This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Ultra-broadband luminescent from a Bi doped CaO matrix

A Yousif, R M Jafer, S Som, M M Duvenhage, E Coetsee, HC Swart

Abstract

CaO:Bi phosphor powders were successfully synthesized by the sol-gel combustion method. Post heat treatment lead to the enrichment of the Ca$^{2+}$ site with multiple Bi centers. These centers were responsible for the change in the ultra-broadband cathodoluminescence (CL) emission as a function of different electron beam current/beam voltages. The CaO phase formation and the presence of the enrichment of Bi was confirmed by using the X-ray diffraction and X-ray photoelectron spectroscopy techniques. The thermoluminescence afterglow spectra for the samples annealed at 800 °C and 1200 °C were strongly modified for the CaO and the presence of the multiple Bi centers. Of particular interest was that the ultra-broadband CL may have potential applications in inorganic single-emitting components that produce various colours under different beam current/beam voltage or in a variety of optical devices if it can be better controlled.

Introduction

In recent years, multi-color emission from a single emitting component is one of the enduring and challenging topics [1]. However, for the organic light emitting diodes, voltage controlled single-layer structures are the most common approach [1]. Unfortunately, not much attention has been focused on the development of inorganic single-emitting components (ISEC) that produce various colors under different beam current/working voltage or excitation wavelengths. The luminescence properties of Bi ion doped materials exhibit extraordinary luminescent properties due to the fact that Bi ions has a large number of valence states, with strong interaction with the surrounding host lattice [2]. The diversity in the Bi valence (e.g. +3, +2, +1, 0, -2, etc) [3, 4] and species (e.g. Bi$^{3+}$, Bi$^{2+}$, Bi$^{3+}$, Bi$^{2+}$, etc) [3], in addition to the easy conversion into each other or existence of many Bi valence states in a single component can be used as a candidate for ISEC applications. In all the above mentioned valence states of Bi doped phosphor materials, only Bi$^{3+}$ is the most stable valence state in most host materials [4].

To obtain Bi$^{3+}$ doped phosphors with the combustion synthesis method, Bi$^{3+}$ is typically employed as the starting source of bismuth. From the literature Bi$^{3+}$ can be converted to Bi$^{2+}$ in any one of the following ways as stated below [5-9]:

a. preparation in a reducing atmosphere, e.g. H$_2$ or CO, or
b. preparation under oxidizing conditions, e.g. air.

The first method is universally employed when an optically active ion of low valence is desired, such as Bi$^{3+}$, Eu$^{2+}$, Ce$^{3+}$ or Mn$^{2+}$. It is applicable for any kind of host material [5-9]. But the second approach is more interesting. This method is only applicable to very specific types of host materials such as some alkaline earth compounds such as SrB$_4$O$_7$:Bi$^{3+}$, SrB$_2$O$_3$:Bi$^{3+}$ and MBPO$_3$:Bi$^{3+}$ (M = Ca, Sr, Ba). In these cases, the reduction mechanism for the Bi$^{3+}$ was proposed more clearly. Generally, during the incorporation of the Bi ion on the M$^{3+}$ sites the charge and size mismatches of Bi$^{3+}$ and M$^{2+}$ lattice sites create a driving force. This force becomes the main cause for the internal reduction of Bi$^{3+}$ to Bi$^{2+}$. Moreover, a stiff three-dimensional network built up by the tetrahedral anion groups in these host lattices which protects the Bi$^{3+}$ species from subsequent oxygen attack. Similar scenarios have been proposed for the reduction of Eu$^{3+}$ to Eu$^{2+}$ by Gao et al. and Peng et al. [10-12].

