

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

RSCPublishing

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Friedel-Crafts alkylation of indoles in Deep Eutectic Solvent

Received 00th January 20xx, Accepted 00th January 20xx Atul Kumar,*a,b Ratnakar Dutt Shukla,a Dhiraj Yadav and Lalit Prakash Gupta

DOI: 10.1039/x0xx00000x

www.rsc.org/

Application of Deep Eutectic Solvent (DES) as a solvent and a working catalyst for Friedel-Crafts alkylation of indoles with isatin as well as homocyclic carbonyl compounds has been developed. The salient features of the present protocol are practical simplicity, excellent yields, product selectivity and reusability of reaction media.

The Friedel-Crafts reactions are common and powerful methods for C-C bond formation and remain the subject of continued improvement. In the present synthesis scenario, the development of green methodologies has emerged as a distinctive field of synthetic chemistry redesign chemical processes environmentally benevolent way. Medium engineering has become one of the most important ways to tackle this issue in organic reactions by using water, 1 ionic liquids2 and DES.3 In this context, several ionic liquids have been exploited to make the Friedel-Crafts reactions greener, but each ionic liquid contains Lewis acids (such as ZnCl₂ 4 AICI₃,⁵ and InCI₃⁶). The use of Lewis acid (metal halides) causes problems associated with the strong complex formed between the ketone product and the metal halide itself which provokes the use of Lewis acid catalyst.7 Therefore, a facile and practical Lewis acid free methodology is desirable for Friedel-Crafts reactions. Taking into account the utility of DES in number of reactions,8 we have exploited Lewis acid free DES in Friedel-Crafts reactions with indole and electron-deficient carbonyl compounds.

Indole has become a privileged structure in numerous research areas such as: pharmaceuticals, fragrances, agrochemicals, pigments, and material science. 9,10 Among several reactions of indole, the reactions involving C-3 functionalization of indole with electron-deficient carbonyl compounds especially isatins has attracted and continues to attract interest from synthetic community. However, efforts have taken in this context resulted in the

formation of symmetrical 3,3-di(indolyl)indolin-2-one which have limited applications. Synthesis of selective 3-substituted-3-hydroxyoxindoles is highly desirable because they are privileged scaffold in various natural products and pharmaceutical lead compound (Fig. 1).

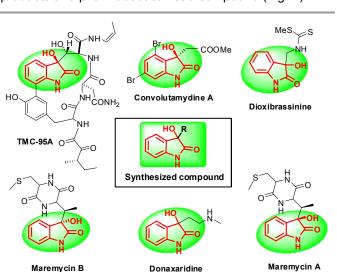


Fig. 1 Selected naturally occurring and pharmaceutical molecules with 3-substituted 3-hydroxy-oxindoles.

A protocol has been reported for selective synthesis of 3-substituted-3-hydroyoxindoles using stoichiometric amounts of β -cyclodextrin but the search for more economical and environmentally benign catalytic medium is yet desirable. In continuation to our research endeavors in development of greener protocols, here we wish to report application of DES in field of Friedel Crafts reaction of indoles with isatin as well as aceanthrylene-1,2-dione/acenaphthylene-1,2-dione.

To look into the prospect of new C–C bond formation, a model reaction using easily available and reasonably priced 1-methylisatin (1a) and indole (2a) was investigated in detail by varying the common solvents as

Previous Work (a) Ref 11 Present Work Advantages: Limitations: No additional catalyst Long reaction time Reusable reaction media Substrate selectivity Product selectivity

Fig. 2 Comparison of previous approaches with present approach

High yielding

well as DESs in order to develop appropriate reaction conditions (Table 1).

When reaction was carried out in water, ethanol and acetonitrile without using catalyst at refluxed condition, desired product was not obtained indicating the necessity of catalyst. Furthermore, screening was continued by using different types of DESs, for example ChCl: CA (1:1), ChCl: Imidazole (3:7), ChCl: Urea (1:2) and ChCl: DMU (1:2) to determine their catalytic efficacies. Out of all of the trials, an exceedingly high product yield (94%) was obtained in ChCl: Urea (1:2) at room temperature (Table 1, entry 6), whereas ChCl: CA (1:1), ChCl: Imidazole (3:7) and ChCl: DMU (1:2) gave just to satisfactory yields.

These results reveal that DES is not only solvent, but also a catalyst of the reaction. Besides this, we have also studied the effect of temperature for model reaction with optimized condition. Next, to examine the versatility of the present standardized protocol, we explored the reactions of substituted isatins (benzene ring substituted isatins as well N-substituted isatins) with substituted indoles. To our delight, substituted isatins and indoles participated well in the reaction, diverse range of selective 3-Hydroxy-3indolylindolin-2-ones were obtained (Scheme 1).

Moreover, with standardized conditions, selectivity was studied for present protocol (Fig. 3). We performed a competitive reaction of indole (1.0 mmol) with the mixture of a number of carbonyl compounds such as acetophenone, 1-methyl isatin and benzil (1.0 mmol each).

