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Magneto-electronic Coulomb excitations in simple hexagonal graphite (SHG) are studied within the random-phase approxima-
tion. They strongly depend on the direction, the magnitude of the transferred momentum q, and the magnetic field strength.
The plasmon frequency dispersion in the perpendicular component qz in the primitive unit cell and its parallel component q∥ are
very different from each other. The former shows only one prominent peak. The plasmon frequency increases with qz, while the
intensity of the plasmon peak exhibits the opposite behavior. The latter presents many plasmon peaks. Moreover, the threshold
frequency of the loss spectrum for SHG is higher than that of monolayer graphene. As the field strength increases, the plasmon
peaks are intensified. The group velocity for plasmon propagation along q̂z is typically positive for a fixed field strength. The qz-
dependence of the plasmon frequency is gradually reduced with an increased field strength. Graphite quite differs from graphene
in magneto-electronic excitations, including the intensity, number and frequency of magnetoplasmons.

1 Introduction

Graphene layers have attracted a lot of studies recently due
to the successful production by mechanical friction1,2 and
micromechanical cleavage.3 Very strong sp2 bonds in each
graphene layer cause a threefold-coordinated planar structure
with the remaining pz orbital perpendicular to the plane. These
special π electrons dominate the physical properties at low en-
ergy. The interlayer interactions owning to the van der Waals
forces coupled the graphene layers.4 Thus, the characteris-
tics of the material have a strong dependence on the stacking-
configuration,5–7 layer numbers,8–13 and the interlayer atomic
interaction.14–17 For an AA-stacked simple hexagonal graphite
(SHG), the π bands are no longer symmetric to the π∗ bands
about Fermi level EF = 0.18 The overlap of the lowest conduc-
tion band (c) and the highest valence band (v) leads to a few
free carriers, and thus such a system is considered a semimetal.
However, the electronic excitations provide a reasonable ex-
planation for the measured absorption spectra and loss spec-
tra. In this work, we mainly study the low-frequency magneto-
electronic Coulomb excitations in AA-stacked graphite, their
dependence on the magnitude and the direction of the trans-
ferred momentum, and the magnetic field strength. A compari-
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son with SHG in the absence of a magnetic field and monolayer
graphene (MG) is also presented.

In the presence of a perpendicular magnetic field Bẑ, the pla-
nar motions of electrons are effectively quantized to form dis-
persionless Landau levels (LLs). Thus, in bulk graphite, the
planar electrons’ motion turns into the Landau orbitals, while
the motion along the field remains intact. The electronic bands
of graphite are converted into one-dimensional ones, the so-
called Landau subbands (LSs). The LSs of graphites exhibit
many important features. Such as SHG possesses very strong
kz-dependent energy dispersions with a broad band width of
about 1.4 eV (Fig. 1(a)), and each LS can be described by a
simple relationship with kz.18,19 On the contrary, ABC-stacked
rhombohedral graphite (RHG) presents weak kz-dependent dis-
persions with a narrow band width (∼10 meV).20 The energy
dispersion of AB-stacked Bernal graphite (BG) has a band
width of ∼0.2 eV,21,22 which lies between that of SHG and
RHG, and two LSs cross EF . The low-lying LSs are complex
and cannot be easily described by kz. The characteristics of LSs
would be reflected in the magneto-optical spectra. For example,
the magneto-optical absorption spectrum of SHG is dominated
by intraband (c → c;v → v) and interband (v → c) excitations
which induce a multi-channel peak, several two-channel peaks,
and many double-peak structures.23 The prominent peaks of
BG come from the interband excitations at both the K and H
points. The peaks associated with the K point display double-
peak structures.21,24

There are some theoretical studies on the magneto-electronic
excitations in MG.8,25,26 The previous results show that the
single-particle excitations (SPE; e-h pairs) and collective ex-
citations (plasmons) strongly depend on the transferred mo-
mentum, the magnetic-field strength, the temperature, and the
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3 RESULTS AND DISCUSSION

doped free carrier density. These two kinds of excitations,
which are caused by the Coulomb excitations from the occu-
pied LLs to the unoccupied ones, can be clearly characterized
by the special peak structures in the dielectric function and
the energy loss function, respectively. The magnetoplasmons
present the non-monotonous momentum-dependence, indicat-
ing the strong competition between the longitudinal Coulomb
oscillation and the transverse magnetic quantization. Further-
more, the critical momentum of plasmon is determined by the
Landau damping (the non-vanishing e-h pairs). The increasing
temperature or free carrier density will induce new plasmon
modes, but reduce the original plasmon intensities. Since the
LSs have the strong kz-dependent energy dispersions, SHG is
expected to exhibit the feature-rich magneto-electronic excita-
tion spectra.

