

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Structural characteristics of (–)-epigallocatechin-3-gallate inhibiting amyloid Aβ42 aggregation and remodeling amyloid fibers

Yun Liu¹, Yang Liu^{#1}, Shihui Wang^{#1}, Shengzhao Dong^{#1}, Ping Chang², Zhaofeng

Jiang²

¹ Beijing Key Laboratory of Bioprocess, College of Life Science and Technology,

Beijing University of Chemical Technology, Beijing 100029 China;

² College of Applied Arts and Science, Beijing Union University, Beijing 100101 China

[#] Equal contributor

^{*} Correspondence author: Yun Liu

Tel: +86 -10-64421335; Fax: +86 -10-64416428;

E-mail address: liuyun@mail.buct.edu.cn or liuyunprivate@sina.com

1 ABSTRACT

2 To elucidate the structural requirements by which EGCG analogs inhibit A β 42 3 protein aggregation and remodel amyloid fibers, the molecular interactions between 4 AB42 and four EGCG analogs, epigallocatechin-3-gallate (EGCG), (-)-gallocatechin 5 gallate (GCG), (-)-epicatechin-3-gallate (ECG) and (-)-epigallocatechin (EGC), were 6 investigated by thioflavin T fluorescence (ThT), circular dichroism (CD), atomic 7 force microscope (AFM), differential scanning calorimeter (DSC) and BCA protein 8 assay. Results revealed that the four EGCG analogs had abilities of preventing the 9 increase of β -sheet contents and inhibiting A β 42 fibrillation when added in the lag and 10 growth phases of A β 42 fibrillation process. When added in the equilibrium phase, the 11 four EGCG analogs can disaggregate the preformed protofibrils/fibrils to oligomers 12 and unfold or partially unfold oligomers. It was also observed that EGCG showed the 13 highest inhibitory effect on A β 42 fibrillation, followed by GCG, ECG and EGC. From 14 the values of IC_{50} , kinetic parameters, secondary structures, thermo-stability and 15 solubility measurement, a reasonable conclusion can be preliminarily drawn that the 16 structural contribution efficiency of EGCG to inhibit A β 42 aggregation and remodel 17 Aβ42 amyloid fibrils decreases by the order of 3'-hydroxyl group of trihydroxyphenyl 18 ring > gallol ester moiety > stereoisomer. The findings in this work provide the 19 structure based molecular interaction mechanism between EGCG analogs and Aβ42 20 amyloid protein.

21

Keywords: Aβ42 protein; EGCG analogs; Fibrillation/Aggregation; Remodel

RSC Advances Accepted Manuscript

23 Introduction

24 The typical feature of Alzheimer's disease (AD) is the aggregation of amyloid β -protein (A β) from soluble random-coil into β -sheet rich fibrils ¹. A β protein contains 25 26 several different species (A β 39-43) according to the numbers of amino acids in the 27 backbone structure. Among them, amyloid β -protein 42 (A β 42) has been considered 28 as the most crucial factor for the onset of AD due to its extremely severe neurotoxicity and strong aggregation capability^{2,3}. Hence, prevention of Aβ42 aggregation has a 29 key point to AD pathology⁴. Researchers have revealed that (-)-epigallocatechin 30 31 3-gallate (EGCG) shows excellent inhibitory effect for the aggregation/fibrillation of Aß protein both *in vivo* and *in vitro*⁵⁻⁷. For instance, Porat and co-workers addressed 32 that EGCG was a potent inhibitor of A β 40 aggregation and its IC₅₀ was 3.0 μ M⁸. 33 34 EGCG is thought to bind to unaggregated polypeptides and redirect the pathway of amyloid formation to off-pathway nontoxic oligomers⁹, and it is a promising new 35 drug-delivery system to the special position ¹⁰. Wang and co-workers ¹¹ reported that 36 37 there were no specific interactions and binding sites in the A β 42 and EGCG binding 38 from the data of isothermal titration calorimetry (ITC).

39 EGCG and its analogs, (–)-epicatechin gallate (ECG), (–)-epigallocatechin (EGC) 40 and (–)-gallocatechin gallate (GCG), are natural polyphenolic compounds extracted 41 from green tea, and show little toxicity to human ^{12, 13}. The chemical structures of 42 EGCG analogs are depicted in Fig. 1. It can be obviously found that GCG is the 43 stereoisomer of EGCG. The structure of ECG is similar to EGCG but lacks the

44	3'-hydroxyl group on the trihydroxyl ring (B ring). The structure of EGC includes the
45	3'-hydroxyl group but lacks the gallate ester (D ring). Comparative analysis of EGC
46	and EGCG allows an assessment of the gallate moiety role in inhibiting $A\beta 42$
47	aggregation and remodeling $A\beta42$ mature fibrils. Similarly, comparative analysis of
48	ECG and EGCG can address the role of 5-hydroxyl group on the trihydroxyl ring.
49	And comparative analysis of GCG and EGCG can show the role of stereoisomer in
50	the polyphenolic structure.
51	It has been demonstrated that the structural constraints and specific aromatic

interactions directed polyphenol inhibitors to the amyloidogenic core ⁸⁸. Churches and 52 co-workers ¹⁴ suggested that both the number of hydroxyl groups and the positioning 53 54 of these groups on the polyphenolic structure are important against amyloid protein aggregation. Akaishi and co-workers ¹⁵ also demonstrated that phenolic hydroxyl 55 56 groups were important for the inhibition of EGCG against Aβ42 aggregation. Many 57 other researchers confirmed that galloyl moiety (D ring in Fig. 1) in polyphenols structure played an essential role of binding to many proteins ¹⁶⁻¹⁸. In our previous 58 59 work, we elucidated that epimers EGCG and GCG showed discrepancy inhibitory 60 effects on lipase activity, indicating spatial conformation might have an important role of binding to protein 18 . 61

These findings raise a challenge question of what link between the hydroxyl group,
gallol moiety, and epimer in the polyphenolic structural analogs and corresponding
anti-aggregatory activity. To meet the challenge, using EGCG, GCG, ECG, and EGC

RSC Advances Accepted Manuscript

65 analogs as model inhibitors, we would like to characterize the structure and activity 66 between EGCG analogs and β -sheet linked polymerization and depolymerization of 67 AB42 protein fibrils. Although EGCG and its structural analogs are well known to 68 inhibit A β 42 aggregation, however, it is not known the structural requirements by 69 which EGCG analogs inhibit $A\beta 42$ protein aggregation and remodel amyloid fibrils. 70 Thus, we evaluate the effects of adding four polyphenolic structural analogs in each 71 specific phase of fibrillation on A β 42 aggregation and disaggregation. Therefore, 72 three main purposes of this work are focused on: (1) to explore the influences of 73 EGCG structural analogs on the A β 42 aggregation/fibrillation when added in the lag 74 and growth phases of A β 42 fibrillation; (2) to address the effects of EGCG structural 75 analogs on the A β 42 disaggregation when adding in the equilibrium phase of A β 42 76 fibrillation; (3) to evaluate the contribution efficiency of 3'-hydroxyl group, galloyl 77 moiety, and epimer in EGCG structure on the redirection of A β 42 amyloid formation. 78 The findings of our work will shed light on the inhibitory mechanisms of EGCG 79 analogs against A β 42 aggregation, and provide the structured based mechanism 80 between polyphenols inhibitors and A β 42 amyloid protein at molecular level.

