RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This *Accepted Manuscript* will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

The work describes a convenient and highly efficient C-H butadiynylation of substituted pyrroles under mild and solvent-free conditions.

and Transition Metal-Free Conditions

I. Mikhaleva,^a Sławomir Szafert,*^b Boris A. Trofimov*^a

pharmaceuticals. An X-ray analysis of two coupling products is also presented.

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

AL SOCIE I
:Hemistr

Direct Synthesis of Butadiynyl-Substituted Pyrroles under Solvent-Denis N. Tomilin,^a Bartłomiej Pigulski,^b Nurbey Gulia,^b Agata Arendt,^b Lyubov N. Sobenina,^a Al'binal The work describes a convenient and highly efficient C-H butadiynylation of substituted pyrroles with the use of 1 halobutadiynes. The method requires only a simple grinding of substrates in a mortar under mild, solvent- and transiti metal-free conditions and constitutes the first example of pyrrole butadiynylation via cross-coupling reaction with the use of 1-halobutadiynes. The scope of this mechanochemical approach covers 4,5,6,7-tetrahydro-1*H*-indole, its *N*-substituted derivatives and 2-phenylpyrrole and on the other hand ester and phenyl end-capped 1-halobutadiynes including chlorides, bromides and iodides. Interestingly, the method has proven effective also for weak electron withdrawing aryl substituted 1-halobutadiynes what has not been yet achieved for 1-haloacetylenes. Such reactivity was unexpected in the view of the literature data and opened a gate to the plethora of substrates for organic synthesis including syntheses of **RSCRIPT**
 RSCRIPTED Advances Advances Advances Advances Advances Advances Accepted
 PS
 RSCRIPTED
 RSCRIPTED
 RSCRIPTED
 RSCRIPTED
 RSCRIPTED
 RSCRIPTED
 RSCRIPTED
 RSCRIPTED
 RSCRIPTED

Introduction

www.rsc.org/

Substituted pyrroles play a very important role in the chemistry of drugs,¹ organic electronics,² and photoluminescence materials. ³ Butadiynyl and, in general, polyyne substituted pyrroles are additionally interesting in the context of a construction of linear polypyrroles which - as tetrapyrroles form and important class of pigments like phycocyanobilin.^{4,5} Such compounds are also important building blocks, which are used in the syntheses of furans, 6 thiophenes, $6c$, $6e$, 7 pyrroles, $6a$, $6e$, 8 naphthalenes,⁹ and other cyclic compounds¹⁰ makes them very useful substrates for novel oligoheterocycles with high application potential.¹¹ Moreover, butadiynes with pyrrole substituent are used in the synthesis of intriguing class of porphirynoids with C_4 fragment incorporated into a macrocycle skeleton¹² or are present in the modified bilirubins.^{4,13} To the best of our knowledge, there are only a few publications concerning effective pathways for the synthesis of butadiynylsubstituted pyrroles and indoles. 14 Among them, there are Sonogashira \cos -coupling,¹⁵ acetylene oxidative homocoupling, $12b,16$ and elimination of tosyl group.⁵ About a decade ago, C-H ethynylation of pyrroles and indoles with the use of 1-haloalkynes and solid Al_2O_3 has been developed.¹⁷

metal catalyst nor prior functionalization of a heterocycle unlike known protocols for ethynylation of arenes and heteroarenes.¹⁸ However, it was believed that scope of this reaction is limited only to simple 1-haloacetylenes with strongly electron withdrawing groups (ester and keton) and therefore, the applicability of this method for a direct synthesis of butadiynylsubstituted pyrroles or indoles remained unexplored. Employed in this protocol 1-haloalkynes are considered as very useful building blocks in organic chemistry and some fundamental works in this field were published in the recent years.¹⁹ The use of 1-halopolyynes in organic synthesis is an important part of their chemistry. Also their solid-state crystalto-crystal reactions are fascinating, like for instance polymerization of diiododiacetylene²⁰ and dimerization of 1-

This approach is solvent-free and requires neither transition

bromopolyynes.²¹ Moreover 1-halopolyynes are used as substrates in the synthesis of symmetric polyynes, 22 glycosylated polyynes,²³ natural products,²⁴ and as precursors of organometallic polyynes.²⁵

In this work we describe the application of pyrroles **1a**-**e** and 1 halobutadiynes $2a-d-X$ ($X = Cl$ or Br or I) as useful precursors of butadiynyl-substituted heterocycles. The scope of the known coupling reaction was extended to butadiynes that possess a great potential for further modification. As far as we know, it is the first example of such coupling with the use of halopolyynes.

Results and discussion

In the first step, the starting 1-halobutadiynes **2a-d**-X were prepared, which - despite their quite simple structures - we e not known in the literature. Electron deficient 1-halobutadiynes **2a-c-X** were prepared from brominated esters of propiolic ac d

a.A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky, 664033, Irkutsk, Russian Federation, e-mail: boris_trofimov@irioch.irk.ru

b.Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland, e-mail slawomir.szafert@chem.uni.wroc.pl Electronic Supplementary Information (ESI) available: . See

DOI: 10.1039/x0xx00000x CCDC 1037921 (**4aa**) and CCDC 1037920 (**4bb**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

via Cadiot-Chodkiewicz cross-coupling with TMSA (TMSA = trimethylsilylacetylene) in the presence of $Pd(PPh₃)₂Cl₂/CuI$ catalytic system and K_2CO_3 as a base as shown in Scheme 1. The use of diisopropylamine or triethylamine, which are the most widely used bases for such reactions, did not lead to the desired products. Instead, products of hydroamination or side products of other transformations that were formed in lieu of trimethylsilyl-protected butadiynes were observed. The compound **3a** was known in the literature, but it was obtained via modified synthetic pathway.²⁶

Scheme 1. Synthesis of 1-halobutadiynes **2a**-**d**-X (X = Cl or Br or I).

Next, bromination and iodination reactions were carried out according to the known procedures²⁷ to give corresponding 1bromo and 1-iodobutadiynes in good yields. Chlorination presented a greater challenge. The known procedure with the use of NCS (NCS = *N*-chlorosuccinimide), AgNO₃ and TBAF
(TBAF = tetrabutyloammonium fluoride)²⁸ led to $(TBAF = tetrabutyloammonium$ led to dichloroenynes instead of 1-chlorobutadiynes. Surprisingly, the use of NCS, $AgNO₃$ and KF gave the desired product 2b-Cl, whereas previously these conditions were found useless for less active acetylenes. Synthesis of 1-halobutadiynes **2d**-X with phenyl end-group was routine and both Cadiot-Chodkiewicz coupling²⁹ with the use of diisopropylamine and chlorination with the use of NCS/AgNO₃/TBAF system worked well.