The magneto-electronic properties are studied by means of
the Peierls tight-binding model and band-like matrix numeri-
cal techniques,23,24,27 through which the electronic structures
at realistic magnetic fields can be solved. In the random-phase
approximation (RPA), the complete structure of the dielectric
function (ε) was determined. SPE and collective excitations
can be presented as the imaginary part of the dielectric function
ε2 and the loss function, respectively. The calculations of the
electron-energy-loss spectroscopy (EELS) show that the π plas-
mon is characterized by the prominent peak. The π plasmon
originates from the interband excitations, and its cause will be
studied. The electronic Coulomb excitations, strongly depend
on both the magnitude and direction of the transferred momen-
tum q. The stacking-order could further affect the anisotropy
which is reflected in the main features of the dielectric function
and thereby the loss function. As a result of this anisotropy,
the magnetoplasmon dispersions with respect to q are remark-
ably different between MG and AA-stacked graphite. More-
over, the group velocities of the magnetoplasmons in the long
wavelength limit are typically positive as q is increased.

2 Peierls tight-binding model and dielectric
function

For a simple hexagonal graphite, the geometric structure is
formed by periodically stacked monolayer graphene along the
z-direction. All the honeycomb structures in SHG have the
same projections on the x-y plane. The C-C bond length is
b = 1.42 Å, and the interlayer distance is Ic= 3.50 Å .28 The
primitive unit cell includes two atoms A and B; the intralayer
and interlayer atomic interactions αi were obtained from the
study of Charlier.15 When SHG is subjected to a Bẑ, the path
integral of the vector potential induces a periodical Peierls
phase.29 The phase term of the associated period is inversely
proportional to the magnetic flux (Φ = 3

√
3b2B/2) through a

hexagon. To satisfy the integrity of the primitive cell, the ra-

tio RB = Φ0/Φ (Φ0 = hc/e, flux quantum) has to be a posi-
tive integer. As a result, the extended rectangular unit cell has
4RB carbon atoms. The π-electronic Hamiltonian built from
the 4RB tight-binding functions is a 4RB × 4RB Hermitian ma-
trix. To solve this huge matrix problem, one can convert the
Hamiltonian matrix into a band-like form by rearranging the
tight-binding functions.23,24,27 Both eigenvalue Ec,vand eigen-
function Ψc,vare efficiently obtained, even for a small magnetic
field. The superscripts c and v, respectively, represent the con-
duction and valence bands.

The main features of the magneto-electronic properties are
directly manifested in the electronic Coulomb excitations.
Electronic excitations are characterized by the transferred mo-
mentum q= (qsinθ,0,qcosθ) = (q∥,0,q⊥) and the excitation
energy ω; here, θ is the angle between q and the z-axis. At
arbitrary temperature T , the dielectric function calculated for
bulk graphite in the RPA30,31 is

ε(q,θ,ω) = ε0 − vq ∑
h′ , h

∫
1st BZ

2
d3k
(2π)3

∣∣∣⟨k+q;h
′ ∣∣eiq·r∣∣k;h

⟩∣∣∣2
×

f (Eh′ (k+q))− f (Eh (k))
Eh′ (k+q)−Eh (k)− (ω+iΓ)

, (1)

where k and q are three-dimensional wave vectors, vq =
4πe2/q2 is the bare Coulomb interactions, and ε0 = 2.4 is
the background dielectric constant for graphite.32 Eh′ (k+q)
and Eh (k) are the state energies of the final and initial states.
The labels h(h

′
) denote the conduction or valence bands. Γ

is the broadening parameter due to various deexcitation mech-
anisms and f (Eh (k)) is the Fermi-Dirac distribution function.
In demonstrating the anisotropy of the dispersion relation of the
π-plasmons, it is considered that the inelastic scattering only in-
volves q∥ along the hexagonal plane in the Brillouin zone, i.e.,
kz is conserved and qz = 0.