81 Materials and methods

82 *Materials*

Aβ42 with a purity of more than 95% was purchased from GL Biochem Ltd
(Shanghai, China). Aβ42 protein was kept in -80 °C fringe before experimental usage.
The polyphenols analogs of EGCG, ECG, EGC, and GCG with the purity of 98% were

86 bought from Shanghai Yuanye Biological Technology Co., Ltd (Shanghai, China). The 87 molecular chemical structures of four EGCG analogs are shown in Fig. 1. 88 Hexafluoroisopropanol (HFIP) with the purity of more than 99.5% was available from 89 Sigma (St. Louis, MO, USA). All other chemicals and agents were of the analytic 90 grades and bought from local sources in China. 91 *r* parameter determination 92 To facilitate the comparison of different EGCG analogs under various conditions, 93 r representing the molar ratio of a certain EGCG analogs to A β 42 was introduced in 94 this work, which was calculated with Eq. (1): $r = \frac{[EGCG analogs]}{[A\beta 42]}$ 95 (1)96 where: [EGCG analogs] and [Aβ42] are the final concentrations of each EGCG 97 analog and A β 42 (µmol/L) in phosphate buffer solutions (PBS) (pH 7.4), respectively. 98 The final A β 42 concentration in PBS was 25 μ mol/L, and the final concentrations 99 of each EGCG analogs in PBS were 25, 125, and 250 µmol/L, respectively. Hence, in 100 this work, the values of r were 1, 5, and 10, respectively. To maintain low oxygen 101 partial pressure and suppress the oxidation of EGCG analogs, PBS was degassed for 102 20 min before use and the solutions were flushed with nitrogen during operations. 103 $A\beta 42$ sample solution preparation 104 Lyophilized A β 42 in the vial was stored at -80 °C fringe before use. The peptide

105 was allowed to stand at room temperature for 30 min to avoid condensation upon

RSC Advances Accepted Manuscript

106	opening the vial cap. A β 42 stock solution was prepared by dissolving the A β 42
107	peptide in HFIP with the concentration of 1 mg/mL. The solution was subjected to
108	ultrasonic concussion for 10 min and incubated at 25 °C for 30 min in order to
109	eliminate all the secondary structures. Then the volatile solvent was removed off by
110	vacuum freeze-drying overnight. The treated A β 42 peptide was dissolved in 20
111	mmol/L NaOH solution with a concentration of 1 mg/mL. After ultrasonic concussion
112	for 5 min, A β 42 solution was centrifuged with the rate of 5,000 rpm for 5 min at 5 °C.
113	1 mL of supernatant was drawn and diluted with 100 mmol/L phosphate buffer
114	solutions (PBS) (pH 7.4) to the final concentration of 25 μ M A β 42 for experiments.
115	Fibrillation kinetics monitoring by Thioflavin T (ThT) fluorescence
116	ThT fluorescence method was employed to monitor the fibrillation kinetics of
116 117	ThT fluorescence method was employed to monitor the fibrillation kinetics of $A\beta42$ in the absence and presence of EGCG analogs at different concentrations at
116 117 118	ThT fluorescence method was employed to monitor the fibrillation kinetics of A β 42 in the absence and presence of EGCG analogs at different concentrations at 37 °C with the agitation of 200 rpm ¹⁹ . At appropriate intervals, aliquot of 200 μ L
 116 117 118 119 	ThT fluorescence method was employed to monitor the fibrillation kinetics of A β 42 in the absence and presence of EGCG analogs at different concentrations at 37 °C with the agitation of 200 rpm ¹⁹ . At appropriate intervals, aliquot of 200 μ L samples was removed from the bulk solution and mixed with 2 mL of 20 μ mol/L ThT.
 116 117 118 119 120 	ThT fluorescence method was employed to monitor the fibrillation kinetics of A β 42 in the absence and presence of EGCG analogs at different concentrations at 37 °C with the agitation of 200 rpm ¹⁹ . At appropriate intervals, aliquot of 200 μ L samples was removed from the bulk solution and mixed with 2 mL of 20 μ mol/L ThT. The solution was injected into a 1 cm-path length quartz cuvette and assayed on a
 116 117 118 119 120 121 	ThT fluorescence method was employed to monitor the fibrillation kinetics of A β 42 in the absence and presence of EGCG analogs at different concentrations at 37 °C with the agitation of 200 rpm ¹⁹ . At appropriate intervals, aliquot of 200 μ L samples was removed from the bulk solution and mixed with 2 mL of 20 μ mol/L ThT. The solution was injected into a 1 cm-path length quartz cuvette and assayed on a Varian Cary Eclipse fluorescence spectrometer (Varian Inc., Palo Alto, California,
 116 117 118 119 120 121 122 	ThT fluorescence method was employed to monitor the fibrillation kinetics of A β 42 in the absence and presence of EGCG analogs at different concentrations at 37 °C with the agitation of 200 rpm ¹⁹ . At appropriate intervals, aliquot of 200 μ L samples was removed from the bulk solution and mixed with 2 mL of 20 μ mol/L ThT. The solution was injected into a 1 cm-path length quartz cuvette and assayed on a Varian Cary Eclipse fluorescence spectrometer (Varian Inc., Palo Alto, California, USA). The excitation wavelength was 400 nm, and emission wavelength was 480 nm.
 116 117 118 119 120 121 122 123 	ThT fluorescence method was employed to monitor the fibrillation kinetics of A β 42 in the absence and presence of EGCG analogs at different concentrations at 37 °C with the agitation of 200 rpm ¹⁹ . At appropriate intervals, aliquot of 200 µL samples was removed from the bulk solution and mixed with 2 mL of 20 µmol/L ThT. The solution was injected into a 1 cm-path length quartz cuvette and assayed on a Varian Cary Eclipse fluorescence spectrometer (Varian Inc., Palo Alto, California, USA). The excitation wavelength was 400 nm, and emission wavelength was 480 nm. The scanning rate was 600nm/min
 116 117 118 119 120 121 122 123 124 	ThT fluorescence method was employed to monitor the fibrillation kinetics of A β 42 in the absence and presence of EGCG analogs at different concentrations at 37 °C with the agitation of 200 rpm ¹⁹ . At appropriate intervals, aliquot of 200 μ L samples was removed from the bulk solution and mixed with 2 mL of 20 μ mol/L ThT. The solution was injected into a 1 cm-path length quartz cuvette and assayed on a Varian Cary Eclipse fluorescence spectrometer (Varian Inc., Palo Alto, California, USA). The excitation wavelength was 400 nm, and emission wavelength was 480 nm. The excitation and emission slits were both 5 nm. The scanning rate was 600nm/min and the resolution was 1.0 nm.

