

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1 Revealing the Mechanism o	f <i>Melia</i>	Toosendan
-----------------------------	----------------	-----------

- 2 Fruit-Induced Liver Injury in Mice by Integrating
- 3 microRNA and mRNA-Based Toxicogenomics data
- 4 Cai Ji^{a#}, Jie Zheng^{a#}, Wei Tong^a, Xiaoyan Lu^a, Xiaohui Fan^a*, Yue Gao^b*
- ⁵ ^a Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang
- 6 University, Hangzhou 310058, China
- ⁷ ^bDepartment of Pharmacology and Toxicology, Beijing Institute of Radiation
- 8 Medicine, Beijing 100850, China.
- 9 [#] the authors contributed equally to this study.
- 10 *Correspondence should be addressed to Dr. Xiaohui Fan (E-mail:<u>fanxh@zju.edu.cn</u>,
- 11 Tel/Fax: 86-579-88208596) or Dr. Yue Gao (E-mail: gaoyue@bmi.ac.cn, Tel/Fax:
- 12 86-10-6691312)

13 Table of Contents (TOC)

The Fructus Meliae Toosendan induced liver injury in mice was investigated by integrating the data from miroRNA and mRNA expression profilings combined with the general toxicological assessments method.

17

18 Abstract

Fructus Meliae Toosendan (FMT, ChuanLianZi in Chinese) is recognized as an insecticidal and medicinal plant in China. A few previous study demonstrated that it can induce hepatotoxicity, however, its potential toxic compositions and their mechanism of the induction of hepatotoxicity has not been completely investigated.

1 In the present study, we performed an approach of integrating the data from microRNA (miRNA) and mRNA expression profilings combined with the general 2 3 toxicological assessments method to investigate the FMT-induced liver injury 4 (FMT-ILI) in mice. Changes in the body weight, serum biochemical parameters, and 5 histopathology were observed after 9 days exposure to FMT. A total of 37 miRNAs 6 and 931 mRNAs were differentially expressed in the liver of FMT-treated mice. By 7 miRNA target filter and data intersection, a total of 115 mRNA targets of the 8 identified miRNA were obtained. Ingeniuty pathway analysis showed that lipid 9 metabolism disorders play critical roles in FMT-ILI. Results from multi-facets of the 10 genomic profiling provided novel insights into mechanisms of FMT-ILI and contributed to a better understanding of liver pathobiology of Traditional Chinese 11 Medicine (TCM) hepatoxicity. 12

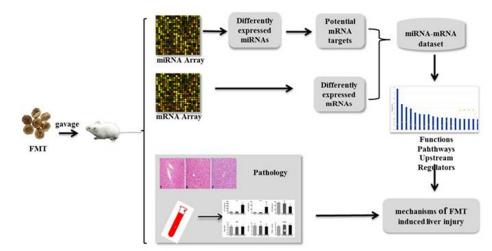
13

14 **Keywords:** The fruit of *Melia toosendan Sieb. Et Zucc.*, mRNA, microRNA, lipid 15 metabolism, liver injury.

16

1 Introduction

As an alternative or complementary therapy, Traditional Chinese Medicine (TCM) has 2 become more frequently used throughout the world¹. TCM is usually perceived by 3 4 general public as an efficacious treatment with few side effects, however, increasing cases have been reported that several TCM caused serious adverse reactions on 5 patients, including liver injury². Despite of considerable amount of attentions by 6 7 research communities, potential mechanisms of TCM-induced liver injury remained 8 elusive, which is partially related to unknown toxic compositions and complex toxicological modes of actions from multiple ingredients of TCM. 9


Fructus Meliae Toosendan (FMT) is mature fruit from Melia Toosendan Sieb. Et.Zucc. 10 (ChuanLianZi in Chinese), that has long been recognized as an insecticidal and 11 medicinal plant to treat stomach ache, cholelithiasis, cholecystitis, gastritis, mastitis, 12 13 and ascariasis in China and Korea. A variety of components, including triterpenoids³, steroids³, and limonoids⁴⁻⁶, have been described in FMT. These components displayed 14 a wide range of biological activities in vitro, such as insecticidal^{7,8}, anti-cancer^{3,9,10}, 15 antimicrobial and antifeedant⁸ activities. Toosendanin is the main bioactive 16 ingredient of FMT and has been identified as a promising lead compound for treating 17 botulism¹¹ and cancer¹². Several reports had demonstrated that FMT can induce liver 18 toxicity in both experimental animals and clinical patients^{13, 14} in which inflammatory 19 response and oxidative stress were proposed to be involved in the process¹⁵, 20 however, molecular mechanisms of FMT-induced liver injury (FMT-ILI) still remain 21 22 largely unknown. It has been shown that majority of identified active components of FMT, including the most well studied active ingredient toosendanin, were 23 concentrated in the ethyl acetate extracts⁶. Moreover, a previous study concluded 24 25 that ethyl acetate extraction showed more serious toxicity than other extraction parts in vivo16. Therefore, we focused on FMT ethyl acetate extracts-induced liver 26 injury in this study. 27

Toxicogenomics has attracted widespread attention as a promising approach to study 28 underlying toxicological mechanisms from a systemic point of view, which reveals the 29 relationship between toxicant exposure and alterations in genome-wide gene 30 expression patterns¹⁷. This approach has been already employed to investigate 31 toxicological effects of TCM, including liver toxicity^{18, 19}. In our laboratory, we have 32 also applied toxicogenomics as a tool to better understand the toxicity mechanisms 33 and identify potential biomarkers for drug-induced liver injury (DILI), such as 34 antibiotic drugs^{20, 21}. For herbal-induced liver injury (HILI), several studies have 35 focused on the influence of medicinal herbs on mRNA profiling in liver, however, only 36 37 few studies have extended this approach on miRNAs expression levels. miRNAs are the family of 21–25-nucleotide small RNAs that negatively regulate gene expression 38 at the post-transcriptional level²². It is estimated that at least 1/3 of human genes are 39 regulated by miRNAs that are relative stable in a variety of tissues and body fluids. 40 Based on this property, great attention has been attracted on miRNAs as clinical and 41 translational biomarkers of DILI^{23, 24}. Several studies have also reported that a set of 42

miRNAs contribute to the development of several liver diseases, such as lipid
 metabolism disorders, hepatitis, fibrosis, and hepatocellular carcinoma.

