- 3
- 4

Fig. 2 (a)

2

1

Fig. 2 (b)

2

Fig. 2 (c)

2

Fig. 2 (d)

Fig. 3 (a)

2

1

3

Fig. 3 (b)

2

1

3

Fig. 4 (a)

2

1

3

Scheme 1

- 3
- 4

- 1 Table caption
- 2 Table 1 Binding energy (B.E.) and relative intensity of species from curve-fitted XPS
- 3 spectra of Pd3d
- 4 Table 2 Fitting results of EIS (All the fitting data were normalized by *ESA*)
- 5
- 6
- 7
- 8

Table 1						
Samples	B.F. of Pd 3Dec (eV)	B.E. of Pd 3D _{3/2} (eV)	Species	Relative		
Samples	D.E. 011 d $5D_{5/2}$ (eV)			intensity (%)		
D4/C	335.87	340.2	Pd(0)	51.24		
Pd/C	336.7	341.9	Pd(□)	48.76		
	335.7	341	Pd(0)	73.38		
Pa/LDH	336.51	342.1	Pd(□)	26.62		

2

1

1	Table 2					
		$R_{\rm s}(\Omega~{\rm cm}^2)$	$C (\mathrm{F \ cm^{-2}})$	$R_{\rm t}(\Omega~{\rm cm}^2)$	$R_{\rm c}(\Omega~{\rm cm}^2)$	$L (\mathrm{H \ cm}^{-2})$
	Pd/C	5.53625E-4	9.48125E-9	0.01139	0.00227	0.00248
	Pd/LDH	3.19302E-5	4.8924E-11	0.00364	4.30515E-4	0.00119
2						