126 $A\beta 42$ fibrillation kinetic parameters were analyzed according to the method

Page 9 of 41

RSC Advances

reported by Wang and co-workers²⁰. The fibrillation of Aβ42 could be described as a 127 128 sigmoidal time-dependent curve which sequentially involves three stages, an initial 129 lag phase where the ThT fluorescence intensity at 480 nm (I480) shows no changes, a 130 subsequent fast growth phase where I480 increases exponentially with time, and a 131 final equilibrium phase where I480 reaches a plateau indicating the end of fibril formation ²¹. Hence, the I480 values were plotted as a function of incubation time and 132 133 regressed by a sigmoidal curve described by Eq. (2): $Y = y_{i} + \frac{y_{f}}{1 + e^{-[(t-t_{0})/\tau]}}$ 134 (2)135 where Y is the I480, t is incubation time, t_0 is the time to 50% of maximal I480, and y_i , 136 $y_{\rm f}$, τ are all coefficients. Therefore, A β 42 fibrillation kinetic parameters, the apparent 137 rate constant for the growth of fibrils (k_{app}), the lag time (T_{lag}), and the I480 maximum 138 (Y_{max}) , can be derived from Eq. 2 and depicted as Eqs (3)-(5):

139 $k_{\rm app} = \frac{1}{\tau}$ (3)

140
$$T_{\rm lag} = t_0 - 2\tau$$
 (4)

$$Y_{\rm max} = y_{\rm f} + y_{\rm i} \tag{5}$$

142 Conformation analysis by circular dichroism (CD) spectroscopy

143 The secondary structure changes of A β 42 protein during the fibrillation in the 144 absence and presence of EGCG analogs were detected by a Jasco 810 circular 145 dichroism spectrophotometer (Jasco Inc., Tokyo, Japan) according to the method in 146 our previous work ²². Specifically, an aliquot of 500 µL sample was taken out from the 147 bulk solution at different incubation times and centrifuged at 5,000 rpm for 5 min. The

148	supernatant was injected into a 1-mm path length quartz cuvette. A background CD
149	spectrum of buffer solution was subtracted from the sample spectrum for baseline
150	correction. The conditions of CD analysis were: a resolution of 0.5 nm, scanning rate
151	of 100 nm/min, response time of 1 s, bandwidth of 2 nm, room temperature and the
152	wavelength ranges from 190 to 250 nm. The A β 42 secondary elements of α -helix,
153	β -sheet, turn, and unordered coil were calculated from the spectra data using the
154	public database of DichroWeb (<u>http://dichroweb.cryst.bbk.ac.uk/html/home.shtml</u>) ²³ .
155	Deconvolution protocol: SELCON3. Specific parameters: file format of JASCO 1.50
156	(with preview); input and ourput units of theta; initial wavelenth of 250 nm; final
157	wavelength of 190 nm; optiional scaling factor of 1.0; mean residue weigh of 110.1
158	daltons (molecular weight / (number of residues -1)).
159	Morphology detection by atomic force microscope (AFM)
160	10 μL samples were pipetted onto freshly cleaved mica plate (1 cm \times 1 cm) fixed
161	onto a glass slide and incubated at room temperature for 3 min. The remaining salts
162	and loose deposits in the suspension were triplicate rinsed with ultrapure water (50 μ L,
163	Millipore) and then air-dried for a whole night. AFM images were obtained on a
164	dimension FastScan AFM (Bruker, German) with FASTSCAN-A probe in ScanAsyst
165	mode under ambient conditions. Scanning frequency was from 0.5 to 2.0 Hz. At least

167 similar throughout the sample ²⁴

166

RSC Advances Accepted Manuscript

three different regions of the surface were examined to verify that morphology was

168 Thermodynamic parameter $(T_{\rm m})$ assessment by differential scanning calorimetry

SC)
SC)

170 Thermodynamic parameter T_m , the transition midpoint temperature, was 171 determined by a VP differential scanning calorimetry (MicroCal, Northampton, MA) ¹⁸. Temperature scans were set from 30 to 90 °C at a scan rate of 1 °C/min (i.e., ca. 60 172 173 min for a round). The sample cell was loaded with Aβ42 solution in the absence or 174 presence of a certain EGCG analogs, and the same concentration of PBS was loaded 175 into the reference cell as the blank control. Samples were removed from the bulk 176 solutions at a certain incubation time, which was set as the sampling time in Fig. 2D 177 and 5. The samples and control were degassed for 15 min at 4 °C immediately before 178 DSC scanning using the included degassing system. A buffer-buffer reference scan 179 was subtracted from each sample scan prior to concentration normalization. DSC data 180 were analyzed by MicroCal Origin Version 7.0¹⁸. 181 Inhibition and disaggregation of Protofibrils/Fibrils

A β 42 solution alone was first pre-incubated at 37 °C with an agitation of 200 rpm for a certain time. At 10 h (the growth phase) and 24 h (the equilibrium phase), EGCG analogs were added into the preformed A β 42 protofibril or fibril solutions with a final concentration of 125µmol/L (*r*=5) and further incubated to 40 h. At certain incubation times, aliquots of samples were removed from the bulk solution and examined by ThT fluorescence, CD spectroscopy, AFM, and DSC to evaluate the effect of EGCG analogs on the inhibition or disaggregation of A β 42 protofibrils and fibrils.

RSC Advances Accepted Manuscript

189 Solubility measurement by bicinchoninic acid (BCA) protein assay

190	The inhibitory efficacy of EGCG analogs on A β 42 aggregation and disaggregation
191	was further studied by measuring the concentration of soluble $A\beta 42$ in the supernatant
192	with BCA protein assay 25 Briefly, 20 μL of protein standards or A\beta42 samples were
193	centrifuged at 12,000 rpm for 30 min, and then added to 220 μL of the mixture
194	solutions of BCA reagent A and B (50:1, v/v, Beyotime Biotechnology Co., Shanghai,
195	China). The mixed samples were subjected to a 96 well plate and incubated for 30
196	min at 37 °C. After that, the plate was cooling for 15 min at room temperature. The
197	A β 42 protein solubility was calculated by measuring the absorbance of each well on a
198	Multiskan spectrum (Thermo Fisher Scientific Inc., MA, USA) at a wavelength of 562
199	nm

200 **Results and discussion**

201 *Fibrillation kinetics of Aβ42 alone*

202 We first evaluated the fibrillation characteristics of A β 42 alone from the aspects 203 of kinetics, structure, morphology, and thermodynamics. The data were summarized 204 in Fig. 2.