As miRNAs being most of the abundant regulators of mRNA, it is interesting to correlate the regulatory relationships between miRNA and its mRNA targets into the study of HILI. Since mammals miRNAs predominantly act to decrease target mRNA levels, inducing a concomitant mRNA degradation in 87% of cases²⁷, therefore the expression changes between miRNAs and the mRNA targets of those miRNAs can be defined as a negative correlation relationship. Study miRNA and mRNA intersections will provide more comprehensive view of the mechanisms involved in HILI.

In this study, in order to investigate the FMT-ILI, general toxicological assessments 10 were performed, followed by mRNA and miRNA expression profilings using 11 12 microarray analysis on liver samples. Furthermore, an informatics tool of IPA (Ingeniuty Pathway Analysis) was used to identify important mRNAs and miRNAs 13 14 whose expression were significantly altered by FMT treatment, which would shed 15 some light on molecular mechanisms of FMT-ILI. Fig. 1 showed the overall research 16 strategy and experimental design in this study. Our results demonstrated that lipid 17 metabolism disorders play critical roles in FMT-ILI. The integrative approach with 18 miRNA-mRNA intersection provided a comprehensive understanding of FMT-ILI.

19 20

Fig. 1 Overview of the research strategy and experimental design.

21 Materials and methods

22 Preparation of the ethyl acetate extracts of FMT

FMT were purchased from Zhejiang Chinese Medical University Medicine Plant, Hangzhou, China (product lot no. 130301) and identified by associated professor Liurong Chen (College of Pharmaceutical Sciences, Zhejiang University, China). Dried FMT (23.5 kg) were soaked overnight and extracted with 95% ethyl alcohol (EtOH) (1:8, w/v) twice for 90 min. After evaporation of the EtOH, the crude extracts were suspended in deionized water and extracted with petroleum ether (PE) (1:1, v/v) and

1 ethyl acetate (EtOAc) (1:1, v/v), 4 times successively. Finally, 166.4 g of the ethyl acetate extracts was obtained, stored at -20 °C, and suspended with 1% sodium 2 3 carboxymethyl cellulose before use. The components in the ethyl acetate extracts of 4 FMT were investigated by high performance liquid chromatography-electrospray 5 ionization-mass spectrometry (HPLC-ESI-MS). Toosendanin, trichilin B, trichilin I, 6 12-O-acetylazedarachin B, 12-O-acetylazedarachin A, trichilin H, trichilin K or its 7 analogs, 12-O-acetyltrichilin B, and 1-O-cinnamoyltrichilinin were identified. These 8 components all belong to limonoids. The content of toosendanin in the ethyl acetate 9 extracts of FMT was 60.4 mg/g determined by HPLC.

10 Animal treatment and sample collection

Male BALB/c mice (18–20 g, Silaike Co. Shanghai, China) were housed in an 11 environmentally controlled room at 25 \pm 1 °C with a relative humidity of 50% \pm 10% 12 under a cycle of 12 h each light/dark. Food and tap water were freely accessed by the 13 14 animals. The mice were administrated daily with the ethyl acetate extracts of FMT at 15 dose levels of 20 or 40 g/kg body weight (n = 8, an equivalent amount of the crude 16 drug) or vehicle control (n = 8, 1% sodium carboxymethyl cellulose) through oral 17 gavage for 9 days (0.2 mL/10 g). The doses were determined by our preliminary experiments as the high dose induced obvious changes in the parameters of general 18 toxicological assessments and low dose caused slight effects. Based on the previous 19 studies, the LD50 of FMT in mice (82.85 g/kg)¹⁶ and some large dose administration 20 in clinic for humans which is equal to 26 g/kg daily for mice²⁸ were also considered 21 22 for the dose determination. Individual body weights (BWs) was recorded every day. Orbital blood samples were obtained on the 10th day for clinical biochemical analysis. 23 For microarray analysis, 200 mg of excised samples from the left lateral liver lobe 24 25 were directly flash frozen in liquid nitrogen and used for further analysis. The 26 remaining liver lobes were used for histopathological examinations. All sampling 27 procedures were performed in accordance with the Guiding Principles in the Use of 28 Animals in Toxicology and the Animal Care and Use Committee of Zhejiang University School of Medical. 29

30 Serum biochemical analysis and histopathological examinations

Whole blood samples were centrifuged at 4,000 rpm for 15 min at 4 $^{\circ}$ C. The resulted serum was used for biochemical analysis. The parameters, including alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), total cholesterol (TCHOL), and triglyceride (TG), were detected using the Cobas C8000 system (Roche Diagnostics, Germany) according to the manufacturer's instructions.

The section liver samples for histopathological examinations were fixed immediately in 10% neutral-buffered formalin for at least 24 h. The tissues were embedded in paraffin, sectioned into 4-µm thick slices, mounted on special treated slides, stained with hematoxylin and eosin, and examined by optical microscope.

1 RNA extraction and purification

Total RNA from the 40 g/kg FMT and vehicle control groups (n = 5, chose the first 5 2 3 mice with higher ALT levels in FMT treatment group, and randomly selected 5 mice in 4 vehicle control group) was extracted and purified using mirVana[™] miRNA Isolation Kit 5 (Ambion, Austin, TX, US) following the manufacturer's instructions. RNA quality was inspected by an Agilent Bioanalyzer 2100 (Agilent technologies, Santa Clara, CA, US) 6 7 and electrophoresis in 2% (w/v) agarose gels. Samples with RNA Integrity Number 8 (RIN) greater than 7.0 and 28S/18S ratio greater than 0.7 were used for microarray 9 analysis and real-time PCR. A260/A280 nm absorbance ratio of RNA samples used in 10 this experiment consistently ranged from 1.8 to 2.0.