An unusual behaviour of Bi during heat treatment has been reported by many researchers. Xu et. al. [13] reported the reviving behaviour of the Bi-doped MgO-Al$_2$O$_3$:GeO$_2$ glasses, where the reversible reaction of Bi from a higher to a lower and back to a higher oxidation state is possible during heat treatment. The reviving behaviour of the Bi in their case was responsible for the unusual luminescence properties of this component. Sun et. al. [14] reported the reduction of Bi$^{3+}$ to Bi$^{2+}$ and substructures (i.e., Bi$^{4+}$, Bi$^{3+}$ and Bi$^{2+}$) in zeolite Y component during the thermal treatment which leads to near-infrared (NIR) emission. Zhou et. al. [15] reported that an ultra-broadband from blue-green, orange, red to NIR color regions is possible due to the presence of multiple Bi centers (Bi$^{3+}$, Bi$^{2+}$ and Bi$^{3+}$) in the nanoporous silica glass. Dianov [16] reported that the Bi is an exceptional metal; in no other element the reduction reactions proceed so extensively to produce such a variety of products. With increasing the temperature of the
Bi-doped glasses the following change in the valence state of Bi took place: $\text{Bi}^{3+} \rightarrow \text{Bi}^{5+} \rightarrow \text{Bi}^{3+} \rightarrow \text{Bi}$, $\text{Bi}^{5+} \rightarrow \text{Bi}$ clusters (Bi_n, Bi_2^2, Bi_3^2, etc) and the Bi_n, metallic colloids. These features of Bi make it not difficult to determine the valence state of Bi and, therefore, the exact nature of Bi-related emission centers in glasses [16]. It is well known from literature that Bi^{3+} and Bi^{5+} ions emit visible luminescence of a specific colour depending on the host material. CaO exhibits properties that are typical of an insulator, with a wide band gap of 7.03 eV [17, 18]. The CaO activated by the so-called calcium nitrate (Ca(NO$_3$)$_2$) was dissolved separately in deionized water, mixed with HNO$_3$ and then introduced drop wise to the other solutions of the nitrates. Thereafter, the mixed solution was in an open bath maintained at 80 °C with continuously stirring using a magnetic agitator for 5 hours until the solution turned into a transparent sticky gel. The gel was dried by direct heating on a hot plate maintained at 180 °C for 2 hours. The resulting product was a light grey CaO:Bi powder. The powder was then annealed in air at 800 °C and 1200 °C for 2 hours. The phase composition was characterized by X-ray diffraction (XRD) measurements using a Bruker D8 advance diffractometer (40 kV, 40 mA) with CuKα x-rays (1.54 Å). The scanning electron microscopy (SEM) of the powder was performed using a JSM-7800F primary ion beam, operated at a DC current of 250 nA with CuKα x-rays (1.54 Å). The scanning electron microscopy (SEM) was used to perform a JSM-7800F microscope. TOF-SIMS measurements were performed on an ion of TOF SIMS. A pulsed 30 keV Bi$^+$ primary ion beam, operated at a DC current of 30 nA, with a pulse repetition frequency of 10 kHz (100 µs), was used to acquire chemical images of the phosphor in the positive secondary ion polarities. Moreover, the O$^-$ with 1 kV and a DC current of 250 nA was used as sputter gun. The analytical field-of-view was 100 × 100 µm2 with a 256 × 256 pixel2 digital raster. The cathodoluminescence (CL) data were collected using an Ocean Optics PC2000 spectrometer attached to the vacuum chamber of the PHI 5000 VersaProbe-Scanning ESCA Microprobe. A 100 µm diameter monochromatic Al Kα x-ray beam (hv = 1486.6 eV) generated by a 25 W, 15 kV electron beam setup was used to obtain the spectra. The pass energy of the hemispherical analyzer was maintained at 11 eV. The powder surfaces were sputtered with an Ar ion gun (2 kV energy ions) at the rate of 20 nm/min.