The A β 42 fibrillation kinetics were assayed using ThT fluorescence due to the fact that the fibril contents can be quantified by ThT fluorescence intensity I480²⁶. As shown in Fig. 2A, A β 42 fibrillation formation displayed a typical sigmoidal curve at physiological condition (37 °C and 100 mmol/L PBS). To obtain the kinetic parameters of A β 42 fibrillation, the curve was fitted by Eq. (2) described by Nielsen

RSC Advances

210	and co-workers ²¹ , and T_{lag} value of 3.2±0.2 h, k_{app} value of 102.3±8.8 1/h, and Y_{max}
211	value of 931.1±9.8 were achieved (Table 1). Accordingly, the sigmoidal time-course
212	curve can be sequentially divided into three stages: a rate-limiting lag phase of 0-3.2 h
213	(equal to the T_{lag} value) where an ordered oligometric nucleus formed, a growth phase
214	of 3.2-15 h (at 15 h, the ThT fluorescence intensity reached the maximum of
215	931.1 \pm 9.8) where A β 42 protofibrils and fibrils formed/elongated with an apparent rate
216	of 102.3±8.8 1/h, an equilibrium phase of >15 h where the mature fibrils formed and
217	the fibril-mass concentration no longer changed ²⁷⁻²⁹ .
218	The secondary structure changes of A β 42 during fibrillation were detected by
219	CD spectroscopy, and the spectra were fitted by the public database of DichroWeb 23 .
220	The resulting A β 42 secondary element percentages of α -helix, β -sheet, turn, and
221	unordered coil were listed in Table S1. Since the fibrillation of A β 42 mainly involves
222	the conversion of β -sheet ^{27, 30} , we presented the changing trend of β -sheet content
223	during the fibrillation in Fig. 2B to facilitate the comprehensive analysis of different
224	results. As listed in Table S1, the freshly prepared A β 42 molecules (0 h) contained a
225	random-coil content of 52.7% and a β -sheet content of 29.5%. The β -sheet contents
226	increased rapidly at 0-3.2 h (the lag phase), indicating that most of the $A\beta42$
227	molecules converted into β -sheet rich nuclei and oligomers at this stage (Fig. 2B).
228	With the further increase of incubation time at 3.2-15 h (the growth phase), the
229	β -sheet structures gradually increased with time, which suggested the continued
230	conversion of β -sheet rich oligomers from unfolded A β 42 molecules and the

formation/elongation of protofibrils and fibrils from oligomers. However, after 15 h,

the β -sheet structures started to decrease with incubation time. The same phenomenon

231

	Manuscript
	Accepted
	Advances
	RSC

233	has also been observed by Ruggeri et al. $^{\rm 27}$ during the study of impact of $\beta\mbox{-sheet}$
234	content on the mechanical properties of $A\beta 42$ fibrils. They suggested that the decrease
235	of β -sheet content mainly stemmed from the sedimentation of insoluble aggregates
236	during the measurement. In this study, since the kinetics of $A\beta 42$ fibril formation have
237	already reached the stationary equilibrium phase after incubation for 15 h according to
238	the ThT signals (Fig. 2A), we also proposed that the reduction of β -sheet content
239	resulted from the precipitation of insoluble aggregates during centrifugation before
240	the CD assay (see the method section for detail information).
241	Fig. 2C shows the morphology images of A β 42 fibrillation assayed by AFM. At 0 h,
242	only a few early oligomers were observed due to the fact that A β 42 mainly displayed
243	as a random-coil monomer, which agreed well with the data of CD and ThT analysis.
244	After 10 h incubation, abundant oligomers and protofibrils appeared in the image. At
245	the end of growth phase (15 h), mature and un-branched A β 42 fibrils were seen in the
246	image. At an equilibrium phase of 24 h, branched fibrils with larger cross-sectional
247	diameters were obviously found in AFM image. Although the fibril-mass
248	concentration no longer changes at the equilibrium phase, the $A\beta 42$ molecules were in
249	a dynamic equilibrium, which led to secondary fibrillation on the basis of readily
250	formed fibrils and therefore wider branched fibrils were formed ^{27, 28} . Our results were
251	in well agreement with those reported in the literatures that the surfaces of A β 42

fibrils could serve as templates for the replication of the parent structure, which
resulted in the form of wider branched fibrils ^{31, 32}.

254 Furthermore, DSC was employed to investigate the transition midpoint temperature 255 $(T_{\rm m})$ of A β 42 during the fibrillation process. Fig. 2D showed the $T_{\rm m}$ values picked 256 from the DSC spectra. It showed that A β 42 fibrillation could be divided into three distinct phases according to T_m values. At 0-8 h, the 1st phase, T_{m1} value decreased 257 258 with the incubation time from 55 to 50°C, indicating that the thermostability of A β 42 259 declined. Within this period, A β 42 formed nuclei and oligomers according to the ThT 260 intensity and AFM image (Fig. 2A and C). Since the formation of nuclei and oligomers were reversed and unstable, the $T_{\rm ml}$ value declined. At 10-18 h (the 2nd 261 262 phase), another transition midpoint temperature, T_{m2} , showed up and remained a 263 constant value of 70 °C within this stage. It suggested that more stable species were 264 formed in the solution. According to the AFM image in Fig. 2C, these stable species might be long and un-branched A β 42protofibrils/fibrils. At 20-30 h, T_{m1} and T_{m2} 265 266 merged into T_{m3} and gradually increased from 60 to 67 °C. The merge of T_{m1} and T_{m2} 267 indicated that most of the nuclei, oligomers, and protofibrils have formed relatively 268 homogeneous fibrils at this stage. Moreover, the increase of T_{m3} value at 20-24 h were 269 assigned to the secondary fibrillation and the formation of more stable and wider 270 branched fibrils described in AFM images (Fig. 2C, 24 h).

271 *Effects of EGCG analogs on A\beta 42 fibrillation when added in the lag phase*

As above mentioned, the $A\beta 42$ alone fibrillation kinetics displayed a typical

273

274

275

276

277

278

279

280

281

282

283

284

285

286

sigmoidal curve, which can be sequentially divided into three stages: lag phase, fast
growth phase and equilibrium phase. By adding EGCG analogs in the lag phase, the
influences of four EGCG analogs on A β 42 fibrillation were investigated and the
results were depicted in Fig. 3. It can be obviously found that ThT intensity decreased
with the increasing of concentrations from 25, 125, to 250 μ mol/L (<i>r</i> =1, 5, and 10) for
each EGCG analogs. The 50% inhibition concentration (IC50) values for EGCG,
GCG, ECG and EGC were 1.70±0.17, 2.92±0.22, 4.27±0.26, 18.37±2.17 µmol/L,
respectively (Seen Fig. S1). It suggested that EGCG analogs show capabilities of
inhibiting A β 42 fibrillation. The ThT experimental data were regressed by Eq. (2) and
the kinetic parameters were summarized in Table 1. T_{lag} values were prolonged while
$k_{\rm app}$ and $Y_{\rm max}$ values decreased in a concentration-dependent manner through adding
the four EGCG analogs in the lag phase. Therefore, from Table 1 and Fig. S1, we
confirmed that the inhibitory effects of the four EGCG analogs decreased by the order
of EGCG \approx GCG > ECG > EGC.