Next, the reaction of 4,5,6,7-tetrahydroindole (**1a**) with 1 bromobutadiyne 2b-Br has been chosen as a test for the pyrrol functionalization (general reaction is shown in Scheme 2). It was first carried out under mild conditions (room temperature, 1 h) by grinding of the reactants with solid Al_2O_3 without any solvent, under aerobic conditions and with no transition metal compounds. Although the desired 1-(pyrrole-2-yl)butadiyne **4ab** was obtained, the reaction under these conditions appeared not chemoselective and other by-products (most presumably a reaction intermediate ethyl 5-bromo-5-(4,5,6,7-tetrahydro-1Hindol-2-yl)pent-4-en-2-ynoate and/or side product ethyl 5,5 bis(4,5,6,7-tetrahydro-1H-indol-2-yl)pent-4-en-2-ynoate)¹⁷ were detected along with the main product. Then, K_2CO_3 was used as a solid base and in this case solely **4ab** was detected.³⁰ Consequently, K_2CO_3 was used for further reactions. The reaction course (conversion of reactants) was determined from

Table 1. The influence of halogen type on reaction rate for benzyl 4-(4-halobuta-1**,**3 diynyl)benzoate.

the H NMR spectra of CDCl₃ extracts.

Next, the influence of halogen type on the coupling reaction was tested. In this regard, the reaction times for cross-coupling of chloride **2b**-Cl, bromide **2b**-Br, and iodide **2b**-I with tetrahydroindole **1a** were similar and the reactions were completed after 1 h in all cases. However, in case of t_h , reaction of tetrahydroindole **1a** with 1-halobutadiynes **2c**-Br and **2c**-I (the chloride derivative for **2c** appeared unstable), the former reacted significantly faster than the iodide **2c**-I (see Table 1). Moreover the reactions for benzyl derivatives (**2c**-Br, I) were slower than those for ethyl derivatives (**2b**-X). With all that in mind, we decided to test the scope of the coupling reactions with the use of bromides. The ethynylation reaction was performed for the series of 4,5,6,7-tetrahydroindoles **1a-d** with the use of 1-bromobutadiynes as presented in Table 2. Products were obtained with yields ranging from 43% to 80% with reaction time up to 5 h. No clear correlation between the type of $R¹$ and $R²$ groups and the resulting yields was found. Purification procedure was very simple, reaction mixtures were placed at the top of the short silica gel plug and only elution by appropriate eluent was needed to obtain pure products. The coupling procedure worked well for $-$ on the one hand unsubstituted and methyl-, benzyl- and vinyl-substituted 4,5,6,7-tetrahydroindoles and - on the other hand - for methyl, ethyl and benzyl butadiynoates. All compounds were fully characterized by 1 H and 13 C NMR spectroscopy and HRM. (see Supporting Information). In all cases the signals of t . carbon atoms from unsaturated C_4 chains could **RSCREED ACCEPT ACC** unambiguously identified and were positioned at typical shifts characteristic for butadiynes.

Table 2. Products of reaction of 4**,**5**,**6**,**7-tetrahydroindoles 1a-d with 1 bromobutadiynes 2a-c-Br.

Scheme 3. Coupling reaction between 2-phenylpyrrole (**1e**) and 1- bromobutadiynes **2a**-**c**-Br and reaction between **1f** and **2a**-Br.

Next, the influence of the phenyl spacer situated between the butadiyne fragment and an ester group on the coupling reaction was explored. The cross-coupling reactions between tetrahydroindoles **1a-d** and 1-halobutadiynes **2d**-Cl and **2d**-Br were performed as shown in Scheme 4. The reactions of 2d- Γ with **1b**-**d** gave products **4bd**-**dd** with good 48-58% yields. We noticed that **2d**-Br reacted with **1a** very slowly (5 days) giving desired product with low yield (17%). Therefore reaction between chloride **2d**-Cl and **1a** was performed and the product **4ad** was obtained with higher yield (36%). What is noteworthy, in each case the reaction time was longer (24 h) than for 1 halobutadiynes **2a-c**-X proving that the phenyl spacer reduces reactivity of 1-halobutadiynes. For both **2d**-Cl and **2d**-Br, their reactions with 2-phenylpyrrole **1e** did not occur. Nevertheless, these are the first examples of butadiynylation via pyrroles with the use of arylbutadiynes. This example is even more valuable since such coupling did not occur for substituted 1 halophenylacetylene. **RECESSEDED**
 RSCRIPTION
 RSCRIPTION
 RSCRIPTION
 RSCRIPTION
 RSCRIPTION

Scheme 4. Cross-coupling reactions of 4,5,6,7-tetrahydroindoles (**1a**-**d**) with 1 halobutadiynes **2d**-Cl, Br.

A reaction mechanism for the coupling between simple 1 haloalkynes and pyrroles was previously proposed.³¹ ESR studies confirmed that the first step of the reaction is the formation of ion-radicals pair via single electron transfer. Proposed mechanism based on earlier work is shown in Scheme 5.

Single crystals suitable for X-ray analysis were obtained f compounds **4aa** and **4bb** by slow evaporation of the hexanes/ CH_2Cl_2 solution. Each of the two compound

In the next thrust, reactions of 1-bromobutadiynes **2a-c**-Br with 2-phenylpyrrole (**1e**) were carried out. Here the reactions were significantly slower (reaction times considerably increased to 24 h) and moreover an additional portion of butadiyne (1 eqiv) after ca. 7 hours was required. With this modification the reaction yields reached 46-52% range (Scheme 3). Next, we performed a test reaction between **2a**-Br and 2-propyl-3 ethylpyrrole (**1f**) to confirm that the reaction scope is not only limited to fused tetrahydroindoles. Product **4fa** was obtained with 55% yield. Moreover, we have noticed that the reaction with simple unsubstituted pyrrole does not occurs (only traces of 2-substituted products were observed) and it was impossible to retrieve clean, desired products.

This journal is © The Royal Society of Chemistry 20xx *J. Name*., 2013, **00**, 1-3 | **3**

crystallize in triclinic system, P $\bar{1}$ space group with Z = 2 (for further details see Supporting Information). Solid-state structures were solved and refined with the use of SHELX package³² and molecular structures of **4aa** and **4bb** are shown in Figure 1.

Figure 1. Molecular structures of **4aa** and **4bb**. Thermal ellipsoids are given at the 50% probability level.

In both cases 5-(pyrrol-2-yl)penta-2,4-diynoic moiety adopts a nearly planar geometry. The C1-C6 carbon chain adapts a geometry which is only slightly distorted form linearity. There is no significant difference between the conformation of **4aa** and **4bb**. The bond distances in the linear carbon chain are typical for conjugated butadiynes (for packing analysis and selected bond lengths see the Supporting Information). Interestingly, solid state structures of butadiyne-substituted pyrroles are extremely rare and only a few examples with such moiety incorporated in the macrocycle skeleton are known. 12b,12c

Conclusions

In conclusion, we have for the first time presented the successful use of 1-halobutadiynes in the cross-coupling reaction with pyrroles. Pyrroles undergo cross-coupling reaction with electron deficient butadiynes on active surface of K_2CO_3 after a simple grinding in a mortar. This versatile protocol allows to perform the reaction at room temperature under solvent-free conditions and in the presence of moisture and air. The scope of the reactions includes unsubstituted and *N*-substituted 4,5,6,7-tetrahydroindoles, 2-phenylpyrrole and 1 halobutadiynes with an ester and phenyl end-groups. X-ray analysis of two coupling products expanded structural information about nearly structurally unknown butadiynesubstituted pyrroles.