Results and discussion:

Morphology and structural analysis

Figures 1 (a and b) clearly shows the effect of heat treatment at 800 °C and 1200 °C on the particle's shape and morphology respectively. The surface of the CaO:B$^{3+}$ sample annealed at 800 °C shows that the particles were more compact and rougher with irregular pores, while a large agglomeration of particles with irregular shapes was observed for the CaO: B$^{3+}$ sample annealed at 1200 °C.
the Bi ions were doped in the host CaO structure and annealed at 800 °C; a new peak corresponding to the Ca$_{0.2}$Bi$_{0.8}$O$_{1.19}$ structure (JCPDS 84-1824) was observed as clearly shown in the enlargement of the 200 peak in Figure 2(b). With the increase in annealing temperature to 1200 °C both peaks corresponding to the CaO phase and Ca$_{0.2}$Bi$_{0.8}$O$_{1.19}$ phase were visible. The unit-cell parameters corresponding to these patterns were determined as 4.287 and 4.248 Å. The volume of the unit cell was found to decrease with annealing. This decrease reflects the increasing amount of excess Bi clathrated into the lattice. It indicates that post heat treatment lead to the enrichment of Ca$^{2+}$ sites with multiple Bi centres. This phenomenon is schematically depicted in Figure 3. When Bi$^{3+}$ is introduced into the CaO host lattice (Figure 3(a)), depending on the ionic radius and charges, the replacement with Bi$^{3+}$ on the Ca$^{2+}$ sites takes place. This substitution leads to the formation of a Bi$_{0.8}^+$ defects. When the sample is annealed in air, ambient oxygen can penetrate into the permeable crystal structure. It can form an interstitial oxygen O$_i$ defect in the vicinity of the Bi$_{0.8}^+$ (Figure 3(b)). Similarly, a slight fluctuations in the calcium distribution may create a calcium vacancy V$_{Ca}^+$ (Figure 3(c)). The O$_i$ or V$_{Ca}^+$ are negatively charged defects. So the presence of these defects compensates the charge inside the host and in this way stabilizes the positively charged defects of Bi$_{0.8}^+$. The above discussion indicates that by removing those stabilizing site the destabilization of Bi$_{0.8}^+$ species is possible which can help to create interstitial Bi sites, Bi$_{0.8}^{**}$ in the Bi doped CaO. It can create then BiO cluster in the interstitial position via the conjugation of Bi$_{0.8}^{**}$ and O$_i$. It destabilizes the structure and helps in the formation of the Ca$_{0.2}$Bi$_{0.8}$O$_{1.19}$ impurity phase. A model for the developed CaO phase with Bi clathrated into the lattice as the result of heat treatment applied is presented in figure 4.
presented in figure 5 (a) and (b) respectively. In both depth profiles, the CaO\(^{+}\) ions (in red) are stable inside the bulk of the particle, while the Bi\(^{+}\) ions (in blue) depth profile exhibited a different behaviour. For the sample that was annealed at 800 °C, the Bi\(^{+}\) ion’s intensity exhibits a maximum at the surface (0-2 s of etching) and then gradually decreased with depth until it reached a stable value in the bulk of the CaO:Bi\(^{3+}\) particle. The Bi\(^{+}\) ion’s intensity in the sample that was annealed at 1200 °C, was still a maximum at the surface (0-2 s of etching), but then exhibits a much sharper decrease in intensity in the bulk of the CaO:Bi\(^{3+}\) particle indicating a depletion of Bi in the bulk material. These results suggest the segregation of the Bi\(^{+}\) ions from the bulk of the CaO:Bi\(^{3+}\) particle to the surface in the case of the sample that was annealed at 1200 °C. The volatility of Bi makes the migrations to the surface possible during the post annealing process and either segregate or evaporates after migration [20].

Figures 5 Logarithmic intensity in positive mode, molecular ion depth profiles for the CaO:Bi\(^{3+}\) annealed at (a) 800 °C and (b) 1200 °C. The CaO\(^{+}\) ions (in red) are stable inside the bulk, while the Bi\(^{+}\) ions (in blue) show segregation to the surface for the sample annealed 1200 °C.