The β -sheet contents of A β 42 alone increased firstly at 0-15 h and then decreased at 15-36 h (Fig. 4A, black line). When EGCG analogs were added into the A β 42 solution in the initial lag phase, the contents of β -sheet changed to different extents for each analog (Fig. 4A and Table S1). In view of EGCG and GCG, the β -sheet contents firstly increased before 3.2 h, and then dramatically decreased to 15.5 and 17.2% after 24-h incubation, respectively. By comparing the profiles for EGCG and GCG in Fig. 4A, it can also be found that the inhibitory effect of GCG was better than EGCG before ca.

RSC Advances

10 h, indicating that GCG had better capability for prolonging the lag time of A β 42.

This conclusion was in consistence with T_{lag} values in Table 1, where T_{lag} value for	
GCG at $r=1$ (9.4 h) was much longer than those for EGCG (4.8 h), ECG (3.7 h), and	
EGC (5.6 h). As for ECG and EGC, the turning points of the profiles were about 11	
and 15 h, and the β -sheet contents at 36 h were 26.1 and 32.1%, respectively.	
Summarily, the inhibitory effects of the four molecules decreased in the order of	
EGCG>GCG>ECG>EGC.	
To address the thermostability of EGCG analogs and A β 42 combination, the effects	
of EGCG analogs on the DSC curves of $A\beta 42$ were investigated when EGCG analogs	
were added in the lag phase. Fig. 5A showed that the addition of EGCG analogs	
broadened the peak width of A β 42 by the order of GCG > EGCG > EGC > EGC,	
indicating that they bound to $A\beta 42$ nonspecifically and broke its homogeneity to some	
extents. Noticeably, the T_m value for GCG was the highest, which suggested that GCG	
and A β 42 nuclei formed more stable complexes in the lag phase, prolonging the lag	
time and preventing the oligomerization and fibrillation. This phenomenon was in	
well agreement with the T_{lag} value in Table 1 and CD results in Fig. 4A.	

RSC Advances Accepted Manuscript

The morphology of A β 42 aggregates with EGCG analogs added in the lag phase were detected through AFM after 24 h co-incubation (Fig. 6). Compared with the AFM images of A β 42 alone in Fig. 2C (24 h), amorphous aggregates, instead of fibrils, appeared at the equilibrium stage with the addition of the four EGCG analogs, revealing that the four EGCG analogs could prevent the formation of fibrils. However,

315	the size of the aggregates for EGCG and GCG were much larger than those for EGC
316	and ECG, which was in consistence with Y_{max} values in Table 1. This phenomenon
317	might stem from the fact that ThT mainly binds to the cavities running parallel to the
318	fibril axis of A β 42 which is rich in β -sheet structure, rather than amorphous
319	aggregates or monomers whose β -sheet contents were low ^{24, 28} . The results, however,
320	implied that EGCG and GCG could remodel $A\beta42$ into ThT undetectable,
321	off-pathway aggregates, which were also found by other researchers ^{5, 33} .
322	Effects of EGCG analogs on $A\beta 42$ inhibition when added in the growth phase
323	To evaluate whether EGCG analogs can inhibit the aggregation of $A\beta 42$ when
324	added in the growth phase, $A\beta42$ was incubated alone for 10 h and then EGCG
325	analogs were added to the solution with a final concentration of 125 μ mol/L (r=5). As
326	can be seen in Fig. 7A, after the addition of the four analogs, the ThT intensity
327	decreased by the order of EGCG \approx GCG > ECG > EGC, indicating that the four
328	EGCG analogs inhibited the $A\beta42$ oligomers and protofibrils and the inhibitory
329	effects decreased by the order of EGCG \approx GCG $>$ ECG $>$ EGC. AFM images in Fig.
330	7B confirmed that average size of the aggregates for EGCG and GCG was smaller
331	than that of A β 42 alone (Fig. 2C, 10 h), suggesting that EGCG and GCG could inhibit
332	the formation of oligomers and protofibrils. However, there were also some
333	amorphous aggregates with sizes larger than those of A β 42 alone (Fig. 2C, 10 h).
334	Since the ThT intensity and CD signal were both weak at this point (Figs. 7A and 4B),
335	it could be inferred that the large amorphous aggregates resulted from the remodel of 17

336	unfolded or partially unfolded oligomers by EGCG or GCG ^{5, 33} . As for ECG and
337	EGC, the remodel were not observed since the size of the aggregates in Fig. 7B were
338	smaller than those of A β 42 alone (Fig. 2C, 10 h).

339 Furthermore, as can be observed from Fig. 4B, when adding four EGCG analogs 340 in the growth phase of fibrillation, the β -sheet contents of the A β 42 peptide started to 341 decrease instead of increase, indicating that the four EGCG analogs could bind to 342 oligomers and protofibrils, unfold them, and prevent the fibrillation process (Fig. 4B). 343 At the fast growth phase, A β 42 alone showed broad peak width and two $T_{\rm m}$ values 344 (Figs. 5B and 2), indicating that oligomers and protofibrils co-existed. The addition of EGCG analogs merged the two $T_{\rm m}$ values and narrow the peak width (Fig. 5B), 345 346 suggesting that the homogeneity was increased by the analogs. Taken together, it 347 implied that the EGCG analogs inhibited the conversion of protofibrils from 348 oligomers and therefore increased the homogeneity of the solution.

349 *Effects of EGCG analogs on remodeling* $A\beta 42$ *fibrillation when added in the*

350 *equilibrium phase*

In order to investigate whether EGCG analogs remodeled mature A β 42 fibrils, A β 42 was incubated alone for 24 h and then EGCG analogs were added to the solution with a final concentration of 125 μ mol/L (*r*=5). As shown in Fig. 8A, ThT intensity decreased with the addition of EGCG analogs by the order of EGCG > GCG > ECG > EGC. At about 35 h, ThT intensity became unchanged. AFM images in Fig. 8B showed that the morphology of A β 42 converted from fibrils to small

RSC Advances Accepted Manuscript

oligomers, indicating that all the four EGCG analogs can disaggregate A β 42 fibrils. Specifically, the sizes of aggregates for EGCG and GCG were larger than those for ECG an EGC, again indicating that EGCG and GCG can remodel the small oligomers to amorphous aggregates ^{5, 33}.