The resulting coupling products seem to be valuable substrates for new oligoheterocycles. We are certain that this protocol may be used for longer polyynes and it will open a gate to more complex molecules. Our present work focuses on the use of longer 1-halopolyynes in the coupling reaction. Moreover the use of compounds with less electron withdrawing groups shows that the scope of this reaction may be easily expanded in the future.

Experimental section

General

All moisture- and air-sensitive reaction were conducted under $N₂$ with the use of standard Schlenk techniques. Other reactions were carried out in the presence of air. Glassware was pre-dried at 120 °C. Solvents were treated as follows: THF was distilled from Na/benzophenone, CH₃CN (HPLC grade), hexane (HPLC grade), DCM (pure per analysis), diethyl ether (pure per analysis) were used as received.

 1 H and 13 C NMR spectra were recorded on 500 MHz spectrometer with an inverse broadband probe. For the ${}^{1}H$ NMR spectra, chemical shifts in chloroform-*d* and benzene-*d⁶* were reported in the scale relative to the solvent residual peak (7.26 ppm for CDCl₃ and 7.16 for C₆D₆). For the ¹³C NM^D spectra, chemical shifts were reported in the scale relative to chloroform-*d* (77.2 ppm) or benzene-*d⁶* (128.1 ppm). HRMS spectra were recorded using spectrometer with TOF mass analyzer and ESI ion source. Melting points are not corrected.

Synthesis of starting 1-halobutadiynes

General Procedure for Cadiot-Chodkiewicz cross-coupling of propiolic acid esters:

A 3-bromopropiolate (1 equivalent) was dissolved in THF (30 mL) under N_2 atmosphere. Next $Pd(PPh_3)_2Cl_2$ (0.02 equivalents), CuI (0.04 equivalents) and K_2CO_3 (2.5 equivalents) were added and the mixture was degassed using freeze-pump-thaw technique. Next trimethylsilylacetylene (1.5 equivalents) was added and the mixture was stirred for 1.5-24 h at room temperature. After this time precipitate was filtered of and solvent was removed under reduced pressure. Product was purified using silica gel column chromatography (hexanes/DCM, v/v, 1/2) yielding products as colorless oils.

Methyl 5-(trimethylsilyl)penta-2,4-diynoate²⁶ (3a)

Yield: 2.855 g, (15.48 mmol), 44%. ¹H NMR (500 MHz, CDCl₃): δ_H 3.79 (s, 3H), 0.23 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ_c 153.3, 94.8, 85.7, 71.3, 66.6, 53.2, -0.6. HRMS(ESI): m/z calcd for C₉H₁₃SiO₂: 181.0685 [M+H⁺]; found: 181.0679.

Ethyl 5-(trimethylsilyl)penta-2,4-diynoate (3b)

Yield: 1.054 g (5.425 mmol) , 44%. ¹H NMR (500 MHz, CDCl₃): δ_H 4.24 (q, *J* = 7.2 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H), 0.23 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ_c 152.9, 94.6 85.9, 70.9, 67.0, 62.7, 14.2, -0.6. HRMS(ESI): *m/z* calcd for $C_{10}H_{14}SiO_2Na$: 217.0655 [M+Na⁺]; found: 217.0656.

Benzyl 5-(trimethylsilyl)penta-2,4-diynoate (3c)

Yield: 2.932 g (11.44 mmol), 61% . ¹H NMR (500 MHz, CDCl₃): δ_H 7.40 – 7.33 (m, 5H), 5.21 (s, 2H), 0.22 (s, 9H). ¹³ NMR (126 MHz, CDCl₃): δ_C 152.6, 134.7, 128.8, 128.8, 128.6 95.0, 85.8, 71.5, 68.1, 66.7, -0.7. HRMS(ESI): m/z calcd fr $C_{15}H_{16}SiO_2Na$: 279.0817 [M+Na⁺]; found: 279.0819.

A General Pocedure for Halogenation of Trimethylsilyl-Protected Butadiynes

A butadiyne (1 equivalent) was dissolved in acetonitrile (20 mL) in a Schlenk flask under N_2 atmosphere. Next H_2O (2 eqivalents), *N*-halosuccinimide (1.2 equivalents) and $AgNO₃$ (0.3 equivalents)/KF(1.0 equivalent) or AgF (1.0 equivalent) were added. Flask was wrapped in aluminum foil and the reaction mixture was stirred for 3-24 h. Next the solvent was removed under reduced pressure and the product was purified by passing through short silica gel plug (hexanes/DCM, 1/2, v/v) yielding pure 1-halobutadiyne.

Ethyl 5-chloropenta-2,4-diynoate (2b-Cl)

Yellow oil (51 mg, 0.33 mmol), yield: 20%. ¹H NMR (500 MHz, CDCl₃): δ_H 4.25 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ _C 152.6, 70.4, 64.8, 64.5, 62.8, 54.0, 14.1. HRMS(ESI): *m/z* calcd for 157.0051; $C_7H_6ClO_2$: [M+H⁺]; found: 157.0051.

Methyl 5-bromopenta-2,4-diynoate (2a-Br)

Yellow solid, yield: 489 mg (2.62 mmol) 59% 1 H NMR (500 MHz, CDCl₃): δ_H 3.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ^C 152.9, 71.3, 64.1, 64.0, 53.3, 48.8. HRMS(ESI): *m/z* calcd for 186.9389; $C_6H_4BrO_2$: [M+H⁺]; found: 186.9389.

Ethyl 5-bromopenta-2,4-diynoate (2b-Br)

Yellow oil, yield: 374 mg (1.86 mmol) 74% ¹H NMR (500) MHz, CDCl₃): δ_H 4.25 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ _C 152.6, 70.9, 64.5, 64.1, 62.8, 48.6, 14.1. HRMS(ESI): *m/z* calcd for 200.9546; $C_7H_6BrO_2$: [M+H⁺]; found: 200.9547.

Benzyl 5-bromopenta-2,4-diynoate (2c-Br)

Yellow solid, yield: 592 mg (2.25 mmol), 89%. ¹H NMR (500) MHz, CDCl₃): δ_H 7.43 – 7.34 (m, 5H), 5.21 (s, 2H). ¹³C NMR $(126 \text{ MHz}, \text{CDCl}_3): \delta_C$ 152.3, 134.6, 128.9, 128.9, 128.7, 71.5, 68.3, 64.1, 64.0, 48.9. HRMS(ESI): *m/z* calcd for $C_{12}H_7O_2BrNa$: 284.9527 [M+Na⁺]; found: 284.9514.