3 Results and discussion

A magnetic field causes the cyclotron motion in the x-y plane;
therefore, the LSs are formed along k̂z for SHG, as shown in
Fig.1(a). Each LS possesses two band-edge states K (kz = 0)
and H( kz = π/Ic), respectively. The LS energies decrease as
kz gradually grows. The main features of the wave functions
could be utilized to define the quantum number of the LSs.
The wave functions are composed of the subenvelope function
(ϕn) of the harmonic oscillator, as shown in Fig.1(b) for kz = 1
(π/Ic). The number of zero points (n) of (ϕn) is utilized to de-
fine the quantum number (nc or nv) of each LS. For the sake
of convenience, the LS with quantum number nc( nv) is repre-
sented as LSnc

(LSnv
). The wave function is associated with the
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3 RESULTS AND DISCUSSION

Fig. 1 (a) The Landau subbands at B = 40 T, where n c,v’s are the
quantum numbers. (b) The related wave functions associated with the
Landau subbands at kz = 1, Ao and Bo represent the A and B
sublattices with odd indices, respectively.

odd index Bo (Ao) sublattice of the LSnc,v=n is ϕn (ϕn−1). The
numbers of zero points of ϕn’s corresponding to the Bo sublat-
tice are chosen as the quantumn numbers of the LSs. The con-
duction (valence) LSs with small nc( nv) values crossing the EF
imply that parts of these LSs are occupied states and the others
are unoccupied states. Such a feature might cause the intraband
and interband transitions in the Coulomb excitations.

The calculated q-dependent SPE and collective plasmon
modes due to the screened Coulomb interaction can be well de-
scribed by the behavior of the imaginary part ε2 and the real
part ε1 of the dielectric function. The special structures in
ε2 and ε1 satisfy the Kramers-Kronig relation because of the
Coulomb response. The features display a peak structure in ε2,
and a peak and dip structure along the zero points in ε1 . As
q∥ = 0 and B = 40 T, the SPE spectrum ε2 only shows one peak
which originates from intraband excitations (c → c;v → v), as

shown in Fig. 2(a) by the blue curve. In the absence of a mag-
netic field, ε2 presents also only one prominent peak resulting
from the intraband excitation (circles in Fig.2(a)). Such exci-
tations come from the band states along the K −H line.33 The
dielectric functions in the B= 0 and B ̸= 0 cases are very sim-
ilar to each other. The main reason is that a magnetic field
causes the cyclotron motion in the x-y plane and q∥ = 0 (k∥
conserved). Furthermore, increasing qz reduces the peak inten-
sity that occurs at higher frequencies, which involve the lower
LSs intraband and interband excitations (v → c) (Fig. 2(b)).

Fig. 2 The real (ε1) and imaginary (ε2) parts of the dielectric function
of SHG for different values of q∥ and qz. (a) q∥ = 0 and qz = 0.02,
(b) q∥ = 0 and qz = 0.04; q∥ = 0 and qz = 0.08, (c) q∥ = 0.02 and
qz = 0. (d) The dielectric function of MG at q∥ = 0.02 and qz = 0.
For comparison, at B = 0 the dielectric function of SHG is also
plotted. The unit of q∥ (qz) is Å−1, here and elsewhere in this paper.

The electronic excitations are significantly changed by the
direction of q; that is, they exhibit the highly anisotropic be-
havior. As qz = 0 (kz conserved), the SPE spectrum is domi-
nated by the intraband and interband excitations. For B = 40 T,
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3 RESULTS AND DISCUSSION

the first prominent peak of ε2 is associated with the intraband
excitations, as shown in Fig. 2(c) by the blue solid curve. For
the frequency range ω> 0.1 eV, the SPE spectrum relates to the
interband excitations. For B= 0, SHG presents only one promi-
nent peak in ε2 ( circles in Fig. 2(c)), which is associated with
the intraband and interband excitations. In short, the special
structures of ε exhibit the blue shift and the weaker intensity in
the increase of momentum, being determined by the LS energy
dispersions and the q-dependent Coulomb interactions . The di-
electric function might have more special structures for larger
q∥.