361 From the β -sheet contents variances of A β 42 in the absence and presence of 362 EGCG analogs (Fig. 4C), when EGCG analogs were added in the equilibrium phase, 363 as shown in Fig. 4C, the β -sheet contents started to increase and then decrease with 364 increasing of incubation time. It suggested that EGCG analogs first disaggregated 365 fibrils and released soluble β -sheet-containing monomers/oligomers in the solution 366 (resulting in the increase of β -sheet contents), and then unfolded or partially unfolded 367 these monomers/oligomers (resulting in the decrease of β -sheet contents). The T_{m_3} 368 value of A β 42 alone at equilibrium phase of 24 h was 67 °C (Fig. 2D). The addition of 369 EGCG, GCG, ECG, and EGC decreased the T_{m3} value to 56.51±0.10, 57.37±0.12, 370 58.25±0.08, and 61.27±0.19 °C, respectively (Fig. 5C). Since the typical temperature 371 of A β 42 alone at lag phase was about 50-55 °C (Fig. 2D), close to the above four 372 temperatures, it can be inferred that the four EGCG analogs remodeled the fibrils into 373 oligomers and the disaggregation effects by the order of were 374 EGCG>GCG>ECG>EGC.

375 Molecular interaction mechanism between EGCG analogs and $A\beta 42$ protein

376 In this study, molecular interactions between four EGCG analogs and A β 42 were 377 investigated by adding the EGCG analogs at the lag phase, growth phase, and 19

378	equilibrium phase of A β 42 fibrillation. EGCG analogs could inhibit the fibrillation of
379	A β 42 and disaggregate the preformed fibrils and protofibrils in dependence on
380	structural characteristics. Among the four EGCG analogs, EGCG and GCG could
381	remodel the A β 42 fibrils into ThT undetectable, off-pathway amorphous aggregates
382	no matter added in each phase. To further confirm the results, we detected the
383	solubility of A β 42 in the absence or presence of EGCG analogs when added in
384	different phases. As shown in Fig. 9, the solubility of A β 42 in the presence of EGCG
385	analogs was higher than $A\beta 42$ alone for the three fibrillation phases with or without
386	ultrasonic treatment, and the Aβ42 solubility increased by the order of EGC < GCG \approx
387	EGCG < ECG. Obviously, EGC showed the least A β 42 solubility, which indicated the
388	worst inhibitory effect. As for EGCG and GCG, the solubility was lower than ECG, it
389	was probably that the two molecules remodeled the disaggregated oligomers into
390	amorphous aggregates. Similarly, Ehrnhoefer and co-workers ⁵ found that EGCG
391	directly bound to unfolded $A\beta42$ molecules and redirected them into unstructured,
392	off-pathway oligomers. Palhano and co-workers ⁹ observed that EGCG remodeled the
393	fibrils of A β 40 into amorphous aggregates. Wang and co-workers ³⁴ also demonstrated
394	that EGCG can bind to insulin, another amyloid protein, change its secondary
395	structure, and induce it into amorphous aggregates.

In order to probe the molecular interaction mechanisms between the four EGCG analogs and A β 42, we further determined the half maximal inhibitory concentration (*IC*₅₀) of the four EGCG analogs by varying the addition concentration from 0 to 250

399	$\mu mol/L.$ It was found that the IC_{50} value for EGCG, GCG, ECG, and EGC were
400	1.70±0.17, 2.92±0.22, 4.27±0.26, and 18.37±2.17 µmol/L, respectively (Fig. S1).
401	Taken together, we found that EGCG showed the best inhibitory effect, followed by
402	GCG, ECG, and EGC (Figs. 3, 6, 4B and Table 1). In view of the structural
403	characteristics of four molecules (Fig. 1), EGCG and GCG are epimers, comparative
404	analysis of GCG and EGCG can discover the role of stereoisomer on A β 42 fibrillation
405	in the polyphenolic structure. EGCG was better than GCG in the aspects of IC_{50} , k_{app} ,
406	and Y_{max} , while GCG was better than EGCG according to T_{lag} (Table 1). This
407	phenomenon might stem from the difference ways EGCG and GCG bound to A β 42
408	molecules. Similar results were observed our previous work ¹⁸ . We found that epimers
409	EGCG and GCG bound with protein in different way. For instance, in the solution
410	state, some EGCG molecules directly bound to proteins and others just encountered
411	proteins collisionally, while all GCG molecules only bound to proteins. Moreover, the
412	binding constant of EGCG to proteins was much higher than that of GCG ¹⁸ . These
413	results indicated that spatial conformation of EGCG and GCG caused different
414	binding mode with protein, leading to different inhibitory effects. Nevertheless,
415	spatial conformation of EGCG and GCG did not change the remodel ability from
416	disaggregated A β 42 oligomers into amorphous aggregates (Figs. 6, 7 and 8).

417 The structural difference between EGCG and ECG lies on 3'-hydroxyl group. 418 Comparative analysis of ECG and EGCG can address the role of 3'-hydroxyl group 419 on the trihydroxyl ring (B ring). From IC_{50} values in Fig. S1 and kinetic parameters in

420	Table 1, it indicated that 3'-hydroxyl group was an important functional group for the
421	inhibition of A β 42 fibrillation. This phenomenon was also confirmed by Akaishi and
422	co-workers, who studied structural requirements for the flavonoid fisetin in inhibiting
423	fibril formation of A β protein, and suggested that 3', 4'-dihydroxyl group, but not 3- or
424	7-hydroxyl group, is essential for the inhibitory effect of fisetin on A β 1-42 fibril
425	formation ¹⁵ . According to our previous work and literature, the interaction between
426	hydroxyl group and A β 42 is supposed to be hydrogen bonding ^{5, 11, 35} . Lacking
427	3'-hydroxyl group would decline the binding affinity of ECG to A β 42, and suppress
428	the remodel ability of A β 42 (Figs. 6, 7, and 8).
429	The structure of EGC lacks the gallate ester (D ring) in comparison with EGCG.
430	Comparative analysis of EGC and EGCG allowed an assessment of the gallate moiety
431	role in inhibiting A β 42 aggregation and remodeling A β 42 mature fibrils. From <i>IC</i> ₅₀ in
432	Fig. S1 and kinetic parameters in Table 1, it is reasonably speculated that the galloyl
433	moiety played an essential role in the inhibition of $A\beta 42$ fibrillation. The galloyl
434	moiety contains one phenyl group and three hydroxyl groups, so it could bind to $A\beta 42$
435	through hydrophobic interactions and hydrogen bonding. Lacking galloyl moiety
436	greatly lowered the binding affinity to A β 42, EGC showed the least influence on the
437	conformation and thermostability of A β 42 (Figs. 4 and 5). Ishii and co-workers 36
438	compared the interactions between human serum albumin (HSA) and EGCG as well
439	as EGC. The authors pointed out that the galloyl moiety was of critical importance in
440	the interaction between EGCG and HAS ³³ .