Cathodoluminescence properties

The CL emission intensity as a function of wavelength of the CaO:Bi 800 °C and 1200 °C annealed samples have been investigated as a function of different beam currents and beam (working) voltages, as shown in figure 6 (a - f). (Note: Auger spectra of the surface (not shown) indicated that no shifts in the energy positions of the Auger peaks occurred, which indicated that the conductivity of the phosphors were high enough to handle these high current densities and voltages.) Some digital luminescence images are also presented in figure 6 (g) for the 1200 °C annealed samples, which representing the change in the luminescence colour with changing in the beam voltage. There are two things to be mentioned about the CL investigations. Firstly, as a comparison with the photoluminescence data of the same samples, partially shown in figure 7, the CL spectra for the annealed sample at 800 °C (Figure 6 (a and b)) have slight differences, namely a shoulder and small peak around 500 nm and 775 nm respectively. For this sample, the effect of different working voltages and beam currents on the luminescence only show an increase or decrease in the CL intensity which are represented as insets in Figure 6 (a and b) respectively. Secondly, for the sample annealed at 1200°C, a new broad emission peak ranging from 500 nm up to 1000 nm appears when the beam current/beam voltage was increased. The CL spectra and intensity as a function of different beam voltages and beam currents are represented in Figures 6(c-f) respectively. The difference between the PL and CL can be explained by the difference between their mechanisms. During PL measurements, the luminescent materials were excited by photons (UV or visible light) with energy of only 4-6 eV [1]. However, in the CL measurements, the energy of the accelerated electrons could be regulated from 1 to 3 keV under the different working voltage or beam current. So, the excitation energy on each phosphor’s particle was much larger in CL than those in PL [1]. The photons usually excite the dopant ions directly, but with the increase in the working voltage and the beam current, the host lattice would also be excited [1]. After penetrating into the host lattice of a luminescent material, the fast primary electrons would give rise to ionization and would create many secondary electrons in the process [1]. These secondary electrons would excite the host lattice and would create several electron-hole pairs. As mentioned in the structure analysis, a new phase of CaO develops during the annealing process. In this phase, the BiO clusters were proposed to be part of the lattice structure due to the segregation of Bi ions from the bulk to populate the phosphor’s surface as a result of the increased temperature. The segregation phenomena of Bi have been investigated by many researchers [21-26]. Therefore, as the annealed samples were irradiated with electrons, the BiO(Bi\(^{3+}\)) gave its own luminescence (the orange colour beside the luminescence from Bi\(^{3+}\)(the blue colour). The blue and orange emissions were reported by many authors as a characteristic emission from Bi\(^{3+}\) has the 6s\(^2\) electron configuration with \(S\rightarrow S\) as the ground state, and 6s\(^2\) as the excited state which gives rise to the triplet levels \(|P_0 \rightarrow P_1 \rightarrow P_2\) and the \(P_1\) singlet state. The \(P_0 \rightarrow S\) is strongly forbidden but has been reported by many authors [28] as a dominate emission at low temperature measurements. As temperature increased the emission originated from the spin-orbit coupling allowed \(P_1 \rightarrow S\rightarrow S\) transition by overcoming the energy barrier \(\Delta E\) as is shown in Figure 6 (h) [28]. The \(P_0 \rightarrow S\) is forbidden by parity but can be induced by coupling with unsymmetrical lattice vibration modes. The electronic configuration of Bi\(^{3+}\) is [Xe]6s\(^2\)5d\(^{10}\)6s\(^2\) with the ground state \(P_{1/2}\) and first excited state \(P_{3/2}\) which were derived from 6s\(^2\)6p\(^2\). By
crystal field splitting, $^2P_{3/2}$ can be separated into $^2P_{3/2} (1)$ and $^2P_{3/2} (2)$. At higher energy, excitation to $^2S_{1/2}$ may occur (6s7s configuration). The emission of Bi$^{3+}$ occurs via $^2P_{3/2} (1) \rightarrow ^2P_{1/2}$[29]. In conclusion, the CL results that was observed from Bi$^{3+}$ and Bi$^{2+}$ that was observed from the CaO:Bi annealed sample at 1200 °C might be due to the presence of both Bi$^{3+}$ and Bi$^{2+}$ in the structure. The mechanism of these species are summarised in the energy level diagrams presented in Figure 6 (h).

