This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Adequate substituents can favour/hinder the tautomerisation of Schiff bases into tetrahydroquinazolines, by means of strong/weak H bonds.
Controlling ring-chain tautomerism through steric hindrance

Ana M. García-Delibe, Cristina Portela-García, Matilde Fondo and Jesús Sanmartín-Matalobos

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

We have explored the use of steric hindrance for favouring/hindering the tautomerisation of Schiff bases (SB) into tetrahydroquinazolines (TQ) in two systems that derive from the condensation of 2-tosylaminobenzylamine with two different aldehydes: 2,3-dihydroxybenzaldehyde (H2L1SB/H2L1TQ) and N-(3-formylpyridin-2-yl)pivalamide (H2L2SB/H2L2TQ). The four possible ring-chain tautomers were unequivocally characterised by a combination of 1H NMR spectroscopy, infrared spectroscopy, mass spectrometry and elemental analysis. Furthermore, two of the tautomers, H2L1SB and H2L2TQ, have been characterised by X-ray crystallography. Crystal data of E-H2L1SB have revealed the existence of a prototropic ketoneamine–enolimine equilibrium at room temperature that is the cause of the thermochemistry of H2L1SB. A firm intramolecular interaction OH···NH hinder the conversion of the chain tautomer H2L1SB into the ring tautomer H2L1TQ. Crystals of H2L2TQ and H2L2TQ·HCCl3 consist of racemic mixtures of their enantiomers, C(R),N(R)-H2L2TQ and C(S),N(S)-H2L2TQ. A terminal pivalamide group prevents the existence of the intramolecular interaction NH···NH in the chain tautomer H2L2SB favouring its conversion into the ring tautomer H2L2TQ.

Introduction

Tautomerism plays a very important role in organic chemistry, medicinal chemistry, pharmacology, biochemistry, molecular biology and in life itself.1-7 Understanding and controlling tautomerisations is very important for synthesis and reactivity of many organic and metal-organic compounds.8,9 Ring-chain tautomerism is a particular kind of structural isomerism, where a hydrogen atom migration is followed by a change from an open chain to a ring in molecular structure.

The ring-chain tautomerism of 2,3-diaryl-1,2,3,4-tetrahydroquinazolines (scheme 1) was reported first thirteen years ago.10 Fülöp and co-workers found that the ring-chain ratio depends on the electronic character (σ*) of the substituent on the 2-aryl ring (Hammett-type eq.).10 Sinkkonen,11 explained the preference for the chain tautomer form in some Schiff base/tetrahydroquinazoline systems by intramolecular H bonds between amine and imine functional groups.

Recently, we have found that the ring-chain ratio for 2-aryl-3-tosyl-1,2,3,4-tetrahydroquinazolines depends on the reaction time.12,13 Thus, reaction times of about 1 h gave the open-chain tautomer as the main product, however, as time goes on, the ring-chain ratio is increasing, and after several hours the ring tautomer is clearly the most abundant product in the brute. DFT calculations evidenced that the intramolecular ring-closing reaction is energetically favoured in the 2,3-diaryl-1,2,3,4-tetrahydroquinazoline studied by us.12

Now, we have focused our attention on controlling tautomerisation of imines into tetrahydroquinazolines through steric hindrance. With this purpose, we have studied by using X-ray crystallography and nuclear overhauser enhancement spectroscopy (NOESY) in combination with molecular mechanics modelling, the structural features of each one of the tautomers obtained from separate reactions of 2-tosylaminobenzylamine14 with 2,3-dihydroxybenzaldehyde and N-(3-formylpyridin-2-yl)pivalamide (scheme 2). We have selected the systems H2L1SB/H2L1TQ and H2L2SB/H2L2TQ for two reasons: i) the steric hindrance that the pivalamide functional group can exert to avoid the existence of the interaction NH···NH in H2L2SB, and ii) the enhanced strength of the intramolecular bond OH···NH which can prevail over N-N groups. Since OH···N bonds are usually stronger than NH···N ones,17-20 the stabilisation of the chain tautomer H2L1SB can be due to intramolecular H bonds between -OH and -HC=N- groups rather than between –NHSO2- and -HC=N- groups.
Scheme 2. Schematic representation of the Schiff bases H$_2$L$_1^{SB}$ (right) and H$_2$L$_2^{SB}$ (left), which were obtained from separate reactions of 2-tosylaminobenzylamine with 2,3-dihydroxybenzaldehyde and N-(3-formylpyridin-2-yl)pivalamide, respectively. The strong intramolecular hydrogen bond O-H···N in H$_2$L$_1^{SB}$ is highlighted. The numbering scheme for NMR is shown.