11 Microarray analysis of mRNA and miRNA expression

For the mRNA profiling, Affymetrix mouse 430 2.0 array was used according to 12 manufacturer's instructions. The detailed description was shown in our previous 13 study²¹. For the miRNA profiling, Agilent Mouse miRNA V19.0 was used according to 14 manufacturer's instructions. Each slide was hybridized with 100 ng Cy3-labeled RNA 15 using miRNA Complete Labeling and Hyb Kit (Agilent technologies, CA) in 16 hybridization Oven (Agilent technologies, CA) at 55 °C, 20 rpm for 20 h. Slides were 17 then washed in staining dishes (Thermo Shandon, MA) with Gene Expression Wash 18 Buffer Kit (Agilent technologies, CA). 19

20 Microarray data analysis

The mRNA Hybridized slides were scanned by GeneChip[®] Scanner 3000 (Affymetrix, CA) and Command Console Software 3.1 (Affymetrix, CA) with default settings. Raw data were imported into the ArrayTrack[®] v.3.5.0 for further analysis. Microarray data were normalized by MAS 5.0 algorithm and were further normalized per chip to the same median intensity value of 1000. The Welch's *t*-test was employed. The cutoff for selection of differentially expressed mRNAs (DEGs) was based on a *p* value < 0.05 combined with absolute fold change (FC) > 2 and mean channel intensities > 250.

For the analysis of miRNA data, slides were scanned by Agilent Microarray Scanner 28 29 (Agilent technologies, CA) and Feature Extraction software 10.7 (Agilent technologies, 30 CA) with default settings. Raw data were normalized with Quantile algorithm and log2 transformed by Gene Spring Software 11.0 (Agilent technologies, CA). Only the 31 mean intensity of miRNAs in at least one of the two groups (FMT-treated and the 32 33 vehicle control groups) > 4 (log2 transformed intensity) was considered. Furthermore, the student's t-test was also performed. The cutoff for selection of differentially 34 35 expressed miRNAs (DEMs) was according to a p value < 0.05 combined with FC > 1.5.

An unsupervised hierarchical clustering analysis (HCA), based on the expression levels of the DEGs and DEMs, was performed for visualizing the cluster of FMT-treated and the vehicle control samples.

1 Validation of microarray data by RT-PCR

The expression levels of selected DEGs and DEMs were verified by real-time reverse 2 3 transcription Polymerase Chain Reaction (RT-PCR). The same total RNA was used for 4 both microarray and RT-PCR experiments. To validate mRNA, cDNA was synthesized 5 from 8 μg total RNA via reverse transcription with oligo-dT15 primer (Promega, USA) 6 and SuperScript II reverse transcriptase (Invitrogen, USA). PCR reactions were carried 7 out using QuantiFast SYBR Green PCR Kit (QIAGEN, USA) following manufacturer's 8 instructions. miRNA RT-PCR was performed using miScript II RT Kit (QIAGEN, USA) and miScript SYBR[®] Green PCR Kit (QIAGEN, USA) for reverse transcription and real 9 10 time-PCR analysis, respectively. The Ct value of each sample was standardized to the selected house-keeping gene (GAPDH and U6 for mRNA and miRNA, respectively). 11 12 Experiments were conducted in technical triplicates. The sequences of primer for 13 mRNA and miRNA were listed in Supplementary Table S1. All RT-PCR reactions were 14 performed using the real-time thermal cycler (Mastercycler realplex 4, Eppendorf, 15 USA).

16 miRNA targets prediction

The DEMs were loaded into IPA (<u>http://www.ingenuity.com</u>) for their corresponding target information. The IPA "miRNA target filter analysis" was performed with three separate algorithms (TargetScan, TarBase and miRbase) to predict potential relationships between miRNA and its mRNA targets. Detailed description about this procedure can be found in the online repository of IPA.

22 Ingeniuty Pathway Analysis

Both of the DEGs and of DEMs were loaded into IPA. An intersection between DEGs 23 and mRNA targets of DEMs dataset was generated as the miRNA-mRNA intersection 24 25 dataset. The tox analysis function in IPA was performed to this dataset for biofunctions, canonical pathways and upstream regulators analyses. A right-tailed 26 27 fisher's exact test was used to calculate a p value to determine the statistical 28 significance of association between our selected objects and the biological functions or related pathways within IPA. The p values of the pathways were reported as a 29 30 range as there were several biofunction branches for one pathway and the p value of each biofunction branch was given. A z-score algorithm was applied as to make 31 predictions of upstream regulators. The z-score algorithm is designed to produce 32 either a prediction of activation (the z-score is ≥ 2) or inhibition (the z-score is ≤ -2), 33 34 or no prediction based on the default setting in IPA.

35 Statistical analysis

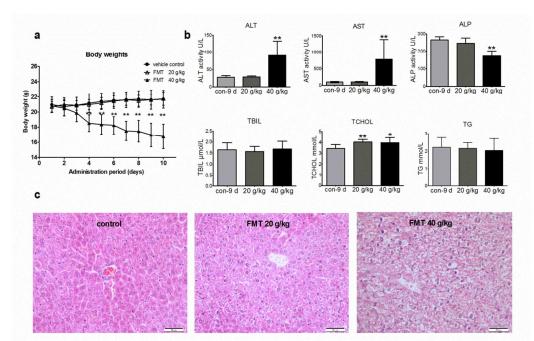
Statistical differences between the FMT treated and control groups were examined by two-sided Student's t-test. Statistical differences between these two groups of the data from body weight and serum biochemical parameter were determined by one-way ANOVA followed by Bonferroni Post Test. *p*-value < 0.05 was considered to

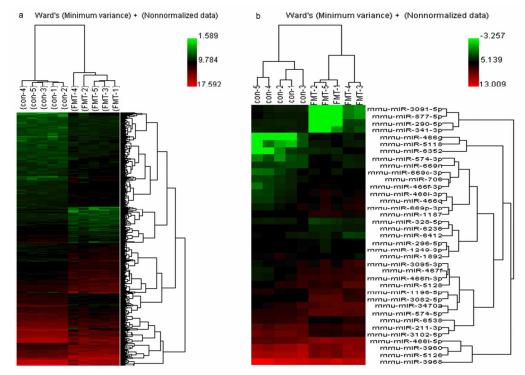
1 be significant.