Therefore, it was first demonstrated the structural characteristics of EGCG to inhibit amyloid A β 42 aggregation and remodel amyloid fibers. In other words, 3'-hydroxyl group, gallol moiety and epimer of these functional groups in the EGCG structure were all important to inhibit amyloid fibrillation, and the inhibitory effect decreased by the order of galloyl moiety > 3'-hydroxyl group > epimer.

446 **Conclusions**

447 To elucidate the structural characteristics of EGCG inhibiting amyloid A β 42 448 aggregation and remodeling amyloid fibers, molecular interactions between four 449 EGCG analogs and A β 42 were investigated by ThT fluorescence, CD spectroscopy, 450 AFM, DSC and BCA protein assay. Results showed that four EGCG analogs could 451 prevent the increase of β -sheet structure of A β 42 and inhibit A β 42 fibrillation when 452 added at the lag and growth phases. When added at the equilibrium phase, EGCG 453 analogs remodeled the preformed protofibrils and fibrils to oligomers and unfolded or 454 partially unfolded the oligomers from β -sheet. From the A β 42 solubility measurement, 455 EGCG and GCG could remodel the fibrils into ThT undetectable, off-pathway 456 amorphous aggregates. The inhibitory effects of the EGCG analogs were EGCG > 457 GCG > ECG > EGC. Comprehensive analysis of functional groups of EGCG analogs, 458 the contribution efficiency of those main groups decreased by the order of galloyl 459 moiety > 3'-hydroxyl group > epimer to inhibit A β 42 fibrillation. In conclusion, this 460 work provided the structural characteristics of EGCG analogs on inhibiting Aβ42 461 fibrillation at molecular level.

462 Acknowledgements

463	This work was financially supported by the project of Beijing Municipal Natural
464	Science Foundation (5142013). AFM experiments are supporting by the long-term
465	subsidy mechanism from the Ministry of Finance and the Ministry of Education of
466	China.

467 **References**

468	1. M. Goedert and M. G. Spillantini, Science, 2006, 314, 777-781.
469	2. TI. Kam, Y. Gwon and YK. Jung, Cell Mol Life Sci, 2014, 71, 4803-4813.
470	3. P. Joshi, E. Turola, A. Ruiz, A. Bergami, D. Libera, L. Benussi, P. Giussani,
471	G. Magnani, G. Comi and G. Legname, Cell Death Differ, 2014, 21, 582-593.
472	4. N. J. Izzo, J. Xu, C. Zeng, M. J. Kirk, K. Mozzoni, C. Silky, C. Rehak, R.
473	Yurko, G. Look and G. Rishton, PloS one, 2014, 9, e111899.
474	5. D. E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino, R. Lurz,
475	S. Engemann, A. Pastore and E. E. Wanker, Nat Struct Mol Biol, 2008, 15, 558-566.
476	6. K. Rezai-Zadeh, G. W. Arendash, H. Y. Hou, F. Fernandez, M. Jensen, M.
477	Runfeldt, R. D. Shytle and J. Tan, Brain Res, 2008, 1214, 177-187.
478	7. K. Rezai-Zadeh, D. Shytle, G. Arendash, N. Sun, H. Hou, J. Zeng, T. Mori,
479	D. Morgan and J. Tan, Cell Transplant, 2007, 16, 342-342.
480	8. Y. Porat, A. Abramowitz and E. Gazit, <i>Chem Biol Drug Des</i> , 2006, 67 , 27-37.
481	9. F. L. Palhano, J. Lee, N. P. Grimster and J. W. Kelly, J Am Chem Soc, 2013,
482	135 , 7503-7510.
483	10. A. Smith, B. Giunta, P. C. Bickford, M. Fountain, J. Tan and R. D. Shytle, Int
484	J Pharm, 2010, 389 , 207-212.
485	11. S. Wang, XY. Dong and Y. Sun, J Phys Chem B, 2012, 116, 5803-5809.
486	12. S. Mandel, O. Weinreb, T. Amit and M. B. H. Youdim, J Neurochem, 2004,
487	88 , 1555-1569.

488	13. Y. Levites, T. Amit, M. B. Youdim and S. Mandel, J Biol Chem, 2002, 277,
489	30574-30580.
490	14. Q. I. Churches, J. Caine, K. Cavanagh, V. C. Epa, L. Waddington, C. E.
491	Tranberg, A. G. Meyer, J. N. Varghese, V. Streltsov and P. J. Duggan, Bioorg Med
492	Chem Lett, 2014, 24 , 3108-3112.
493	15. T. Akaishi, T. Morimoto, M. Shibao, S. Watanabe, K. Sakai-Kato, N.
494	Utsunomiya-Tate and K. Abe, Neurosci Lett, 2008, 444, 280-285.
495	16. M. Nakai, Y. Fukui, S. Asami, Y. Toyoda-Ono, T. Iwashita, H. Shibata, T.
496	Mitsunaga, F. Hashimoto and Y. Kiso, J Agr Food Chem, 2005, 53, 4593-4598.
497	17. N. Popovych, J. R. Brender, R. Soong, S. Vivekanandan, K. Hartman, V.
498	Basrur, P. M. Macdonald and A. Ramamoorthy, J Phys Chem B, 2012, 116,
499	3650-3658.
500	18. S. Wang, Z. Sun, S. Dong, Y. Liu and Y. Liu, PLoS ONE, 2014, 9, e111143.
501	19. K. J. Barnham, V. B. Kenche, G. D. Ciccotosto, D. P. Smith, D. J. Tew, X.
502	Liu, K. Perez, G. A. Cranston, T. J. Johanssen and I. Volitakis, Proc Natl Acad Sci US
503	<i>A</i> , 2008, 105 , 6813-6818.
504	20. S. Wang, XY. Dong and Y. Sun, <i>Biochem Eng J</i> , 2012, 63 , 38-49.
505	21. L. Nielsen, R. Khurana, A. Coats, S. Frokjaer, J. Brange, S. Vyas, V. N.
506	Uversky and A. L. Fink, <i>Biochemistry</i> , 2001, 40, 6036-6046.
507	22. S. Wang, S. Dong, R. Zhang, H. Shao and Y. Liu, Process Biochem, 2014, 49,
508	237-243.