The calculated CIE chromaticity coordinates are presented in Figure 6 (i), which show the change from violet (with CIE coordinates X=0.18 and Y=0.14) to the orange colour (with CIE coordinates X=0.48 and Y=0.37). It can be proposed that, the CaO:Bi sample annealed at 1200 °C can show multi-coloured emissions (violet and orange) by changing either the working voltage or the beam current.

PL analysis

The excitation and emission spectra, figure 7, obtained by using the xenon lamp, were recorded when monitoring the 395 nm emission with the 354 nm excitation and vice versa. The observed excitation and emission can be attributed to the $^1S_0 \rightarrow ^1P_1$ and $^1P_1 \rightarrow ^1S_0$ transitions, respectively.
XPS analysis

In order to assess the presence of the Bi in the surface layer for the sample annealed at 1200 °C, XPS measurements were carried out on the sample’s surface as well as after removal of a layer of about 200 nm from the sample’s surface which are represented in Figure 7 (a) and (b) respectively. The Bi 4f XPS spectra exhibit two peaks with two shoulders which suggest that the Bi was in doublet oxidation states. The main two peaks appear centred at 164.3 eV and 158.9 eV which can be deconvoluted with two peaks (the blue areas). These peaks are corresponding to the Bi $^{4f_{5/2}}$ and Bi $^{4f_{7/2}}$ binding energies of Bi$^{3+}$ in Bi$_2$O$_3$ [30]. The shoulders centred at 162.7 eV and 157.1 eV were also deconvoluted with two peaks (the pink areas). These peaks were ascribed to the Bi $^{4f_{5/2}}$ and Bi $^{4f_{7/2}}$ binding energies of Bi$^{2+}$ in BiO [30]. The recorded XPS spectra after 200 nm removed from the CaO:Bi phosphor surface is presented in figure 7 (b). The recorded XPS spectrum showed the Bi depletion and almost no Bi can be seen from the XPS peaks. These results are clear evidence to the presence of the Bi with two different valence states, Bi$^{3+}$ and Bi$^{2+}$. Additionally, the XPS could be used as prove of the presence of the multiple Bi valence in the top layer of the sample’s surface.

TL analysis

To get an idea about the effect of traps/defects inside the material that correlates to the CL properties, the TL properties of the doped sample annealed at 800 °C and 1200 °C were recorded, which are presented in figure 8 (a) and (b) respectively. The TL glow curves were obtained in the linear heating range with an acquisition from 27 °C to 365 °C at a heating rate of 2 °C/s, after the samples were exposed to UV radiation (260 nm) for 10 min. For the sample annealed at 800 °C, the TL glow curve shows two peaks, one below 200 °C and another ~ 350 °C. A significant decrease in the temperature of the glow peak was observed for the sample annealed at 1200 °C. This may be due to rearrangement of the existing traps to a lower trap depth and at the same time creation of new traps for charge trapping. To characterize the trap position the TL glow curves were deconvoluted using the glow curve deconvolution functions (GCD) for general order kinetics glow curves suggested by Kiti’set al. as is shown in Eq.(1) [31]

$$I(t) = I_m^{b+1}\exp\left(\frac{E}{kT}\right)\left\{1-(b-1)(1-\Delta)\frac{T}{T_m}\right\}^{b}+Z_m^+\exp\left(\frac{E}{kT}\right)\left\{1-(b-1)(1-\Delta)\frac{T}{T_m}\right\}^{b}+Z_m^-\exp\left(\frac{E}{kT}\right)$$

where $I(T)$ = TL intensity at any temperature T, I_m = maximum peak intensity, E = Activation energy (eV) and $\Delta = 2kT/E$.