Methyl 5-iodopenta-2,4-diynoate (2a-I)

Yellow solid, yield: 119 mg (0.258 mmol), 44%. ¹H NMR (500 MHz, CDCl₃): δ_H 3.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ^C 152.8, 77.0, 71.6, 63.6, 53.3, 9.1. HRMS(ESI): *m/z* calcd for $C_6H_4O_2I: 234.9256 [M+H^+];$ found: 234.9251.

Ethyl 5-iodopenta-2,4-diynoate (2b-I)

Brown solid, yield: $342 \text{ mg } (1.38 \text{ mmol})$, 64% . ¹H NMR (500) MHz, CDCl₃): δ_H 4.24 (q, *J* = 7.1 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ _C 152.4, 77.1, 71.3, 64.0, 62.8, 14.1, 8.9. HRMS(ESI): m/z calcd for C₇H₆O₂I: 248.9412 $[M+H^+]$; found: 248.9416.

Benzyl 5-iodopenta-2,4-diynoate (2c-I)

Yellow solid, yield: 125 mg (0.272 mmol), 57%. ¹H NMR (500 MHz, CDCl₃): δ_H 7.41 – 7.31 (m, 5H), 5.21 (s, 2H). ¹³C NMR (126 MHz, CDCl₃): δ_C 152.2, 134.6, 128.9, 128.8, 128.7, 77.0, 71.9, 68.3, 63.6, 9.3. HRMS(ESI): m/z calcd for C₁₂H₇O₂INa: 332.9389 [M+Na⁺]; found: 332.9388.

Ethyl 4-(chlorobuta-1,3-diyn-1-yl)benzoate (2d-Cl)

Ethyl 4-(chlorobuta-1,3-diyn-1-yl)benzoate was obtained according to the known procedure.²⁹ White solid, yield: 157 mg (0.661 mmol), 65%. ¹H NMR (500 MHz, C₆D₆): δ _H 7.76 – 7.73 (m, 2H), 7.05 – 7.03 (m, 2H), 4.05 (q, *J* = 7.1 Hz, 2H), 0.97 (t,

 $J = 7.1$ Hz, 3H). ¹³C NMR (126 MHz, C₆D₆): δ_C 165.3, 133.0, 131.5, 129.8, 125.6, 76.6, 74.1, 63.4, 61.1, 55.8, 14.2. HRMS(ESI): m/z calcd for C₁₃H₉ClO₂: 255. 0183 [M+Na⁺]; found: 255.0188.

Ethyl 4-(bromobuta-1,3-diyn-1-yl)benzoate (2d-Br)

Yellow solid $(210 \text{ mg}, 0.757 \text{ mmol})$, yield: 44%. ¹H NMR (500) MHz, C_6D_6): δ_H 7.86 – 7.81 (m, 2H), 7.14 – 7.11 (m, 2H), 4.04 (q, *J* = 7.1 Hz, 2H), 0.96 (t, *J* = 9.5 Hz, 3H). ¹³C NMR (126 MHz, C_6D_6): δ_c 165.4, 133.0, 131.5, 129.7, 125.6, 77.4, 73.8, 65.9, 61.1, 47.0, 14.2. HRMS(ESI): m/z calcd for C₁₃H₉BrO₂: 276.9859 [M+H⁺]; found: 276.9857.

Cross-Coupling Reactions

General Procedure for Cross-Coupling Reactions of 4,5,6,7- Tetrahydroindoles with Penta-2,4-diynoates

4,5,6,7-Tetrahydroindole (0.5 mmol) **1a**-**d** and 1-halobutadiyne (0.55 mmol, 10% molar excess) **2a**-**c**-X were grinded at room temperature with a 10-fold amount (by weight) of K_2CO_3 in a mortar for 10 min. The reaction mixture within 10 min turn \mathcal{L}_{α} from yellow to orange-brown. After 5 hours the reaction mixture was placed on the column with silica gel and eluted with mixture of *n*-hexane and diethyl ether $(5/1; v/v)$ to afford pure 2-(buta-1,3-diynyl)-4,5,6,7-tetrahydro-1*H*-indoles **4aa**-**dc**. **Methyl 5-(4,5,6,7-tetrahydro-1***H***-indol-2-yl)penta-2,4-diynoate (4aa) RSC Advances Accepted Manuscript**

Yellow crystals, yield: 78 mg (0.34 mmol), 69%; mp 115.5 – 116.2 °C. ¹H NMR (CDCl₃, 500 MHz): δ_H 8.08 (br s, 1H), 6.49 (s, 1H), 3.80 (s, 3H), 2.58–2.56 (m, 2H), 2.48–2.45 (m, 2H), 1.83–1.78 (m, 2H), 1.76–1.71 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ_c 153.9, 133.0, 119.8, 119.4, 108.0, 78.7, 76.1, 75.0, 73.2, 52.9, 23.4, 23.1, 22.9, 22.6. HRMS(ESI): *m/z* calcd for $C_{14}H_{13}NO_2$: 228.1019 [M+H⁺]; found: 228.1020.

Methyl 5-(1-methyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4-**

diynoate (4ba)

Brown solid, yield: 93 mg (0.39 mmol), 77%; mp 114.5 – 115.4 ^oC. ¹H NMR (CDCl₃, 500 MHz): δ _H 6.48 (s, 1H), 3.80 (s, 3H), 3.50 (s, 3H), 2.53–2.50 (m, 2H), 2.47–2.45 (m, 2H), 1.85–1.80 (m, 2H), 1.73–1.69 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ _C 153.9, 134.8, 118.9, 118.6, 111.2, 78.9, 78.4, 75.9, 73.5, 52.9, 31.1, 23.2, 22.9, 22.8, 22.5. HRMS(ESI): *m/z* calcd for $C_{15}H_{15}NO_2$: 242.1176 [M+H⁺]; found: 242.1169.

Methyl 5-(1-benzyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4 diynoate (4ca)**

Brown oil, yield: 101 mg (32 mmol), 64%; 1 H NMR (CDCl₃, 500 MHz): δ_H 7.33–7.30 (m, 2H), 7.27–7.24 (m, 1H), 7.04– 7.03 (m, 2H), 6.57 (s, 1H), 5.09 (s, 2H), 3.78 (s, 3H), 2.49–2.47 $(m, 2H), 2.41-2.39$ $(m, 2H), 1.78-1.74$ $(m, 2H), 1.71-1.66$ $(n,$ 2H). ¹³C NMR (126 MHz, CDCl₃) δ_c 153.8, 137.3, 134.7, 128.8, 127.5, 126.6, 119.6, 119.2, 111.3, 78.9, 78.3, 75.8, 73.4, 52.8, 48.3, 23.2, 22.9, 22.7, 22.6. HRMS(ESI): *m/z* calcd for $C_{21}H_{19}NO_2$: 318.1489 [M+H⁺]; found: 318.1489.