2 Results

3 Oral FMT treatment induced liver injury in mice

4 First, we evaluated the general toxicological effects of FMT on mice at two dose levels (low: 20 g/kg and high: 40 g/kg) after nine consecutive days of oral gavage. 5 6 During the administration period, several abnormal symptoms appeared in mice 7 dosed with 40 g/kg FMT, including emaciation, poor mental state and withered hair color. One mouse in this group was dead on the fifth day. Compared with control 8 group, body weights of 40 g/kg FMT group decreased progressively during the 9-day 9 10 treatment and significant difference was observed since the fourth day (Fig. 2a). The results of serum biochemical analysis in control and FMT groups at day 10 were 11 summarized in Fig. 2b. Serum ALT and AST are the golden standard biomarkers for 12 liver function and damage assessment²⁸. In this study, serum ALT activity from the 40 13 14 g/kg FMT treated mice increased approximately three times compared with control 15 group, whereas the AST showed more robust increase to nearly 5 times. Moreover, 16 the activity of ALP decreased significantly (p < 0.01) as well as moderate increase of TCHOL level detected in 40 g/kg FMT treatment (p < 0.05), compared with the 17 control group. In addition, there was no statistical significant alterations observed on 18 19 the level of TG and TBIL between 40 g/kg FMT treated and control groups. Furthermore, widespread hydropic degeneration of hepatocytes was observed in the 20 livers of 40 g/kg FMT-treated mice in histopathological examinations (Fig. 2c). 21 Additionally, no obvious signs of toxicity were observed in these general toxicological 22 assessments in 20 g/kg FMT-treated group (Fig. 2a-c), expect the moderate hydropic 23 24 degeneration of hepatocytes detected in histopathological examinations, indicating low dose level of FMT was relatively safe to the animals. 25



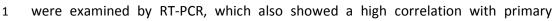

Fig. 2 The effects of 9-day FMT treatment on the general toxicological parameters (n 2 3 = 7 or 8). (a) The body weight. (b) The selected serum biochemical parameters. (c) Photomicrographs of liver tissues with hematoxylin and eosin staining. The 4 5 magnification used was $\times 400$. The scale bar is 50 μ m. The images are representative 6 of at least three independent sections. Data were presented as mean ± SD. Con in Fig. 7 2b indicates the control group. Statistical analysis was performed using one-way 8 ANOVA followed by Bonferroni Post Test. * p < 0.05, ** p < 0.01, compared with 9 control group.

10 Differentially expressed mRNAs (DEGs)

11 Data analysis of mRNA expression profiling identified that 931 out of 45101 mRNAs were differentially expressed (593 up-regulated, 338 down-regulated) after 40 g/kg 12 FMT treatment. Based on these DEGs, the results of HCA revealed a clear separation 13 14 of two major clusters, 40 g/kg FMT treatment group and control group (Fig. 3a). 15 Results showed that a plenty of lipid and xenobiotics metaboloism related genes were deregulated by 40 g/kg FMT treatment. For instance, the gene expressions of 16 Fmo3 and cytochrome P450 (Cyp450) family were significantly increased upon FMT 17 18 treatment (Details of mRNA expression data were provided in Supplementary Table S2), suggesting potential involvement of drug metabolic enzymes in the toxicological 19 20 effects of FMT. Among them, 3 genes belonging to the Cyp4a subfamiliy were 21 detected, including Cyp4a14, Cyp4a12a and Cyp4a10. They were dereguleted by 22 13.99-, 7.17-, and 32.57-fold, respectively. In addition, the expression of elovI3 which catalyzes the initial and rate-controlling condensation reaction to synthesis very long 23 chain fatty acid²⁹ was found to be significantly decreased about 21-fold in FMT 24 treatment group. 25

26 Differentially expressed miRNAs (DEMs)

Among the 1249 miRNA probes examined in liver samples of 40 g/kg FMT treated 1 mice, 37 miRNAs (21 up-regulated, and 16 down-regulated) were significantly 2 3 differentially altered in comparison with control group. HCA on these DEMs also 4 revealed two major clusters: control group and FMT-treated group (Fig. 3b). Since we 5 were interested in downstream effects of miRNAs, those miRNAs with target information available were focused in further analysis. As the results, a total of 12 6 7 miRNAs were selected, including 6 miRNAs up-regulated (miR-574-3p, miR-3082-5p, miR-466i-3p, miR-706, miR-574-5p, and miR-467f) and 6 miRNAs down-regulated 8 9 (miR-877-5p, miR-290-5p, miR-3102-5p, miR-3960, miR-296-5p, and miR-1249-3p) in 10 40 g/kg FMT-treated mice.



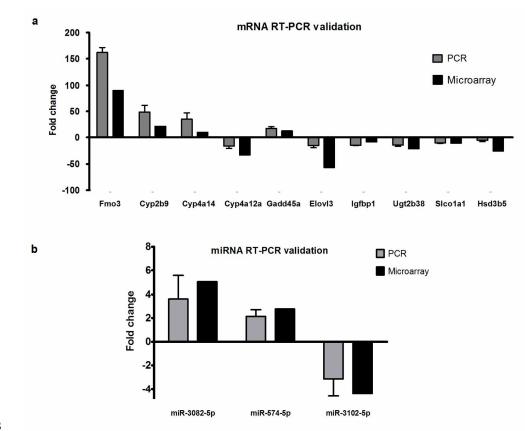
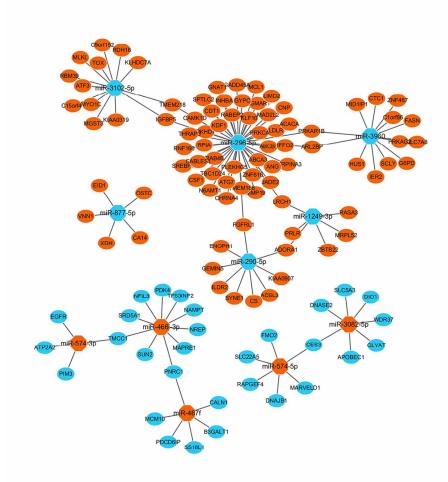

11

Fig. 3 Hierarchical cluster analysis (HCA) of the data from mRNA and miRNA expression profiles of 40 g/kg FMT treatment (n = 5). (a) HCA of the DEGs (differentially expressed mRNAs) in the liver in response to 40 g/kg FMT treatment. (b) HCA of the DEMs (differentially expressed miRNAs) in the liver in response to 40 g/kg FMT treatment.