The Bi 4f XPS spectrum after removal of around 200 nm from the CaO:Bi phosphor sample.
The theoretical peaks were generated and a glow curve was obtained by their convolution. The theoretically generated glow curves were fitted with the experimental glow curves and the quality of fitting was checked by calculating the figure of merit (FOM) \[32\] for each fitting defined by Eq.(2)

\[
FOM = \frac{\sum (TL_{exp} - TL_{th})^2}{\sum TL_{exp}} \tag{2}
\]

Here \(TL_{exp}\) and \(TL_{th}\) represent the TL intensity of experimental and theoretical glow curves respectively. The summation extends over all the available experimental data points. Quality of fitting and choice of appropriate number of peaks was refined by repeating the process of fitting in order to get the minimum figure of merit (FOM) with minimum number of possible peaks. The fits were considered adequate when the FOM values were observed below 2%. For 800 °C annealed sample, four deconvoluted peaks were obtained whilst for 1200 °C synthesized sample five deconvoluted peaks were obtained. Chen formulism has been used to calculate kinetic parameters like order of kinetics \((b)\) and trap depth \((E)\) for each of the deconvoluted peak. The nature of kinetics for the whereas for glow peaks in UV irradiated phosphor was calculated by a symmetry factor \((\mu_g)\) given by Eq. (3)

\[
\mu_g = \frac{\delta}{\omega} = \frac{T_2 - T_m}{(T_2 - T_1)} \tag{3}
\]

Here \(T_m\) is the peak temperature, \(T_1\) and \(T_2\) are the temperatures on either side of \(T_m\) corresponding to half peak intensity. Theoretically the value of \(\mu_g\) ranges between 0.42 and 0.52, the value 0.42 is for first order kinetics and value 0.52 is for second order. In the present case all the values are \(~ 0.52\) and this indicates the presence of second order kinetics nature of all the traps. The activation energy for each of the deconvoluted peak was estimated using Eq. (4)

\[
E_a = C_\alpha (1 - \frac{T_m^2}{\alpha^2}) - C_\omega (2\Delta T_m) \tag{4}
\]

Where \(C_\alpha = 1.51 + 3.0(\mu_g - 0.42), C_\omega = 0.976 + 7.3(\mu_g - 0.42), C_\alpha = 2.52 + 10.2(\mu_g - 0.42)\) and \(b_\alpha = 1.58 + 4.2(\mu_g - 0.42), b_\omega = 0, b_\omega = 1\).

The values of the trapping parameters for the deconvoluted peaks are summarized in the energy level diagram (figure 9). In the energy level diagram the Bi\(^{3+}\) emission is also depicted. It can be seen that the energy levels of Bi\(^{3+}\) and Bi\(^{2+}\) are far below that of the existing traps and although these traps can still feed electrons to the excitation states of the Bi ions no obvious contribution to the changes as seen in the CL spectra is expected.

Conclusions

In summary, the CaO:Bi\(^{3+}\) phosphor powder was successfully prepared by the sol-gel combustion method. The XRD and ToF SIMS results suggest that with the increase in annealing temperature the segregation of Bi\(^+\) ions from the bulk of the CaO:Bi\(^{3+}\) particle to the surface occurred. The volatility of Bi makes the migrations to the surface, possible during the post annealing process and either segregated or evaporated after migration. The ultra-broadband CL emission as a function of different beam current/beam voltages was attributed to the presence of multiple Bi centres. These multiple centres occupied the Ca\(^{2+}\) site that developed as result of annealing. It is concluded that the emission is purely from the Bi\(^{3+}\)/Bi\(^{2+}\) levels. Thus the ultra-broadband CL emission may have potential applications in inorganic single-emitting components that produce various colours under different beam current/working voltages in a variety of optical devices.
Acknowledgements
This work is based on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology, Republic of South Africa and the National Research Foundation of South Africa.

References
7 M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, L. Wondraczek, Optics Express, 2009, 17, 21169.
25 M. Ilmer, B. C. Grabmaier, G. Blasse, Chemistry of Materials, 1994, 6, 204.