Methyl 5-(1-vinyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4 diynoate (4da)**

Yellow crystals, yield: 71 mg (0.28 mmol), 56%; mp 69.2 – 71.5 °C. ¹H NMR (CDCl₃, 500 MHz): δ _H 6.86 (dd, *J* = 16.0, 9.3) Hz, 1H), 6.57 (s, 1H), 5.38 (dd, *J* = 16.0, 1.2 Hz, 1H), 4.94 (dd, *J* = 9.3, 1.2 Hz, 1H), 3.80 (s, 3H), 2.64–2.62 (m, 2H), 2.48–2.45

(m, 2H), 1.85–1.80 (m, 2H), 1.74–1.70 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ_c 152.7, 133.0, 128.7, 120.6, 119.5, 109.5, 103.1, 77.9, 76.8, 74.6, 71.9, 51.9, 22.9, 21.9, 21.8, 21.78. HRMS(ESI): m/z calcd for C₁₆H₁₅NO₂: 254.1176 [M+H⁺]; found: 254.1174.

Ethyl 5-(4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4-diynoate (4ab)**

Light yellow crystals, yield: 72 mg (0.30 mmol), 60%; mp $113.7 - 115.1$. ¹H NMR (CDCl₃, 500 MHz): δ_H 8.10 (br s, 1H), 6.49 (d, *J* = 2.4 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.58–2.56 (m, 2H), 2.48–2.46 (m, 2H), 1.83–1.79 (m, 2H), 1.76–1.71 (m, 2H), 1.32 (t, $J = 7.1$ Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ_c 153.5, 132.9, 119.7, 119.4, 108.1, 78.5, 76.1, 75.3, 72.7, 62.2, 23.4, 23.1, 22.9, 22.6, 14.1. HRMS(ESI): *m/z* calcd for $C_{15}H_{15}NO_2$: 242.1176 [M+H⁺]; found: 242.1177.

Ethyl 5-(1-methyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4 diynoate (4bb)**

Yellow crystals, yield: 60 mg (0.24 mmol), 47%, mp 115.1 - 115.9 °C; ¹H NMR (CDCl₃, 500 MHz): δ_H 6.47 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.50 (s, 3H), 2.53–2.50 (m, 2H), 2.47–2.44 (m, 2H), 1.85–1.80 (m, 2H), 1.73–1.68 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ_c 153.5, 134.7, 118.9, 118.5, 111.2, 78.9, 78.2, 76.2, 73.0, 62.2, 31.1, 23.2, 22.9, 22.8, 22.5, 14.1. HRMS(ESI): m/z calcd for C₁₆H₁₇NO₂: 256.1332 $[M+H^+]$; found: 256.1336.

Ethyl 5-(1-benzyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4 diynoate (4cb)**

Brown solid, yield: 108 mg (0.33 mmol), 65%; mp 75.9 – 76.5 $^{\circ}$ C. ¹H NMR (CDCl₃, 500 MHz): δ _H 7.33–7.30 (m, 2H), 7.27– 7.24 (m, 1H), 7.04–7.02 (m, 2H), 6.56 (s, 1H), 5.09 (s, 2H), 4.24 (q, *J* = 7.1 Hz, 2H), 2.49–2.47 (m, 2H), 2.41–2.39 (m, 2H), 1.77–1.73 (m, 2H), 1.71–1.66 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ_C 153.4, 137.2, 134.6, 128.8, 127.5, 126.5, 119.5, 119.2, 119.0, 111.4, 78.9, 78.1, 76.1, 72.9, 62.2, 48.3, 23.1, 22.9, 22.7, 22.6, 14.1. HRMS(ESI): *m/z* calcd for $C_{22}H_{21}NO_2$: 332.1645 [M+H⁺]; found: 332.1645.

Ethyl 5-(1-vinyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4 diynoate (4db)**

Brown solid, yield: 97 mg (0.34 mmol), 73%; mp 69.9 – 70.6 ^oC. ¹H NMR (CDCl₃, 500 MHz): δ _H 6.86 (dd, *J* = 16.0, 9.3 Hz, 1H), 6.56 (s, 1H), 5.38 (dd, *J* = 16.0, 1.2 Hz, 1H), 4.93 (dd, *J* = 9.3, 1.2 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.64–2.62 (m, 2H), 2.48–2.45 (m, 2H), 1.84–1.80 (m, 2H), 1.74–1.70 (m, 2H), 1.32 (t, $J = 7.1$ Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ_c 153.3, 133.9, 129.7, 121.5, 120.5, 110.6, 104.1, 78.9, 77.6, 75.9, 62.3, 24.0, 23.0, 22.9, 22.8, 14.1. HRMS(ESI): *m/z* calcd for $C_{17}H_{17}NO_2$: 268.1332 [M+H⁺]; found: 268.1332.

Benzyl 5-(4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4-diynoate (4ac)**

Brown solid, yield: 85 mg (0.28 mmol), 56%; 133.9 – 134.7 °C. ¹H NMR (CDCl₃, 500 MHz): δ_H 8.08 (br s, 1H), 7.38–7.34 (m, 5H), 6.49 (d, *J* = 2.4 Hz, 1H), 5.22 (s, 2H, CH₂), 2.58–2.55 (m, 2H), 2.48–2.45 (m, 2H), 1.83–1.79 (m, 2H), 1.75–1.71 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ_C 153.2, 134.9, 133.1, 128.7, 128.6, 128.5, 119.9, 119.5, 108.0, 78.9, 76.2, 75.1, 73.5, 67.8, 23.4, 23.1, 22.9, 22.6. HRMS(ESI): m/z calcd for C₂₀H₁₇NO₂: 326.1152 [M+Na⁺]; found: 326.1154.

Benzyl 5-(1-methyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4 diynoate (4bc)**

Brown solid, yield: 98 mg (0.31 mmol), 62%; mp 83.0 – 84.3 $^{\circ}$ C. ¹H NMR (CDCl₃, 500 MHz): δ _H 7.39–7.35 (m, 5H, Ph), 6.48 (s, 1H), 5.23 (s, 2H), 3.49 (s, 3H), 2.53–2.50 (m, 2H), 2.47–2.45 (m, 2H), 1.85–1.81 (m, 2H), 1.73–1.69 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ_C 153.3, 134.9, 134.8, 128.7, 128.6, 128.5, 119.0, 118.6, 111.2, 79.0, 78.6, 76.0, 73.8, 67.8, 31.1, 23.2, 22.9, 22.8, 22.5. HRMS(ESI): m/z calcd for C₂₁H₁₉NO₂: 340.1308 [M+Na⁺]; found: 340.1304.