17 Validation of mRNA and miRNA expression

In order to validate mRNA microarray results, we performed real-time RT-PCR on selected genes. Ten mRNAs, including *Fmo3*, *Cyp2b9*, *Cyp4a14*, *Cyp4a12a*, *Gadd45*, *Elovl3*, *Igfbp1*, *Ugt2b38*, *Slco1a1*, and *Hsd3b5* exhibited a high correlation with primary microarray results. It highlighted the reliability of the microarray experiment (**Fig. 4a**). These stably dysregulated candidate mRNAs could have the potential to serve as diagnostic biomarkers for FMT-ILI. To validate the results from miRNA microarray, three miRNAs were selected and their expression levels in liver tissue

2 microarray results (**Fig. 4b**).


3

4 Fig. 4 Validation of the microarray results by quantitative RT-PCR. (a) The 5 dysregulated mRNAs in response to 40 g/kg FMT treatment, including Fmo3, Cyp2b9, 6 Cyp4a14, Cyp4a12a, Gadd45, Elovl3, Iqfbp1, Uqt2b38, Slco1a1, and Hsd3b5. (b) 7 Validation of the dysregulated miRNAs in response to 40 g/kg FMT treatment, including miR-3082-5p, miR-574-5p, and miR-3102-5p. The fold change of 8 9 FMT-treated group compared to control group in RT-PCR experiments was calculated by the 2^{-^CT}. Black bars indicate microarray data. Gray bars indicate mean fold 10 change (± SD) derived from 3 independent experiments performed in duplicate of 11 12 **RT-PCR** experiments.

13 miRNA-mRNA interactions

According to miRNA target filter analysis, the 12 identified miRNAs were matched 14 15 with 5136 target mRNAs. After taking the information about DEGs from mRNA profile in account, 11 modulated miRNAs were coherently linked with 194 target mRNAs. 16 17 Furthermore, among these target mRNAs, a number of 115 mRNAs showed an 18 opposite expression trend compared with corresponding miRNA. This regulation relationship was shown in Fig. 5. In the 11 miRNAs, miR-296-5p regulated the largest 19 20 number of mRNA (46 genes). Additionally, the overlaps between the downstream 21 target mRNAs of two miRNAs were observed. For instance, Tmem218 and Igfbp5

1 were the potential targets both of miR-3102-5p and miR-296-5p.

2

Fig. 5 The regulation relationship of the 11 miRNAs and 115 target mRNAs in 40 g/kg FMT-treated liver tissue. The 11 miRNAs were the DEMs in the liver in response to 40 g/kg FMT treatment. The 115 mRNAs were the DEGs in the liver in response to 40 g/kg FMT treatment, which also belonged to the target mRNAs of these 11 miRNAs mentioned above with opposite expression trend compared with corresponding miRNA. The orange color means upregulation, which compared to control group. The blue color indicates downregulation, compared to control group.

10 Functional and pathway analysis of data from established DEGs-DEMs

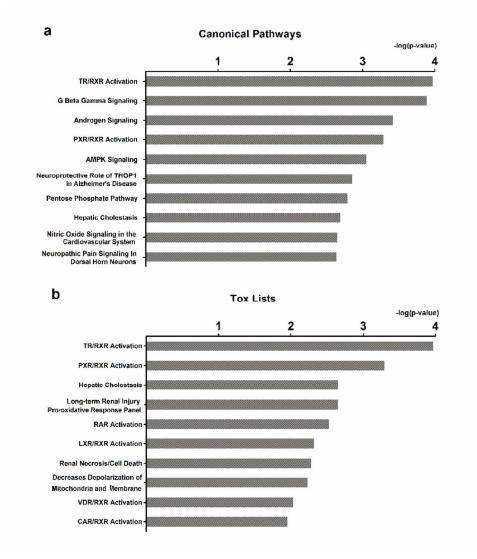
The 115 target mRNAs established a DEGs-DEMs dataset for functional and pathway analysis. The tox analysis function in IPA was performed to this dataset for biofunctions, canonical pathways and upstream regulators analyses. By using IPA tox analysis, we identified "molecular and cellular functions" were likely to alter in the liver of FMT-treated group (Table 1). The overrepresented molecular and cellular functions were associated to lipid metabolism, molecular transport, small molecule biochemistry, cellular development, as well as cell death and survival. The

1 hepatotoxicity induced by FMT treatment may related to liver cholestasis, liver

2 steatosis, liver damage, liver inflammation/hepatitis, and liver necrosis/cell death

3 predicted by IPA.

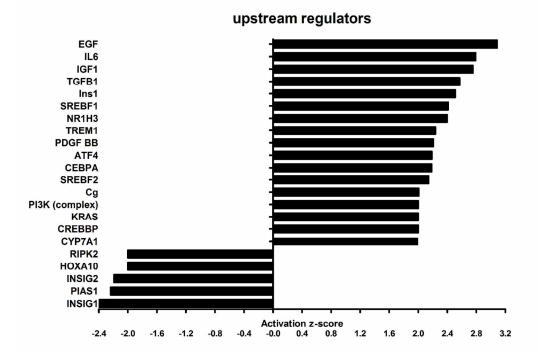
4 Additionally, top 10 canonical pathways and top 10 tox lists are determined by 5 statistical significance and listed in Fig. 6. This analysis showed that most of the 6 pathways or tox lists were involved in metabolic functions, especially lipid and 7 xenobiotics metaboloism related pathways, and these pathways are meditated by 8 drug and xenobiotic related nuclear receptors, such as PXR, LXR, CAR. Hepatic 9 cholestasis pathway was also found dysregulated with involvement of 5 important genes (Abcb1, Srebf1, Prkar1b, Prkaq2, and Prkca). These canonical pathways 10 revealed the dysfunction of liver metabolic function upon FMT treatment. 11


Table 1.Top 5 biological functions predicted by IPA to be regulated by these 115 significantly changed mRNAs, targets of the significantly changed miRNAs.

Name	p-value ^a	Number of genes involved
Molecular and Cellular		
Functions		
Lipid Metabolism	2.48E-09 - 5.52E-03	37
Molecular Transport	2.48E-09 -5.52E-03	44
Small Molecule Biochemistry	2.48E-09 -5.52E-03	48
Cellular Development	1.11E-06 -5.52E-03	49
Cell Death and Survival	1.31E-06 - 5.52E-03	46
Hepatotoxicity		
Liver Cholestasis	1.98E-03 -4.33E-02	5
Liver Steatosis	2.36E-03 - 1.29E-01	6
Liver Damage	5.52E-03 - 5.09E-01	3
Liver Inflammation/Hepatitis	5.52E-03 - 2.36E-01	3
Liver Necrosis/Cell Death	7.59E-03 - 7.59E-03	4

¹² ^aThe p values of the pathways were reported as a range, because there were several

13 biofunction branches for one pathway and the p value of each biofunction branch


14 was given.