Fig. 3 (a) At B = 40 T, the energy loss function of SHG for different
values of q∥ and qz. Panels (a) and (b) are at q∥ = 0 and various qz’s,
and (c) q∥ = 0.02 and qz = 0. The loss spectrum of MG at q∥ = 0.02
and qz = 0 is plotted in panel (c). At B = 0, the energy loss function
of SHG is illustrated for comparison.

To comprehend the effects in the absence of stacking on the
ε, the spectra of MG are shown in Fig. 2(d). In the dielectric
function of MG, each Landau level (LL) transition channel pro-
duces a symmetric peak in ε2 and a pair of asymmetric peaks
along the zero points in ε1. MG does not exhibit any intraband

excitation since the valence (conduction) LLs are occupied (un-
occupied). In short, in the range of ω < 0.1 eV, q∥ = 0 and a
small qz, the dielectric functions of SHG are alike in the B ̸= 0
and B= 0 cases. The absorption peaks (ε2) all originate from
the intraband excitations. However, under the condition that
qz = 0, B ̸= 0, a small q∥, and the frequency range ω > 0.1
eV, the dielectric function of SHG is related to the interband
excitations, and similar to that of MG.

The energy loss function, defined as Im[−1/ε(q,ω)], is use-
ful for comprehending the collective excitations and the di-
rectly measured excitation spectra. SHG presents only one
peak in Fig. 3(a), for q∥ = 0 and qz = 0.02 Å−1 at B = 40 T.
The unit of q∥ (qz) is Å−1, here and elsewhere in this paper. This
peak is regarded as the collective excitations only arising from
the interband excitations. For ω < 0.6 eV, ε1 and ε2 are quite
large and hardly contribute to the energy loss function. Fur-
thermore, the temperature only has an effect on the composite
threshold peak which is caused by the intraband excitations.23

As a result, the temperature effects are negligible in the col-
lective excitations. The higher plasmon intensity corresponds
to a zero point in ε1 and a small value in ε2. At q∥ = 0, the
plasmon peaks are very prominent. The plasmon peaks dimin-
ish their intensity and exhibit a blue shift as qz increases (Fig.
3(b)). The loss spectra are very sensitive to a change in the di-
rection of the q. At q∥ = 0.02 and qz = 0, the spectrum of SHG
is shown in Fig. 3(c) by the solid blue curve. The plasmon
peaks originating from the higher LS transitions have smaller
heights mainly because of the reduced wave function overlap
and the larger Landau damping out of the denser LS distribu-
tion. On the other hand, as the interlayer atomic interactions
and the kz dependence are neglected, SHG can be considered
as a MG for calculations. The loss spectrum of MG exhibits
a lower threshold frequency and a higher intensity than that of
SHG. These results indicate that SHG is subject to very strong
Landau damping for a large value of ε2 in the low-frequency
region (Fig. 2(c)). This reflects the fact that the LSs of SHG
provide an effective kz-range, whereas LLs of MG do not, as the
weak van der Waals interlayer interactions4 induce many elec-
trons and holes in the SHG configuration. At B= 0 and qz = 0,
no prominent peak is shown in the low-frequency region. This
clearly indicates that a uniform magnetic field can change the
electron density of states and consequently enhances the low-
lying plasmon excitations. Apparently, the important differ-
ences between SHG and MG lie in the intensity, number and
frequency of plasmon peaks in the energy energy loss function.
They come from the dimension-dependent Coulomb interac-
tions and magnetic energy subbands.