Benzyl 5-(1-benzyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4-diynoate (4cc**)

Brown oil, yield: 157 mg (0.40 mmol), 80%; ¹H NMR (CDCl₃, 500 MHz): δ_H 7.38-7.37 (m, 4H), 7.32-7.30 (m, 3H), 7.27-7.25 (m, 1H), 7.03–7.02 (m, 2H), 6.56 (s, 1H), 5.21 (s, 2H), 5.08 (s, 2H), 2.49–2.47 (m, 2H), 2.41–2.39 (m, 2H), 1.78–1.73 (m, 2H), 1.70–1.66 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): σ _C 153.2, 137.2, 134.8, 134.7, 128.8, 128.7, 128.6, 128.5, 126. 119.6, 119.3, 111.3, 79.0, 78.5, 76.0, 73.6, 67.8, 48.3, 23.1, 22.9, 22.7, 22.6. HRMS(ESI): m/z calcd for C₂₇H₂₃NC : 416.1621 [M+Na⁺]; found: 416.1629.

Benzyl 5-(1-vinyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)penta-2,4 diynoate (4dc)**

Brown oil, yield: 71 mg (0.22 mmol), 43%; 1 H NMR (CDCl₃, 500 MHz): δ_H 7.39–7.38 (m, 5H), 6.86 (dd, $J = 16.0$, 9.3 Hz, 1H), 6.57 (s, 1H), 5.38 (dd, *J* = 16.0, 1.2 Hz, 1H), 5.24 (s, 2H), 4.94 (dd, *J* = 9.3, 1.2 Hz, 1H), 2.64–2.62 (m, 2H), 2.48–2.46 (m, 2H), 1.85–1.80 (m, 2H), 1.75–1.60 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ_C 153.1, 134.8, 134.1, 129.7, 128.7, 128.6, 128.5, 121.7, 120.6, 110.5, 104.2, 79.0, 78.0, 75.8, 73.2, 67.8, 24.0, 23.0, 22.9, 22.8. HRMS(ESI): m/z calcd for C₂₂H₁₉NO₂: 352.1308 [M+Na⁺]; found: 352.1302.

General Procedure for Cross-Coupling Reactions of 2- Phenylpyrrole with Penta-2,4-diynoates

2-Phenylpyrrole (0.5 mmol) **1e** and 1-halobutadiyne (0.5 mmol) **2a**-**c**-Br were grinded at room temperature with a 10-fold amount (by weight) of K_2CO_3 in a mortar for 10 min. The reaction mixture within 10 min turned from yellow to brown. After 7 hours, another portion of 1-halobutadiyne (0.5 mmol) was added and the reaction mixture allowed to stay for 18 hours. Then, the reaction mixture was placed on the column with silica gel and eluted with mixture of hexanes and diethyl ether $(5/1; v/v)$ to afford pure 5-(buta-1,3-diynyl)-2phenylpyrroles **4ea**-**ec**. **RSC Advances 1.**
 RSCC .
 RSCC .
 RSCC .

Methyl 5-(5-phenyl-1*H***-pyrrol-2-yl)penta-2,4-diynoate (4ea)**

Yellow solid, yield: 57 mg (0.23 mmol), 46%; mp 111.8 – 112.3 °C. ¹H NMR (CDCl₃, 500 MHz): δ_H 8.76 (br s, 1H), 7.51–7.49 (m, 2H), 7.42–7.39 (m, 2H), 7.32–7.29 (m, 1H), 6.81–6.79 (m, 1H), 6.50–6.49 (m, 1H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ_C 153.7, 136.2, 131.0, 129.1, 127.8, 124.6, 122.2, 111.1, 107.8, 77.2, 76.6, 74.9, 72.4, 53.0. HRMS(ES^T): m/z calcd for $C_{16}H_{12}NO_2$: 250.0863 [M+H⁺]; found: 250.0861. **Ethyl 5-(5-phenyl-1***H***-pyrrol-2-yl)penta-2,4-diynoate (4eb)** Brown oil, yield: 66 mg (0.25 mmol) , 50%. ¹H NMR (CDC , 500 MHz): δ_H 8.82 (br s, 1H), 7.51–7.50 (m, 2H), 7.42–7.3^c

(m, 2H), 7.31–7.28 (m, 1H), 6.80–6.79 (m, 1H), 6.50–6.49 (1H, m), 4.28 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR $(126 \text{ MHz}, \text{CDCl}_3)$: δ_C 153.3, 136.2, 131.0, 129.1, 127.8, 124.6, 122.2, 111.1, 107.7, 77.2, 76.6, 75.2, 72.1, 62.5, 14.1. HRMS(ESI): m/z calcd for C₁₇H₁₃NO₂: 264.1019 [M+H⁺]; found: 264.1013.

Benzyl 5-(5-phenyl-1*H***-pyrrol-2-yl)penta-2,4-diynoate (4ec)**

Brown solid, yield: 85 mg (0.26 mmol), 52%; mp 135.0 – 136.1 ^oC. ¹H NMR (CDCl₃, 500 MHz): δ_H 8.75 (br s, 1H), 7.50–7.49 (m, 2H), 7.42–7.35 (m, 7H), 7.31–7.28 (m, 1H), 6.80–6.79 (m, 1H), 6.50–6.49 (m, 1H), 5.24 (s, 2H). ¹³C NMR (126 MHz, CDCl₃): δ_c 153.1, 136.3, 134.7, 131.0, 129.1, 128.7, 128.6, 127.8, 124.6, 122.3, 111.1, 107.8, 77.5, 76.7, 75.0, 72.7, 67.0. HRMS(ESI): m/z calcd for C₂₂H₁₅NO₂: 348.0995 [M+Na⁺]; found: 348.0990.

Methyl 5-(4-ethyl-5-propyl-1*H***-pyrrol-2-yl)penta-2,4-diynoate (4fa)**

3-Propyl-2-ethylpyrrole (220 mg, 1.60 mmol) (**1f**) and 1 halobutadiyne **2a**-Br (300 mg, 1.60 mmol) were grinded at room temperature with 5.20 g of K_2CO_3 in a mortar for 10 min. After 1 hour the reaction mixture was placed on the column with silica gel and eluted with mixture of *n*-hexane and diethyl ether (10/1; v/v) to afford pure methyl 5-(4-ethyl-5-propyl-1*H*pyrrol-2-yl)penta-2,4-diynoate **4fa** as dark oily crystals (214 mg, 0.880 mmol). Yield 55%. $^1\text{H NMR}$ (CDCl₃. 400 MHz) δ_H 8.17 (s, 1H), 6.57 (d, *J* = 2.3 Hz, 1H), 3.80 (s, 3H), 2.53 (t, *J* = 7.5 Hz, 2H), 2.38 (q, *J* = 7.5 Hz, 2H), 1.68 – 1.49 (m, 2H), 1.14 $(t, J = 7.5 \text{ Hz}, 3\text{H})$, 0.95 $(t, J = 7.3 \text{ Hz}, 3\text{H})$. ¹³C NMR (101) MHz, CDCl₃) δ_c 154.0, 134.1, 124.1, 120.9, 107.6, 78.8, 76.2, 75.2, 73.4, 52.9, 28.2, 22.9, 18.9, 15.4, 13.9.