Discussion

Studies on the H$_2$L$_1^{SB}$/H$_2$L$_1^{TQ}$ system

Condensation reaction of 2,3-dihydroxybenzaldehyde and 2-tosylaminomethylaniline14 occurs efficiently in methanol solution, leading to the Schiff base H$_2$L$_1^{SB}$. The 2-D NOESY spectrum of H$_2$L$_1^{SB}$ (Fig. 1, bottom) shows the cross peaks due to the coupling of the imine proton (H-14) with aromatic protons H-12 and H-16, as well as those due to the coupling of the methylene H atoms (H-7) with tosyl and aniline residues (H-2, 6 and H-9, respectively). In view of the considerable rigidity of H$_2$L$_1^{SB}$, these few couplings allow elucidating the conformation adopted by H$_2$L$_1^{SB}$ in solution. We have used molecular mechanics modelling to obtain the lowest energy conformation of H$_2$L$_1^{SB}$ that is coherent with the experimentally observed couplings by 1H NMR spectroscopy in solution (Fig. 1, top). This conformation shows an E configuration with a strong intramolecular hydrogen bond between -OH and -HC=N- groups (O3···N2 length about 2.6 Å). One might note that this short N···O length can be related to an estimated bond energy20 around 10 kcal mol$^{-1}$. The enhanced strength of this bond appears to be the cause for the stabilisation of the enolimine form, preventing the tautomerisation of H$_2$L$_1^{SB}$ into H$_2$L$_1^{TQ}$ even under reflux for 4 h.

With the aim of verifying the existence of the O3···N2 interaction in solid state, we have cooled a powdery sample of H$_2$L$_1^{SB}$ in liquid nitrogen. As a result, we have observed a fast and reversible change that consists on an immediate fading of the colour of the powder, from deep orange at room temperature to yellowish orange at liquid nitrogen temperature (scheme 3, top). This thermochromic behaviour1,2,15 which is controlled by the enhanced basicity of the imine nitrogen due to the absence of conjugation with the phenyl ring, is an evident sign of the dynamically disordered bonds N–H$^+$–O \rightleftharpoons O–H$^+$–N (scheme 3, bottom).

Fig. 1. Bottom: Partial view of the NOESY spectrum of H$_2$L$_1^{SB}$ highlighting the most relevant cross peaks used to the structural diagnosis. Top: The most stable conformation of H$_2$L$_1^{SB}$ that is coherent with the experimentally observed couplings. Lines of same colours highlight the H-H couplings in both NOESY spectrum and sticks sketch.

Scheme 3. Top: Photographs of a powdery sample of H$_2$L$_1^{SB}$ at room temperature (left), and after immersion in liquid nitrogen (right). Bottom: Prototropic ketoenamine–enolimine equilibrium of H$_2$L$_1^{SB}$.

The fading of the powdery sample with lowering of temperature is a clear sign of a change of the enolimine - ketoenamine-ratio2,15,21,22. In fact, as the crystal...
structure obtained indicates (see below), both species are coexisting at room temperature. Despite this, we have only observed the typical bands of the enolimine form in the infrared spectrum of H$_2$L$_{SB}^1$ (ESI).

