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 A novel one-pot [4+1]-annulation process for the asymmetric 

synthesis of densely functionalized pyrazolidine carboxylates is 

described. The in situ generated γγγγ-hydrazino-αααα,ββββ-unsaturated 

ester obtained via proline catalysis acts as a four-atom 

component, and Corey’s sulfur ylide or ethyl bromoacetate acts a 

one-atom carbon source to construct pyrazolidine carboxylate 

units in a highly enantio- and diastereoselective fashion. 

The pyrazolidine and pyrazoline are interesting class of 

nitrogen-containing heterocyclic structural units found in 

many complex natural products1 with significant biological 

activities (e.g. anticancer,2 antidepressant,3 antibacterial,4 

anticonvulsant,5 antiviral,6 etc.) and other uses (as 

arthropodicidal agent7 in agriculture or optical brightening 

agent).8 Furthermore, they can be considered as powerful 

starting materials for the synthesis of enantiopure azaprolines9 

and densely functionalized 1,3-diamino derivatives10 after 

reductive cleavage of the N-N bond. In particular, recent SAR 

studies have established that aza-kainic acid derivatives (1) 

have proven exhibiting potent neuroexcitatory activity.11  

 

 

 

 

 

 

 

One of the most efficient strategies for the construction of 

such fused skeletons generally relies on [3+2] cycloadditions of 

hydrazones to olefins in the presence of Bronsted12/Lewis13 

acids or with strong heating.14 Their asymmetric synthesis are 

also reported employing chiral Zr/BINOL,15 Si-based Lewis 

acids,16 transition metal (Pd, Ni, Au)-catalyzed intramolecular 

annulations
17

 including sequential organocatalysis.
18

 However, 

these methods are rather limited due to harsh reaction 

conditions, complex chiral pool resources, expensive chiral 

ligands and metal catalysts often involving multistep reaction 

sequences. To the best of our knowledge, no method has been 

previously reported for the synthesis of densely substituted 

pyrazolidine carboxylates in “one-pot” fashion using 

organocatalysis. 

 In recent years, proline-catalyzed sequential reactions have 

gained prominence for the asymmetric synthesis of 

structurally diverse molecular architectures.
19,20

 As part of our 

program directed towards asymmetric synthesis of bioactive 

molecules employing organocatalytic sequential reactions,
22

 

we envisaged that in situ trapping of γ-hydrazino-α,β-

unsaturated ester 4
20e

 with Corey’s sulfur ylide 

(dimethyloxosulfonium methylide)23 under basic conditions 

should provide the corresponding highly functionalized 

cyclopropane carboxylate 3, potent and selective group II 

metabotropic glutamate receptor (mGluR) antagonists.3e  

 

 

Scheme 1 In situ Trapping of γ-hydrazino-α,β-unsaturated ester 6 with 

dimethyloxosulfonium methylide  
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Surprisingly, the reaction took a different course to afford the 

corresponding 3,4-disubstituted pyrazolidine carboxylate 4a as 

a single diastereomer in 68% yield (Scheme 1). 

 In this communication, we describe a one-pot sequential 

procedure for a tandem [4+1] annulation reaction of γ-

hydrazino-α,β-unsaturated ester 6 generated in situ with 

Corey’s sulfur ylide or ethyl bromoacetate that proceeds to 

give densely functionalized chiral pyrazolidine carboxylates 4 & 

5 in a highly enantio- and diastereoselective manner (Table 1 & 

2).  

 

Table 1 L-Proline catalyzed sequential α-amination/ Wittig olefination/ Corey-

Chaykovsky reaction of aliphatic aldehydesa 

 

 

 

 

 

 

 

entry aldehyde (2a-k) 

(R) 

amine 

(R’) 

T 

(ºC) 

products( 4a-k) 

Yield 

(%)b 

ee  

(%)c 

1 benzyl (2a) iPr 0 68 86 

2  iPr 10  75 86 

3  i
Pr 25 80 86 

4  Et 25 79 81 

5  tBu 25 70 86 

6 4-methylbenzyl (2b) iPr 25  71 84 

7 4-methoxybenzyl (2c) iPr 25  67 87 

8 4-thiomethylbenzyl (2d) iPr 25  75 92 

9 2-CN-4,5-methylene-

dioxybenzyl (2e) 

iPr 25  65 81 

10 2-NO2-4,5-methylene-

dioxybenzyl (2f) 

iPr 25  69 92 

11 2-NO2-4,5-methylene-

dioxybenzyl (2f) 

tBu 25  66 94 

12 2-bromo-3,4,5-

trimethoxy-benzyl (2g) 

iPr 25  72 94 

13 naphthalene-1-yl-methyl 

(2h) 

iPr 25  68 90 

14 3-benzyloxypropyl (2i) iPr 25  70 92 

15 propyl (2j) iPr 25  79 nd 

16 methyl (2k) iPr 25  80 nd 

a Aldehyde (2.5 mmol), amine (R’O2C-N=N-CO2R’) (2.5 mmol), L-proline (10 mol 

%), Ph3P=CHCO2Et (3.75 mmol), dimethyloxosulfonium methylide (5.0 mmol); b 

diastereomeric ratio (dr > 20:1) was determined from proton NMR analysis of the 

crude product; c %ee were determined from chiral HPLC analysis; nd = not 

determined. 