RSC Advances Accepted Manuscript

509	23. DichroWeb. Available: <u>http://dichroweb.cryst.bbk.ac.uk/html/home.shtml</u>
510	Accessed 2015 June 15.
511	24. J. Zhang, X. Zhou, Q. Yu, L. Yang, D. Sun, Y. Zhou and J. Liu, ACS Appl
512	Mater Interfaces, 2014, 6, 8475-8487.
513	25. X. Wang, X. Wang, C. Zhang, Y. Jiao and Z. Guo, Chemical Science, 2012, 3,
514	1304-1312.
515	26. H. LeVine, Method Enzymol, 1999, 309, 274-284.
516	27. F. S. Ruggeri, J. Adamcik, J. S. Jeong, H. A. Lashuel, R. Mezzenga and G.
517	Dietler, Angew Chem Int Edit, 2015.
518	28. R. Sabaté, M. Gallardo and J. Estelrich, Int J Biol Macromol, 2005, 35, 9-13.
519	29. A. Lomakin, D. S. Chung, G. B. Benedek, D. A. Kirschner and D. B. Teplow,
520	<i>Proc Natl Acad Sci U S A</i> , 1996, 93 , 1125-1129.
521	30. T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D.
522	Schubert and R. Riek, Proc Natl Acad Sci, 2005, 102, 17342-17347.
523	31. J. S. Jeong, A. Ansaloni, R. Mezzenga, H. A. Lashuel and G. Dietler, J Mol
524	<i>Biol</i> , 2013, 425 , 1765-1781.
525	32. M. Žganec and E. Žerovnik, Biochimica et Biophysica Acta (BBA) - General
526	Subjects, 2014, 1840 , 2944-2952.

- 527 33. J. Bieschke, J. Russ, R. P. Friedrich, D. E. Ehrnhoefer, H. Wobst, K.
- 528 Neugebauer and E. E. Wanker, *Proc Natl Acad Sci U S A*, 2010, **107**, 7710-7715.
- 529 34. S. Wang, X.-Y. Dong and Y. Sun, *Int J Biol Macromol*, 2012, **50**, 1229-1237.

530	35. S. Wang, FF. Liu, XY. Dong and Y. Sun, J Phys Chem B, 2010, 114,
531	11576-11583.
532	36. T. Ishii, T. Ichikawa, K. Minoda, K. Kusaka, S. Ito, Y. Suzuki, M. Akagawa,
533	K. Mochizuki, T. Goda and T. Nakayama, Biosci Biotechn Biochem, 2010, 75,
534	100-106.
535	
536	
537	

538	Figure Legends
539	Fig. 1 Chemical structures of EGCG analogs. GCG is the stereoisomer of EGCG. The
540	structure of ECG lacks the 5-hydroxyl group on the trihydroxyl ring (B ring). The
541	structure of EGC lacks the gallate ester (D ring).
542	Fig. 2 Fibrillation process of A β 42 alone in PBS (pH 7.4) at 37 °C for 0-36 h at the
543	concentration of 25 μ mol/L. A: kinetics of A β 42 fibrillation by ThT fluorescence; B:
544	changes of β -sheet contents by CD spectra; C: morphologies by AFM images; D:
545	transition midpoint temperature (T_m) by DSC.
546	Fig. 3 Effects of EGCG analogs on the fibrillation kinetics of A β 42 when added in the
547	lag phase. The concentration of A β 42 was 25 μ mol/L. The concentrations of EGCG
548	analogs can be calculated from the [EGCG analogs]/[A β 42] ratio, which were 25, 125,
549	and 250 μ mol/L. Experiments were carried out in 100 mmol/L PBS (pH7.4) at 37°C.
550	Fig. 4 Effects of EGCG analogs on the secondary structure changes of A β 42 when
551	added at different phases of A β 42 fibrillation. A: lag phase (0 h); B: growth phase (10
552	h); C: equilibrium phase (24 h). The concentrations of A β 42 and EGCG analogs were
553	25 μ mol/L and 125 μ mol/L (r=5), respectively. Experiments were carried out in 100
554	mmol/L PBS (pH7.4) at 37°C.
555	Fig. 5 Effects of EGCG analogs on the thermodynamic parameter (T_m) of A β 42 when
556	added at different phases of A β 42 fibrillation. A: lag phase (0 h); B: growth phase (10
557	h); C: equilibrium phase (24 h). The concentrations of A β 42 and EGCG analogs were
558	25 μ mol/L and 125 μ mol/L (<i>r</i> =5), respectively.

559	Fig. 6 Effects of EGCG analogs on the morphology of A β 42 aggregates when added
560	at the lag phase. The concentrations of A\beta42 and EGCG analogs were 25 $\mu mol/L$ and
561	125 μ mol/L (r=5), respectively. Images were taken after 24 h incubation in 100
562	mmol/L PBS (pH7.4) at 37°C.
563	Fig. 7 Effects of EGCG analogs on the kinetics (A) and morphology (B) of A β 42
564	when added at the growth phase of 10 h. The concentrations of A β 42 and EGCG
565	analogs were 25 μ mol/L and 125 μ mol/L (<i>r</i> =5), respectively. AFM images were taken
566	after 14 h addition of EGCG analogs.
567	Fig. 8 Effects of EGCG analogs on the kinetics (A) and morphology (B) of A β 42
568	aggregates when added at the equilibrium phase of 24 h. The concentrations of $A\beta 42$
569	and EGCG analogs were 25 μ mol/L and 125 μ mol/L (r =5), respectively. AFM images
570	were taken after 16 h addition of EGCG analogs.
571	Fig. 9 Effects of EGCG analogs on A β 42 solubility when added at different phases of
572	Aβ42 fibrillation. A: lag phase (0 h); B: growth phase (10 h); C: equilibrium phase (24
573	h). The concentrations of A $\beta42$ and EGCG analogs were 25 $\mu mol/L$ and 125 $\mu mol/L$
574	(<i>r</i> =5), respectively.
575	Fig. S1 IC_{50} values of EGCG analogs. The concentrations of A β 42 was 25 μ mol/L.

- 576
- 577

<i>r</i> =[EGCG	analogs]			
/[\ R	421	$T_{\text{lag}}(\mathbf{h})$	$k_{\rm app}$ (1/h)	Y _{max}
/[Ap	[Αβ42]			
0 (Αβ42	alone)	3.2±0.2	102.3±8.8	931.1±9.8
	1	4.8±0.4	27.4±1.0	263.9±3.5
EGCG	5	NA^*	NA^*	75.9±6.0
	10	NA^*	NA [*]	64.0±5.9
	1	9.4±0.3	49.3±2.1	277.9±3.2
GCG	5	NA^*	NA [*]	72.7±5.2
	10	NA^*	NA [*]	55.4±5.4
	1	3.7±0.4	19.8±0.7	282.7±5.8
ECG	5	19.9±1.0	10.6±0.2	175.8±12.3
	10	26.3±1.6	7.2±0.4	159.1±9.3
	1	5.6±0.5	50.2±1.6	441.6±23.3
EGC	5	6.2±0.3	34.3±2.0	291.5±6.4
	10	6 4±0 6	30 9+2 4	259 7±3 8

5

581

*NA: Data were unavailable due to the low Y_{max} .

582

584 Fig. 1

585

586

588 Fig. 2

589

591

Fig. 3

592

595

RSC Advances Accepted Manuscript

597 Fig. 5

RSC Advances Accepted Manuscrij

599 Fig. 6

602 Fig. 7

RSC Advances Accepted Manuscript

603

Fig. 8

RSC Advances Accepted Manuscrip

 $A\beta_{42}$

EGC

GCG