Fig. 2 shows the molecular structure of H$_2$L$_{SB}^1$ provided by single crystal X-ray diffraction techniques at room temperature. The labelling scheme used in this figure has been also employed to identify the corresponding NMR signals. As expected, H$_2$L$_{SB}^1$ displays a typical E configuration in solid state. This is favoured by a strong intramolecular H bond between the -OH group located at 2-position of the aldehyde residue and the -HC=N-group.

The most significant bond distances and angles (ESI) corresponding to the 2-tosylaminomethylaniline residue show that geometric parameters fall within the usual ranges for related compounds.

With regard to the aldehyde residue, the short length of the O3-H3···N2 interaction (2.56 Å) provides evidence of its intensity, allowing its qualification as strong intramolecular resonance-assisted H-bond (RAHB). A hydrogen atom, with occupation sites about 67% and 33%, has been found near to O3 (H3p) and N2 (H3a), respectively. This shows the existence of the dynamically disordered hydrogen bonds O3–H3P···N2 and N2–H3A···O3. Besides, C20-O3 is shorter than 1.37 Å, which is the expected value for pure enolimines. At the same time, C13-N2 is shorter than 1.47 Å, what is indicative of some double bond character. Since diffraction data are an average of the geometric parameters of those molecules present in the crystal, we have demonstrated that at room temperature exists a prototrophic ketoenamine–enolimine equilibrium (scheme 3) that favours the enolimine form (ketoenamine–enolimine ratio about 0.5) at room temperature.

With the aim of studying the changes with time in ring-chain ratio at room temperature, a spectroscopic monitoring of a dimethylsulfoxide solution of H$_2$L$_{SB}^1$ has been performed (ESI). After three days, a ring-chain ratio about 0.1 has been detected, showing a very slow tautomerisation of H$_2$L$_{SB}^1$ into the ring tautomer H$_2$L$_{TQ}^1$. This tautomerisation is concomitant with gradual decomposition of H$_2$L$_{SB}^1$ by imine hydrolysis. The explanation for the interconversion of tautomers in solution seems to lie in low tautomerisation barriers.

The NOESY spectrum of H$_2$L$_{TQ}^1$ (Fig. 3, bottom) reveals the cross peaks due to the coupling of the equatorial methylene proton (H-7$_{eq}$) with H-9 of the aniline residue (red line). Besides, the axial methylene proton (H-7$_{ax}$) is coupled with H-16 of the aldehyde residue (blue line). Fig. 3, at the top, shows the lowest energy conformation of H$_2$L$_{TQ}^1$ that is coherent with the experimentally observed couplings by 1H NMR spectroscopy in solution. Since the O3–H–N1 distance in the molecular model is about 2.95 Å not very significant intramolecular H bond seems to stabilise the ring tautomer.

Studies on the H$_2$L$_{SB}^2$/H$_2$L$_{TQ}^2$ system

Condensation reaction of N-(3-formylpyridin-2-yl)pivalamide and 2-tosylaminomethylaniline occurs efficiently in chloroform...
solution, but contrary to the observed for the H$_2$L$_1$SB/H$_2$L$_1$TQ system, the crystallised reaction product is the ring tautomer, H$_2$L$_2$TQ. As expected, H$_2$L$_2$TQ results from the intramolecular nucleophilic addition of the N$_\delta^-$amine atom to the electrophilic C$_\delta^+$imine atom of H$_2$L$_2$SB, and therefore some residual amount of H$_2$L$_2$SB can be detected by NMR spectroscopy in the brute.

The NOESY spectrum of H$_2$L$_2$TQ (Fig. 4, bottom) shows the cross peaks due to the coupling of the pivalamide proton (HN-4) with methanetriyl proton (H-14) and H$_{methyl}$ (H-22, H-23 and H-24) as well as those due to the coupling of the equatorial methylene proton (H-7$_{eq}$) with H-2,6 of the tosyl group (blue line) and H-9 of the aniline residue (red line). Besides, the axial methylene proton (H-7$_{ax}$) is coupled with H-16 of the pyridine ring (orange line). We have used molecular mechanics modelling to obtain the lowest energy conformation of H$_2$L$_2$TQ that is coherent with the experimentally observed couplings by 1H NMR spectroscopy in solution (Fig. 4, top). Although H$_2$L$_2$TQ is a chiral compound, and therefore both S and R enantiomers can coexist, we have only represented the latter one in Fig. 4 (top), for clarity. Since the N4-H··N1 distance in the molecular model is about 2.86 Å, not very significant intramolecular H bond seems to stabilise the ring tautomer.