The influence of the magnetic field strength on the loss spec-
trum deserves a closer examination. As Fig. 4 shows, at q∥ = 0
one prominent peak is retained in the low-frequency range.
When the field strength decreases, the loss spectrum presents
red-shifted frequencies and a weaker intensity. This reflects
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4 CONCLUSION

Fig. 4 The energy loss functions at q∥ = 0 and qz = 0.06 for
different magnetic field strengths.

the fact that the state degeneracy and effective kz-range of the
LSs are proportional to B. The variation of plasmon frequency
with qz is shown in Fig. 5 for selected field strengths. The
strong dispersion relation of the plasmon frequency ωp with qz
means that the plasmon oscillation behaves as a propagating
wave with wavelength 2π/qz and group velocity ∇qzωp(qz).
The group velocity of plasmon propagation along q̂z is typi-
cally positive for a fixed B. Moreover, ωp is finite when qz → 0
and is within the region of optical scattering spectroscopies.
Therefore, the magnetoplasmon apparently belongs to an op-
tical plasmon.34 The qz significantly affects the plasmon fre-
quency even at larger values. Moreover, the qz-dependence of
ωp is gradually reduced with increasing field strength. This re-
sult directly reflects the LSs of SHG characteristics.

4 Conclusion

We have employed the Peierls tight-binding model to calculate
the electron energy bands of SHG in a perpendicular magnetic
field Bẑ. In the calculations, the intralayer and interlayer atomic
interactions, the magnetic fields and the Coulomb interactions
are taken into account simultaneously. The similar method can
also be used to investigate the magneto-electronic Coulomb ex-

Fig. 5 Plot of magnetoplasmon frequency as a function of qz and
q∥ = 0 for certain field strength. The plasmon dispersion depends on
the chosen magnetic field.

citations in AB- and ABC-stacked graphites. By means of rear-
ranging the base functions, the eigenvalues and the wave func-
tions can be efficiently obtained at weaker field strength. With
these results, we calculated the longitudinal dielectric function
within the RPA. The dielectric function strongly depends on
the direction, the magnitude of the transferred momentum q,
and the magnetic field strength. In the range of ω < 0.1 eV,
the qz-dependent dielectric functions of SHG are alike in the
B ̸= 0 and B= 0 cases; the absorption peaks all originate from
the intraband excitations. However, for the range ω > 0.1 eV
(B ̸= 0), the q∥-dependent dielectric functions of SHG are re-
lated to the interband excitations. The plasmon dispersion in
the qz-dependence and q∥-dependence cases are very different
from each other. The former only exhibits a single prominent
peak whose plasmon frequency ωp increases with qz, while its
intensity diminishes. In the latter case, many peaks are present.
Moreover, the loss spectrum of monolayer graphene exhibits
a lower threshold frequency and a higher intensity than that
of SHG. As the field strength increases, the plasmon peaks of
the energy loss function are intensified. The group velocity for
plasmon propagation along q̂z is typically positive for a fixed
B. Furthermore, the qz-dependence of ωp is gradually reduced
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with increasing field strength. There exist certain important dif-
ferences between SHG and MG, such as the strength, number,
and frequency of magnetoplasmon. Electron-energy-loss spec-
troscopy or magneto-optical spectroscopy could be utilized to
verify the predicted plasmons.
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FIGURE CAPTIONS

Fig. 1. (a) The Landau subbands at B = 40 T, where n c,v’s are the
quantum numbers. (b) The related wave functions associated with the
Landau subbands at kz = 1, Ao and Bo represent the A and B sublattices
with odd indices, respectively.

Fig. 2. The real (ε1) and imaginary (ε2) parts of the dielectric
function of SHG for different values of q∥ and qz. (a) q∥ = 0 and qz =
0.02, (b) q∥ = 0 and qz = 0.04; q∥ = 0 and qz = 0.08, (c) q∥ = 0.02
and qz = 0. (d) The dielectric function of MG at q∥ = 0.02 and qz = 0.
For comparison, at B= 0 the dielectric function of SHG is also plotted.
The unit of q∥ (qz) is Å−1, here and elsewhere in this paper.

Fig. 3. (a) At B = 40 T, the energy loss function of SHG for dif-
ferent values of q∥ and qz. Panels (a) and (b) are at q∥ = 0 and vari-
ous qz’s, and (c) q∥ = 0.02 and qz = 0. The loss spectrum of MG at
q∥ = 0.02 and qz = 0 is plotted in panel (c). At B = 0, the energy loss
function of SHG is illustrated for comparison.

Fig. 4. The energy loss functions at q∥ = 0 and qz = 0.06 for
different magnetic field strengths.

Fig. 5. Plot of magnetoplasmon frequency as a function of qz and
q∥ = 0 for certain field strength. The plasmon dispersion depends on
the chosen magnetic field.
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