General Procedure for Cross-Coupling Reactions of 4,5,6,7- Tetrahydroindoles with Ethyl 4-(halo-1,3-diyn-1-yl)benzoates

4,5,6,7-Tetrahydroindoles (0.5 mmol) **1a-d** and 1 halobutadiyne (0.5 mmol) (**2d**-Cl or **2d**-Br) were grinded at room temperature with a 10-fold amount (by weight) of K_2CO_3 in a mortar for 10 min. The reaction mixture within 10 min turned from yellow to orange. After 24 hours the reaction mixture was placed on the column with $SiO₂$ and eluted with system hexanes/diethyl ether (v/v, 5/1) to afford pure 2-(buta-1,3-diynyl)-4,5,6,7-tetrahydro-1*H*-indoles **4ad**-**dd**. Unless otherwise stated **2d**-Br was used in synthesis.

Ethyl 4-((4,5,6,7-tetrahydro-1*H***-indol-2-yl)buta-1,3 diynyl)benzoate (4ad)**

From chloride **2d**-Cl, Yellow solid, yield: 39 mg (0.12 mmol) 36%; mp 202.5 – 203.0 °C. ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 8.04 – 7.95 (m, 3H, overlapping signals of NH and $2xCH_{Ar}$), 7.56 – 7.50 (m, 2H), 6.41 (d, *J* = 2.4 Hz, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 2.57 (t, *J* = 6.2 Hz, 2H), 2.48 (t, *J* = 6.0 Hz, 2H), 1.85 – 1.78 (m, 2H), 1.78 – 1.71 (m, 2H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ_C 166.1, 132.1, 131.5, 130.4, 129.6, 127.0, 119.0, 117.7, 109.4, 82.5, 77.5, 77.1, 76.1, 61.4, 23.6, 23.2, 23.1, 22.8, 14.4. HRMS(ESI): *m/z* calcd for $C_{21}H_{19}NO_2$: 318.1489 [M+H⁺]; found: 318.1491.

Ethyl 4-((1-methyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)buta-1,3 diynyl)benzoate (4bd)**

Yellow crystals, yield: 96 mg (0.29 mmol), 58%; mp 148.4 – 149.0 °C. ¹H NMR (CDCl₃, 500 MHz): δ_H 8.00–7.99 (m, 2H) 7.55–7.53 (m, 2H), 6.40 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.53 (s, 3H), 2.54–2.51 (m, 2H), 2.48–2.46 (m, 2H), 1.86–1.81 (m, 2H), 1.74–1.70 (m, 2H), 1.40 (t, $J = 7.1$ Hz, 3H). ¹³C NMR $(126 \text{ MHz}, \text{CDCl}_3)$: δ_C 159.9, 132.0, 131.9, 130.2, 129.5, 126.9, 118.3, 116.4, 112.3, 83.0, 78.7, 77.6, 76.5, 61.2, 31.0, 23.4, 22.9, 22.9 (coincided), 22.4, 14.3. HRMS(ESI): *m/z* calcd for $C_{22}H_{22}NO_2$: 332.1645 [M+Na⁺]; found: 332.1641.

Ethyl 4-((1-benzyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)buta-1,3 diynyl)benzoate (4cd)**

Yellow crystals, yield: 98 mg (0.24 mmol), 48%; mp 74.7 – 75.7 °C. ¹H NMR (CDCl₃, 500 MHz): δ_H 7.99–7.97 (m, 2H), 7.52–7.51 (m, 2H), 7.34–7.32 (m, 2H), 7.27–7.24 (m, 1H), 7.09–7.08 (m, 2H), 6.48 (s, 1H), 5.13 (s, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 2.50–2.48 (m, 2H), 2.40–2.37 (m, 2H), 1.78–1.73 (m, 2H), 1.71–1.66 (m, 2H), 1.39 (t, $J = 7.1$ Hz, 3H). ¹³C NM₁, $(126 \text{ MHz}, \text{CDCl}_3) \delta_C$ 165.9, 137.8, 132.9, 131.9, 130.2, 129. 128.7, 127.4, 126.9, 126.7, 119.0, 116.9, 112.5, 83.0, 78.7, 77.5, 76.5, 61.2, 48.2, 23.3, 23.0, 22.9, 22.6, 14.3. HRMS(ESI): m/z calcd for $C_{28}H_{26}NO_2$: 408.1958 [M+Na⁺]; found: 408.1949. **RSC Advances Accepted Manuscript**

Ethyl 4-((1-vinyl-4,5,6,7-tetrahydro-1*H***-indol-2-yl)buta-1,3 diynyl)benzoate (4dd**)

Yellow solid, yield: 86 mg (0.25 mmol), 50%; mp 152.9 – 153.4 °C. ¹H NMR (CDCl₃, 500 MHz): δ_H 8.01–7.99 (m, 2H), 7.56–7.54 (m, 2H), 6.95 (dd, *J* = 16.0, 9.4 Hz, 1H), 6.48 (s, 1H), 5.40 (dd, *J* = 16.0, 1.1 Hz, 1H), 4.91 (dd, *J* = 9.3, 1.0 Hz, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 2.66–2.64 (m, 2H), 2.49–2.46 (m, 2H), 1.85–1.80 (m, 2H), 1.75–1.70 (m, 2H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ_c 165.9, 132.3, 132.0, 130.3, 130.1, 129.5, 126.7, 120.2, 119.3, 111.8, 103.0, 83.2, 79.1, 77.3, 76.1, 61.2, 24.1, 23.1, 23.0, 22.9, 14.3. HRMS(ESI): m/z calcd for $C_{23}H_{22}NO_2$: 344.1645 [M+Na⁺]; found: 344.162⁶

ACKNOWLEDGMENTS

The work was supported by the National Science Centre Poland (Grant numbers: UMO-2012/05/N/ST5/00665 and UMO-2013/08/M/ST5/00942) and Russian Foundation of Basic Research (Project No 14-03-32042).

REFERENCES

- 1 V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman and P. Sharma, *RSC Adv.*, 2015, **5**, 15233.
- 2 Y. Qiao, J. Zhang, W. Xu and D. Zhu, *J. Mater. Chem.*, 2012, **22**, 5706.
- 3 B. L. Reid, S. B. Briggs, L. E. Karagiannidis, S. Muzzioli, P. Raiteri, M. E. Light, S. Stagni, P. Brulatti, P. A. Gale, M. I. Ogden and M. Massi, *J. Mater. Chem. C*, 2013, **1**, 2209.
- 4 B. B. Tu and A. Lightner, *J. Heterocyclic Chem.*, 2003, **40**, 707.
- 5 S. Matsumoto, T. Kobayashi and K. Ogura, *Heterocycles,* 2005, **66**, 319.
- 6 (a) S. Kramer, J. L. H. Madsen, M. Rottlander and T. Skrydstrup, *Org. Lett.*, 2010, **12**, 2758; (b) P. Nun, S. Dupu S. Gaillard, A. Poater, L. Cavallo and S. P. Nolan, *Catal. Sci. Technol.*, 2011, **1**, 58; (c) H. Jiang, W. Zeng, Y. Li, W. Wu, L. Huang and W. Fu, *J. Org. Chem.*, 2012, **77**, 5179; (d) Q.