Apart from C14, H$_2$L$_2$TQ shows another centre that can be considered as chiral, the sulfonamide N-atom (N1), although one might note that its inversion could be possible. Therefore, we have used molecular mechanics modelling to obtain the resulting conformation of H$_2$L$_2$TQ. The structural changes involved in the hypothetical inversion of N1 would imply a change from an equatorial to an axial position of the methanetriyl proton (H-14). As the coupling between axial methylene proton (H-7$_{ax}$) and methanetriyl proton (H-14) was not observed, we have dismissed the presence in solution of the enantiomeric pair C(R),N(R) and C(S),N(S), which would be resulting conformations with inversion of N1 (ESI).

Single crystal X-ray diffraction techniques have confirmed that the uncoloured crystals collected from a methanol solution of H$_2$L$_2$TQ, consist of a racemic mixture of its enantiomers, C(R),N(R)-H$_2$L$_2$TQ and C(S),N(S)-H$_2$L$_2$TQ (Fig. 5). As the crystal belongs to the centrosymmetric space group $P\overline{1}$, the compound crystallises as a racemate. An attempt of crystallising the chain tautomer in chloroform led to crystals of rac-H$_2$L$_2$TQ·HCCl$_3$ (solvated chloroform was omitted for clarity) and rac-H$_2$L$_2$TQ, respectively.
Bond distances and angles, which are shown in ESI, fall within the usual ranges for other tetrahydroquinazoline compounds. Since the N4-H·N1 distance is about 2.89 Å and NHN angle is less than 130º, the intramolecular H bond is not very significant. One might note that the conformation of C(R),N(R)-H,L-TQ that we have obtained from X-ray diffraction data (Fig. 5, top) appears to be not very different from that displayed in solution (Fig. 4, top), as the distances between the corresponding H atoms seem to be suitable for the couplings observed in the NOESY spectrum.

The half-chair conformation, which is adopted by the tetrahydroquinazoline ring in chiral H,L-TQ (ESI), contrasts with the envelope conformation found for the achiral 3-tosyl-1,2,3,4-tetrahydroquinazoline, explaining the diastereotopic nature of the methylene protons in H,L-TQ (H-7eq and H-7ax). Regarding to other aspects related to conformation, H,L-TQ displays the preferred conformation of sulfonamides, i.e., with the lone pair of the N atom bisecting the O=S=O angle and practically perpendicular to the tosyl ring.

With the aim of studying the changes with time in ring-chain ratio at room temperature, a spectroscopic monitoring of a dimethylsulfoxide solution of H,L-TQ has been performed (ESI). After three days, a ring-chain ratio about 0.9 has been detected, showing a very slow tautomerisation of H,L-TQ into the chain tautomer H,L-SB. This tautomerisation is followed by a gradual decomposition of H,L-SB by imine hydrolysis. These processes result in a reaction mixture that reverts to H,L-TQ after refluxing and recrystallisation. The explanation for the interconversion of tautomers in solution seems to lie in low tautomerisation barriers.

With regard to the chain tautomer H,L-SB, its NOESY spectrum showed the cross peaks due to the coupling of imine proton (H-14) with both pivalamide and aniline protons (HN-4 and H-12, respectively), as well as those due to the coupling of the methylene H atoms (H-7) with tosyl and aniline residues (H-2,6 and H-9, respectively). Fig. 6, at the top, shows the lowest energy conformation of H,L-SB that is coherent with the experimentally observed couplings by ¹H NMR spectroscopy in solution. One might note that the steric hindrance due to the pivalamide group on the 2-position of the aldehyde residue of H,L-SB leads this tautomer to a conformation that prevents the intramolecular interaction N-pivalamide-H···N-imine, favouring the tautomerisation of the Schiff base into the tetrahydroquinazoline.