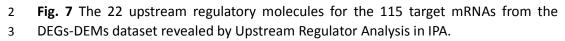

1

Fig. 6 The functional and pathway analysis of the DEGs-DEMs dataset. The
DEGs-DEMs dataset referred to the 11 miRNAs and 115 target mRNAs mentioned
above. (a) Top 10 canonical pathways of the DEGs-DEMs dataset conducted by IPA. (b)
Top 10 tox lists of the DEGs-DEMs dataset performed by IPA.

6 Finally, the Upstream Regulator Analysis provided an insight into upstream regulatory 7 molecules that potentially modulate target genes. A total of 22 regulators were 8 identified to be activated or inhibited with an absolute value of Z-score > 2 (Fig. 7). 9 The enrichment analysis showed significant associations of upstream regulators with 10 functions related to lipid homeostasis, including SREBP1, SREBP2, NR1H3, INSIG1, INSIG2, and CYP7A1, etc. Particularly, the mRNA expression level of SREBF1 was 11 12 up-regulated 4.60-fold in the mRNA microarray screening phase. In addition, the 13 growth factors, such as IFG1 and EGF, regulating the cell proliferation and differentiation, were activated as well at mRNA level, which then has a potential risk 14 15 to develop liver hyperplasia/hyperproliferation.

1

4 Discussion

Although FMT has been known as a hepatotoxic drug, the molecular mechanisms of 5 FMT-ILI has not been well studied, which greatly limits the safe application of this 6 7 medicinal TCM. Therefore, in this study, we aimed to identify important molecular 8 processes in FMT-ILI based on corresponding the mRNA and miRNA expression using 9 toxicogenomic approaches. As the evidences from general toxicological results, 10 multiple phenotypes of liver injury were detected in 40 g/kg FMT treatment group (Fig. 2a-c). Moreover, microarray analysis revealed that a number of mRNA and 11 miRNA were modulated in the progress of FMT-ILI. We identified 37 miRNAs were 12 dysregulated in liver tissue, indicating the important role of miRNA function in 13 14 FMT-ILI. At the same time, 931 mRNAs were dysregulated in the same liver tissue.

15 In mRNA expression profiling, results revealed robust drug-metabolizing enzymes were involved in the progress of detoxification response. The CYP450 superfamily 16 that encodes isoforms that metabolize drugs and xenobiotics are participated in 17 about 75% of the enzymatic reactions involved in drug metabolism. They are 18 19 considered to be broadly studied hepatotoxic biomarkers. In our study, several 20 CYP450 superfamily genes were also identified in DEGs, including 11 of them 21 up-regulated and 7 of them down-regulated (Supplementary Table S2). Among them, Cyp7a1 encodes the rate limiting enzyme that catalyzes the conversion of 22 cholesterol into bile acids, thus plays a critical role in the control of cholesterol 23

1 homeostasis; the enzymes coding by Cyp4a14, Cyp4a12a, and Cyp4a10 function as catalyzing microsomal hydroxylation of fatty acids, and inducting the CYP4A which is 2 closely related to the fatty liver disease³⁰. Another representative drug-metabolizing 3 4 enzyme up-regulated in the FMT treatment was Fmo3. Fmo3 is a phase I 5 drug-metabolizing enzymes that functions somewhat similar to CYP450, but it is 6 considered to be a non-inducible metabolizing enzymes that involved in the 7 oxygenation of sulfur-containing endogenous substrates. Products of Fmo3 are 8 considered to be nontoxic. A recent study showed that *Fmo3* may biologically play a role in autoprotection in APAP-induced hepatotoxicity in female mice³¹. Our data may 9 indicate the protective role of Fmo3 against FMT-ILI as well. In addition, the 10 expression of elov13 was also significantly decreased in FMT treatment group. 11 Previous study showed that knockdown of *ElovI3* reduced fatty acid biosynthesis, 12 adipogenesis, and lipolysis along with a reduction in the level of intracellular 13 triglycerides³². Thus, we deduced that lipid metabolism disorders may play an 14 important role in FMT-ILI. 15

16 Since miRNAs represent the most abundant class of mRNA expression regulators, we integrated these two microarray data to unveil mechanisms of FMT-ILI, as well as 17 18 revealing the regulatory relationship between mRNAs and miRNAs. As liver is an essential metabolic organ, the integrated of mRNA and miRNA expression data in this 19 study revealed lipid metabolism disorder may play a critical role in FMT-ILI. This is 20 consistent with a study which revealed an increase in intracytoplasm lipid droplets in 21 liver tissues after FMT treatment in rats³³. In our study, there were total 37 22 modulated mRNA targets related to lipid metabolism (Table 1). The enrichment 23 24 analysis of mRNA targets revealed that the liver toxicity-induced by FMT were mainly 25 related to liver cholestasis and steatosis. Lipid and xenobiotics metaboloism related 26 nuclear receptors were also involved in FMT-ILI (Fig. 6). Increasing number of studies demonstrated that nuclear receptors are involved in the development of many liver 27 diseases including liver fibrosis, hepatic lipid/glucose metabolism and fatty liver 28 disease³⁴. The retinoid X receptor (RXR) acts as the dimerization partner for type II 29 nuclear receptors³⁵, including farnesoid X receptor (FXR), liver X receptor (LXR), 30 31 pregnane X receptor (PXR). This partnership mediates transcriptional control and 32 involved in a diversity of physiological processes ranging from cell proliferation to lipid metabolism. Pregnane X receptor (PXR) is an important regulator of drug 33 34 excretion and metabolism. The activated PXR in conjunction with RXR plays a key role in drug metabolism by inducing the CYP450 family of enzymes. Our research also 35 36 predicted several activated upstream regulators of the dysregulated genes which 37 were related to lipid metabolism. For example, SREBP1 plays a crucial role in the 38 regulation of hepatocyte lipid homeostasis. Studies found activation of SREBP-1 by ethanol feeding was associated with increased expression of hepatic lipogenic genes 39 as well as the accumulation of triglyceride in the livers³⁶. Taken together, all nuclear 40 receptors related canonical pathways and upstream regulators mentioned above 41 42 unequivocally have been shown to function as key regulators of pathways in lipid

metabolism and homeostasis, indicating the disorders in lipid metabolism play a
 critical role in FMT-ILI.