 In order to optimize the reaction conditions, initially the 

amination/Wittig olefination of hydrocinnamaldehyde 2a was 

carried out following our amination protocol
 20e

 that produced 

the corresponding γ-hydrazino-α,β-unsaturated ester 6 in situ. 

This was followed by the addition of a solution of 

dimethyloxosulfonium methylide in DMSO [sulfur ylide (2.0 

equiv), prepared in situ from O=SMe3I/NaH in DMSO] at 0 °C 

that gave 4a as a single diastereomer in 68% yield with 86% ee 

(entry 1). A significant improvement in yield (80%) was, 

however, realized when the reaction was conducted at 25 °C 

for 2 h. Increase of temperature (50 °C) resulted in complex 

reaction mixture. Also, use of other solvents such as CH2Cl2 

and THF for the tandem protocol resulted in a sluggish 

reaction with poor yields (< 10%). Furthermore, (S) - α, α- 

diarylprolinol silyl ether as a modified proline catalyst was 

found to be less effective for the reaction. We then turned our 

attention to investigate the scope of amine sources, the results 

of which indicated that diisopropyl was found to be better 

candidate (Table 1, entry 3). With the optimized reaction 

condition in hand, we next examined the scope of the 

reaction. Aldehydes bearing Br, CN, NO2, OMe, SMe and 

methylenedioxy groups on the aromatic nucleus, and benzyl 

ether substitutions in aliphatic compounds were found to be 

well-tolerated under the reaction condition. For all the cases 

studied, the products 4a–k were indeed obtained in high yields 

(65-80%) and excellent enantioselectivities (80 – 94%) with dr 

> 20:1 (Table 1, entry 6-16).  

  

Table 2 L-Proline catalyzed sequential α-amination/ Wittig olefination/ N-alkylation/ 

Michael addition reaction of aliphatic aldehydesa 

 

entry aldehyde (2) 

(R) 

amine 

(R’) 

T 

°C 

products (5a-h) 

Yield (%)b ee (%)c 

1 benzyl tBu 25 - - 

2  tBu 50 - - 

3  tBu 80 50 (5a) d 86 

4  Et 50 72 (5a)
 d

 96 

5 4-methoxybenzyl  Et 50 77 (5b) d 96 

6 4-F-benzyl Et 50 64 (5c) d 95 

7 3,4-dimethylbenzyl Et 50 75 (5d) d 94 

8 2-NO2-4,5-methyl-

enedioxybenzyl 

Et 50 64 (5e) e 88 

9 naphthalene-1-yl-

methyl 

Et 50 79 (5f) d 94 

10 pentyl Et 50 72 (5g) d nd 

11 methyl  Et 50 62 (5h) f nd 
 

a Aldehyde (2.5 mmol), amine (R’O2C-N=N-CO2R’) (2.5 mmol), L-proline (10 mol 

%), Ph3P=CHCO2Et (3.75 mmol), ethyl bromoacetate (3.75 mmol), Cs2CO3 (6.25 

mmol);  b isolated yield of products; c %ee were determined from chiral HPLC 

analysis; d diastereomeric ratio (dr > 20:1) was determined from proton NMR 

analysis of the crude product; e dr = 7:3; f dr = 6:1; nd = not determined 
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Conclusions 

In conclusion, we have described, for the first time, a novel 
[4+1]-annulation strategy involving a sequential α-amination/ 
Wittig olefination/ Corey- Chaykovsky reaction or 
intramolecular Michael reaction of aldehydes that leads to the 
synthesis of densely functionalized pyrazolidine carboxylates 4 

& 5 containing two to three stereogenic centers with high 
yields and excellent enantio- and diastereoselectivities. The 
reductive cleavage of N-N bond in pyrazolidine afforded 
optically active 2,3-disubstituted 1,3-diamino acid 7. The ready 
availability of starting materials, milder reaction conditions 
and the formation of two to three stereogenic centers under 
“one-pot, metal-free conditions” makes this protocol quite 
useful in organic synthesis. 
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