It should be noted that all preceding NMR results have been obtained in DMSO-d₆, so they should not be generalised to other solvents.

Conclusions

We have demonstrated that an adequate substituent in 2-position of the 2-aril ring can favour/hinder the tautomerisation of Schiff bases into tetrahydroquinazolines, even in solution. The obtaining of the chain tautomer is favoured by the use of a salicylaldehyde derivative, which hinders the tautomerisation of the imine into the tetrahydroquinazoline through a strong intramolecular hydrogen bonding between -OH and -HC=N- groups rather than between -NHSO₂- and -HC=N- groups. In contrast, the obtaining of the ring tautomer is favoured by the use of an aromatic aldehyde with a large substituent in 2'-position of the aryl ring. The steric hindrance due to the pivalamide on the 2-position of the aldehyde residue of H,L-SB leads this tautomer to a conformation that prevents the intramolecular interaction N-pivalamide-H···N-imine, favouring the tautomerisation of the Schiff base into the tetrahydroquinazoline.

Experimental

All the compounds were unequivocally characterised by a combination of ¹H NMR spectroscopy, infrared spectroscopy, mass spectrometry and elemental analysis. Furthermore, both E-H,L-SB and rac-H,L-TQ could be also crystallographically characterised.

H,L-SB/H,L-TQ: 2,3-dihydroxybenzaldehyde (0.15 g, 0.73 mmol) was added to an absolute ethanol solution (40 mL) of 2-tosylaminomethylaniline (0.20 g, 0.73 mmol). The resulting solution was refluxed for 4 h (or stirred at room temperature for 3 days) resulting in a crystalline solid.
five days). After cooling, it was filtered upon celite, and the resulting solution was concentrated to obtain a deep orange solid. Crystals of $\text{H}_2\text{L}^1_{\text{SB}}$ has been obtained by recrystallisation in methanol.

1. $\text{H}_2\text{L}^1_{\text{SB}}$: Yield: 0.27 g (92%). 1H NMR (500 MHz, DMSO-d_6) in ppm: 12.56 (s, 1H, HO3), 9.28 (s, 1H, HO4), 8.70 (s, 1H, H-16), 6.28 (d, 1H, H-12), 4.31 (d, 1H, H-7eq), 3.91 (d, 1H, H-7ax), 2.38 (s, 3H, H-40). IR (KBr): ν(OH) 3414, ν(NH) 3293, ν(C=O) 1688, ν(C=Nimi) 1619, ν(SO$_2$) 1337, ν(C=Nimin) 1158. MS (ESI +, MeOH/HCOOH) m/z: 419.2 (100%) [H$_2$L1+Na$^+$]. Elemental analysis: C 63.8; H 5.1; N 7.1; S 8.1%; calc. for C$_{21}$H$_{20}$N$_2$O$_4$S: C 63.6; H 5.1; N 7.1; S 8.1%.

$\text{H}_2\text{L}^2_{\text{TO}}$: 1H NMR (500 MHz, DMSO-$d_6$) in ppm: 7.70 (dd, 2H, H-6 + H-2), 7.38 (dd, 2H, H-3 + H-5), 6.95 (d, 1H, H-16), 6.79 (d, 1H, H-18), 6.79 (d, 1H, H-11), 6.74 (d, 1H, HN-2), 6.64 (d, 1H, H-9), 6.50 (d, 1H, H-14), 6.46 (d, 1H, H-17), 6.43 (d, 1H, HN-1), 6.40 (t, 1H, H-10), 6.28 (d, 1H, H-12), 4.31 (d, 1H, H-7eq), 3.91 (d, 1H, H-7ax), 2.38 (s, 3H, H-40).

Notes and references