Zheng, R. Hua and T. Yin, *Curr. Org. Synth.*, 2013, **10**, 161; (e) Q. Zheng, R. Hua, J. Jiang and L. Zhang, *Tetrahedron*, 2014, **70**, 8252; (f) J.-C. Deng and S.-C. Chuang, *Org. Lett.*, 2014, **16**, 5792.

- 7 J.-P. Beny, S. N. Dhawan, J. Kagan and S. Sundlass, *J. Org. Chem.*, 1982, **47**, 2201.
- 8 (a) V. Lavallo, G. D. Frey, B. Donnadieu, M. Soleilhavoup and G. Bertrand, *Angew. Chem. Int. Ed.*, 2008, **47**, 5224; (b) Q. Zheng and R. Hua, *Tetrahedron Lett.*, 2010, **51**, 4512.
- 9 (a) H. Sun, X. Wu and R. Hua, *Tetrahedron Lett.*, 2011, **52**, 4408; (b) R. Singha, S. Nandi and J. K. Ray, *Tetrahedron Lett.*, 2012, **53**, 6531.
- 10 (a) A. K. Mandadapu, S. K. Sharma, S. Gupta, D. G. V. Krishna and B. Kundu, *Org. Lett.*, 2011, **13**, 3162; (b) A. K. Mandadapu, M. D. Dathi, R. K. Arigela and B. Kundu, *Tetrahedron*, 2012, **68**, 8207; (c) L. Wang, X. Yu, X. Feng and M. Bao, *Chem. Lett.*, 2013, **42**, 2418.
- 11 G. R. Hutchison, M. A. Ratner, T. J. Marks, *J. Am. Chem. Soc.*, 2005, **127**, 16866
- 12 (a) D. H. Cho, J. H. Lee and B. H. Kim, *J. Org. Chem.*, 1999, **64**, 8048; (b) D. O. Martire, N. Jux, P. F. Aramendia, R. M. Negri, J. Lex, S. E. Braslavsky, K. Schaffner and E. Vogel, *J. Am. Chem. Soc.*, 1992, **114**, 9969; (c) T. Sakida, S. Yamaguchi and H. Shinokubo, *Angew. Chem. Int. Ed.*, 2011, **50**, 2280.
- 13 (a) W. P. Pfeiffer and D. A. Lightner, *Monatsh. Chem.*, 2014, **145**, 1777; (b) A. F. McDonagh and D. A. Lightner, *J. Med. Chem.*, 2007, **50**, 480.
- 14 (a) L. N. Sobenina, D. N. Tomilin and B. A. Trofimov, *Russ. Chem. Rev.*, 2014, **83**, 475; (b) D. L. Tarshits, N. M. Przhiyalgovskaya, V. N. Buyanov and S. Y. Tarasov, *Chem. Heterocycl. Compd.*, 2009, **45**, 501
- 15 V. Findanese, D. Bottalico, G. Marchese, A. Punzi, M. R. Quarta and M. Fittipaldi, *Synthesis*, 2009, **22**, 3853.
- 16 (a) S. F. Vasilevsky, H. D. Verkruijsse and L. Brandsma, *Recl. Trav. Chim. Pays-Bas*, 1992, **111**, 529; (b) D. H. Cho, J. H. Lee and B. H. Kim, *J. Org. Chem.*, 1999, **64**, 8048.
- 17 (a) B. A. Trofimov, Z. V. Stepanova, L. N. Sobenina, A. I. Mikhaleva and I. A. Ushakov, *Tetrahedron Lett.*, 2004, **46**, 6513; (b) B. A. Trofimov and L. N. Sobenina, *Targets in Heterocyclic Systems*, 2009, **13**, 92.
- 18 A. S. Dudnik and V. Gevorgyan, *Angew. Chem. Int. Ed.*, 2010, **49**, 2096.
- 19 W. Wu and H. Jiang, *Acc. Chem. Res.*, 2014, **47**, 2483.
- 20 (a) L. Luo, C. Wilhelm, A. Sun, C. P. Grey, J. W. Lauher and N. S. Goroff, *J. Am. Chem. Soc.*, 2008, **130**, 7702; (b) A. Sun, J. W. Lauher and N. S. Goroff, *Science* 2006, **312**, 1030.
- 21 T. N. Hoheisel, S. Schrettl, R. Marty, T. K. Todorova, C. Corminboeuf, A. Sienkiewicz, R. Scopelliti, W. B. Schweizer and H. Frauenrath, *Nat. Chem.*, 2013, **5**, 327.
- 22 R. C. DeCicco, A. Black, L. Li and N. S. Goroff, *Eur. J. Org. Chem.*, 2012, 4699.
- 23 T. N. Hoheisel and H. Frauenrath, *Org. Lett.*, 2008, **10**, 4525.
- 24 A. L. K. S. Shun and R. R. Tykwinski, *Angew. Chem. Int. Ed.*, 2006, **45**, 1034.
- 25 N. Gulia, B. Pigulski and S. Szafert, *Organometallics* 2015, **34**, 673.
- 26 N. Kerisit, L. Toupet, Y. Trolez and J. C. Guillemin, *Chem. Eur. J.*, 2013, **19**, 17683.
- 27 (a) T. Nishikawa, S. Shibuya, S. Hosokawa and M. Isobe, *Synlett*, 1994, 485; (b) T. Lee, H. R. Kang, S. Kim and S. Kim, *Tetrahedron*, 2006, **62**, 4081.
- 28 N. Gulia, B. Pigulski, M. Charewicz and S. Szafert, *Chem. Eur. J.* , 2014, **20**, 2746.
- 29 A. Arendt, R. Kołkowski, M. Samoc and S. Szafert, *Phys. Chem. Chem. Phys.*, 2015, **17**, 13680.
- 30 B. A. Trofimov, L. N. Sobenina, Z. V. Stepanova, O. V. Petrova, I. A. Ushakov and A. I. Mikhaleva, *Tetrahedron Lett.*, 2008, **49**, 3946.
- 31 B. A Trofimov, L. N Sobenina, Z. V Stepanova, T. I Vakul'skaya, O. N Kazheva, G. G. Aleksandrov, O. A. Dyachenko and A. I. Mikhaleva, *Tetrahedron*, 2008, 64, 5541.
- 32 G. M. Sheldrick, *Acta Crystallogr. A*, 2008, **64**, 112.