3 At the same time, disturbance of carbohydrate metabolism was also observed as 4 involvement of the Pentose Phosphate Pathway (PPP, Fig. 6). As an alternative 5 pathway of glucose metabolism, the PPP is responsible for producing nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate. NADPH is needed 6 7 in many anabolic pathways, such as lipid synthesis, fatty acid chain elongation and cholesterol synthesis. An increase demand for NADPH production through the PPP is 8 closely related to antioxidant defense reactions³⁷. Induction of genes involved in the 9 PPP may be the result of disorders of lipid homeostasis and oxidative stress in 10 FMT-ILI. 11

Specific miRNA signatures have been identified in the etiology of various liver 12 diseases. In addition, a well studied miRNA is miR-122, which is a liver-enriched 13 miRNA accounting for approximately 70% of total hepatic miRNAs. Inhibition of 14 15 miR-122 expression in mice leads to a down-regulation of lipid metabolism and 16 cholesterol, specifically down-regulating the key enzyme phosphomevalonate kinase. The previous study suggested that the serum miR-122 was at least as informative as 17 the ALT in humans for acetaminophen (APAP)-induced liver injury³⁸. In our study, 18 however, the expression level of miR-122 in treated mice did not show significant 19 difference in FMT group compared with control group, which may be related to the 20 usage of liver tissue for miRNA microarray. A recent study has demonstrated that 21 22 damaged hepatocytes contribute to the increase in circulating miR-122 levels, while dysregulation of hepatic miR-122 levels requires multiple hits³⁹. Similar to our 23 observation, the expression level of miR-574⁴⁰, miR-296-5p⁴¹, miR-877-5p⁴² have 24 25 found dysregulated in various liver disease models as well. More efforts should be 26 carried out to characterize functions of these miRNAs.

27 Conclusions

28 In conclusion, we have demonstrated a strong response in mRNA and miRNA in the livers of mice exposed to FMT by oral gavage. As integrated analysis of the 29 intersection of DEGs and DEMs, the present study details the molecular mechanisms 30 underlying FMT-ILI. Lipid metabolism disorders may play an important role in FMT-ILI 31 as well as the oxidative stress. However, to elucidate the exact mechanism, these 32 changes need to be further confirmed by measuring the protein and metabolite 33 34 levels. Moreover, further study in miRNAs functions and its target genes are urgently 35 needed to better use miRNAs as toxicogenomic tools. Although additional work needed, the findings from this study provide insight into the mechanisms of FMT-ILI 36 37 by multi-facets of the transcriptome, which can be used as a tool to better 38 understand the pathobiology of HILI.

39 Acknowledgments

RSC Advances Accepted Manuscript

1 This work was financially supported by the National Natural Science Foundation of

2 China (No. 81173465 & 81403275), the Program for New Century Excellent Talents in

3 University (NCET-12-0488), and the Specialized Research Fund for the Doctoral

4 Program of Higher Education (No. 20120101120137).

5 Notes and references

⁶ ⁺ Electronic Supplementary Information (ESI) available: sequences of primer for
 ⁷ mRNA, sequences of primer for miRNA, lists of genes up-regulated upon
 ⁸ FMT-treatment, lists of genes down-regulated upon FMT-treatment.

- 9
- 10
- 11 1. W. L. Hsiao and L. Liu, *Planta Med*, 2010, **76**, 1118-1131.
- R. Teschke, A. Wolff, C. Frenzel and J. Schulze, *Aliment Pharm Therap*, 2014, 40, 32-50.
- S. B. Wu, J. J. Su, L. H. Sun, W. X. Wang, Y. Zhao, H. Li, S. P. Zhang, G. H. Dai, C. G.
 Wang and J. F. Hu, *J Nat Prod*, 2010, **73**, 1898-1906.
- 4. Q. Zhang, J. K. Li, R. Ge, J. Y. Liang, Q. S. Li and Z. D. Min, *Fitoterapia*, 2013, **90**, 192-198.
- S. Y. Zhang, C. P. Tang, C. Q. Ke, X. Q. Li, H. Xie and Y. Ye, *Phytochemistry*, 2012, **73**, 106-113.
- 20 6. T. Akihisa, X. Pan, Y. Nakamura, T. Kikuchi, N. Takahashi, M. Matsumoto, E.
- Ogihara, M. Fukatsu, K. Koike and H. Tokuda, *Phytochemistry*, 2013, **89**, 59-70.
- 7. C. Coria, W. Almiron, G. Valladares, C. Carpinella, F. Luduena, M. Defago and S.
 Palacios, *Bioresour Technol*, 2008, **99**, 3066-3070.
- 8. M. C. Carpinella, M. T. Defago, G. Valladares and S. M. Palacios, *J Agric Food Chem*, 2003, **51**, 369-374.
- 9. N. G. Ntalli, F. Cottiglia, C. A. Bueno, L. E. Alche, M. Leonti, S. Vargiu, E. Bifulco, U.
 Menkissoglu-Spiroudi and P. Caboni, *Molecules*, 2010, **15**, 5866-5877.
- 10. T. Kikuchi, X. Pan, K. Ishii, Y. Nakamura, E. Ogihara, K. Koike, R. Tanaka and T.
 Akihisa, *Biol Pharm Bull*, 2013, **36**, 135-139.
- 30 11. Y. L. Shi and Z. F. Wang, Acta Pharmacol Sin, 2004, 25, 839-848.
- B. Zhang, Z. F. Wang, M. Z. Tang and Y. L. Shi, *Invest New Drugs*, 2005, 23,
 547-553.
- M. F. Yuen, S. Tam, J. Fung, D. K. Wong, B. C. Wong and C. L. Lai, *Aliment Pharmacol Ther*, 2006, **24**, 1179-1186.
- 14. X. P. Zhao, Z. W. Ge, Y. F. Zhang, X. H. Lan and B. L. Zhang, *Zhongguo Zhong Yao Za Zhi*, 2013, **38**, 1820-1822.
- 15. R. M. J. H. S. Y. Qi, *Zhongguo Zhong Yao Za Zhi*, 2008, **33**, 2045-2047.
- 16. L. Cheng, Y. Lei, Y. Y. Liang, D. X. Tang, L. Huang and Z. H. Tan, *Zhong Yao Cai*,
 2007, **30**, 1276-1279.
- 40 17. E. F. Nuwaysir, M. Bittner, J. Trent, J. C. Barrett and C. A. Afshari, *Mol Carcinog*,
 41 1999, **24**, 153-159.
- 42 18. J. Wang, Z. Jiang, J. Ji, X. Wang, T. Wang, Y. Zhang, T. Tai, M. Chen, L. Sun, X. Li

1		and L. Zhang, <i>Food Chem Toxicol</i> , 2013, 58 , 495-505.
2	19.	Y. W. Su, X. Chen, Z. Z. Jiang, T. Wang, C. Wang, Y. Zhang, J. Wen, M. Xue, D. Zhu,
3		Y. Zhang, Y. J. Su, T. Y. Xing, C. Y. Zhang and L. Y. Zhang, <i>PLoS One</i> , 2012, 7 ,
4		e37395.
5	20.	X. Lu, Y. Tian, X. Lian, Y. Jin, T. Jin, Q. Zhao, B. Hu, X. Shen and X. Fan, Food Chem
6		<i>Toxicol</i> , 2014, 65 , 343-355.
7	21.	X. Lu, B. Hu, L. Shao, Y. Tian, T. Jin, Y. Jin, S. Ji and X. Fan, Food Chem Toxicol,
8		2013, 55 , 444-455.
9		L. He and G. J. Hannon <i>, Nat Rev Genet,</i> 2004, 5 , 522-531.
10		Y. Wang, T. Chen and W. Tong, <i>Biomark Med</i> , 2014, 8 , 161-172.
11		X. Yang, Z. Weng, D. L. Mendrick and Q. Shi, <i>Toxicol Lett</i> , 2014, 225 , 401-406.
12	25.	C. Esau, S. Davis, S. F. Murray, X. X. Yu, S. K. Pandey, M. Pear, L. Watts, S. L.
13		Booten, M. Graham, R. McKay, A. Subramaniam, S. Propp, B. A. Lollo, S. Freier, C.
14		F. Bennett, S. Bhanot and B. P. Monia, <i>Cell Metab</i> , 2006, 3 , 87-98.
15	26.	J. Kota, R. R. Chivukula, K. A. O'Donnell, E. A. Wentzel, C. L. Montgomery, H. W.
16		Hwang, T. C. Chang, P. Vivekanandan, M. Torbenson, K. R. Clark, J. R. Mendell
17		and J. T. Mendell <i>, Cell</i> , 2009, 137 , 1005-1017.
18	27.	H. Guo, N. T. Ingolia, J. S. Weissman and D. P. Bartel, <i>Nature</i> , 2010, 466 , 835-840.
19	28.	Q. I. Shuang-yan, X. Yan-hong and J. Ruo-min, LISHIZHEN MEDICINE AND
20		MATERIA MEDICA RESEARCH, 2008, 19 , 2694-2696.
21	29.	A. Jakobsson, R. Westerberg and A. Jacobsson, <i>Prog Lipid Res</i> , 2006, 45 , 237-249.
22	30.	J. P. Hardwick, D. Osei-Hyiaman, H. Wiland, M. A. Abdelmegeed and B. J. Song,
23		PPAR Res, 2009, 2009 , 952734.
24	31.	S. Rudraiah, P. R. Rohrer, I. Gurevich, M. J. Goedken, T. Rasmussen, R. N. Hines
25		and J. E. Manautou, <i>Toxicol Sci</i> , 2014, 141 , 263-277.
26	32.	T. Kobayashi and K. Fujimori, Am J Physiol Endocrinol Metab, 2012, 302,
27		E1461-E1471.
28	33.	Q. I. Shuangyan, Y. Gu, J. Ruo Min, L. Hongjie and M. Caixia, China Journal of
29		Chinese Meteria Medica, 2009, 34 , 2966-2968.
30	34.	M. Wagner, G. Zollner and M. Trauner, <i>Hepatology</i> , 2011, 53 , 1023-1034.
31	35.	P. Lefebvre, Y. Benomar and B. Staels, Trends Endocrinol Metab, 2010, 21,
32		676-683.
33	36.	M. You, M. Fischer, M. A. Deeg and D. W. Crabb, J Biol Chem, 2002, 277,
34		29342-29347.
35	37.	K. Smolkova and P. Jezek, Int J Cell Biol, 2012, 2012 , 273947.
36	38.	L. P. Starkey, J. Dear, V. Platt, K. J. Simpson, D. G. Craig, D. J. Antoine, N. S. French,
37		N. Dhaun, D. J. Webb, E. M. Costello, J. P. Neoptolemos, J. Moggs, C. E. Goldring
38		and B. K. Park, <i>Hepatology</i> , 2011, 54 , 1767-1776.
39	39.	S. Bala, J. Petrasek, S. Mundkur, D. Catalano, I. Levin, J. Ward, H. Alao, K. Kodys
40		and G. Szabo, <i>Hepatology</i> , 2012, 56 , 1946-1957.
41	40.	O. Cheung, P. Puri, C. Eicken, M. J. Contos, F. Mirshahi, J. W. Maher, J. M. Kellum,
42		H. Min, V. A. Luketic and A. J. Sanyal, <i>Hepatology</i> , 2008, 48 , 1810-1820.
43	41.	S. C. Cazanave, J. L. Mott, N. A. Elmi, S. F. Bronk, H. C. Masuoka, M. R. Charlton
44		and G. J. Gores, <i>J Lipid Res</i> , 2011, 52 , 1517-1525.

- 1 42. A. Wojcicka, M. Swierniak, O. Kornasiewicz, W. Gierlikowski, M. Maciag, M.
- 2 Kolanowska, M. Kotlarek, B. Gornicka, L. Koperski, G. Niewinski, M. Krawczyk and
- 3 K. Jazdzewski, Int J Biochem Cell Biol, 2014, **53**, 208-217.

4

80x21mm (300 x 300 DPI)