Table 1 Optimization of reaction conditions^a

Entry	Solvent	Temp	Time	Yield (%)	
•		(°C)	(h)	3b	3b ^I
1	H_2O	reflux	4	-	-
2	EtOH	reflux	4	-	-
3	CH ₃ CN	reflux	4	-	-
4	CA: ChCl	70	7	42	24
5	Imidazole: ChCl	70	8	64	18
6	Urea: ChCl	r.t.	8	94	-
7	Urea: ChCl	80	5	-	42
8	Urea: ChCl	80	5	-	92 ^b
9	DMU: ChCl	75	5	68	12

^aReaction conditions: a mixture of 1a(1.0 mmol), 2a (1.0 mmol) and solvent (5 ml) was stirred. ChCl-choline chloride, CA-citric acid, DMU-1,3-Dimethyl urea. ^bReaction conditions: a mixture of 1a(1.0 mmol), 2a (2.0 mmol) and solvent was stirred at 80°C

Interestingly, only the desired product 3-hydroxy-1methyl-3-(1H-indol-3-yl)indolin-2-one (3b) was obtained as a sole product and the other starting carbonyl compounds were recovered intact. Hence, the present protocol seems to have a preferential substrate-selective property.

Fig. 3 Substrate selectivity and Product selectivity

Additionally, we have also studied the effect of temperature on product selectivity (Fig. 3). In this regard, when reaction (1-methyl isatin and indole, 1 mmol each) was carried out at room temperature, the desired product 3-hydroxy-1-methyl-3-(1H-indol-3-yl)indolin-2-one 94%) was obtained, whereas the same reaction was explored at 80°C, the selectivity was destroyed and resulted in simple ABB type pseudo multicomponent reaction i.e. the formation of 3,3-di(1*H*-indol-3-yl)-1methylindolin-2-one (3b¹, 42%). When we performed the reaction of 1-methyl isatin and indole in 1:2 stoichiometric ratios at 80°C, the yield of product 3b1 was increased to 92%.

Scheme 1 Synthesis of 3-Hydroxy-3-indolylindolin-2-ones. Reaction conditions: reactions were performed with isatin (1.0 mmol), indole (1.0 mmol) and DES (Urea: ChCl-1:2) at room temperature.

To examine the efficacy and scope of the present protocol for Friedel Crafts reaction, next, we explored the reaction of indole with homocyclic electron-deficient carbonyl compounds such as acenaphthylene-1, 2-dione and aceanthrylene-1, 2-dione. To our delight, the expected products were obtained in good yields (Scheme 2).

Scheme 2 Reaction of Indole with homocyclic carbonyl compounds. Reaction conditions: reactions were performed with acenaphthylene-1,2-dione/aceanthrylene-1,2-dione (1.0 mmol), indole (1.0 mmol) and DES (Urea: ChCl-1:2) at room temperature.

For model reaction, a complete study was done to assess the reusability of DES (Urea: ChCl). After completion of reaction, water was added to the reaction mixture. The DES being soluble in water comes in the water layer and product was precipitated. The solid product was separated by filtration. The DES was recovered from the filtrate by evaporating the water phase at 80°C under vacuum. For compound **3b** an alternative way was tried for recovery of DES using of 2-Methyl THF instead of water. After completion of reaction 2-Methyl THF was added to reaction mixture, product went to organic phase and DES settled down. Organic phase was separated and product was obtained by evaporating organic phase under vacuum and settled DES was used for next batch syntheses.

RSC Advances

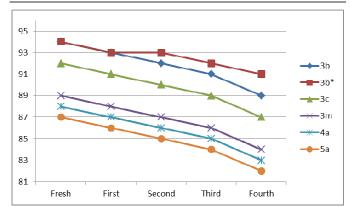


Fig. 4 Reusability data for DES (* reusability of DES using 2Me-THF during

The recovered DES was then successfully used for the next 5 batches. Furthermore, the reusability of DES was confirmed for the syntheses of compounds 3c, 3m, 4b, and 5a with five cycles and small losses in catalytic activity were observed (Fig. 4).

Beside reusability test, cross reusability test was also

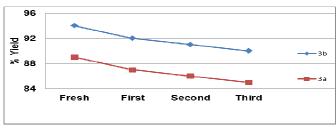


Fig. 5 Cross Reusability data for DES

performed by taking fresh DES for the synthesis of 3a, after completion of reaction DES was recovered then it was used for the first batch synthesis of 3b and vice versa. The cross reusability was carried out for 3 cycles with minute loss of catalytic activity of DES (Fig. 5). Furthermore, no substrate product contamination was observed during cross reusability experiment.

In conclusion, we have developed Lewis acid free Friedel-Crafts reaction using low-priced, non-toxic, easily available DES as a solvent and as a catalyst. The selective syntheses of 3-Hydroxy-3-indolylindolin-2-ones/2-hydroxy-2-(1H-indol-3-yl)acenaphthylen-1-(2H)-ones/1-hydroxy-1-(1H-indol-3-yl)aceanthrylen-2(1H)-ones and reusability/cross reusability of the reaction media are added advantages to this protocol, thus provides a better and practical alternative to existing methods. This research confers a step towards development of more active greener catalytic media.

Acknowledgement

Authors RDS, DY and LPG are thankful to CSIR, New Delhi, for financial assistance as SRF and CSIR-Network project BSC 0104. Furthermore, authors are grateful to the SAIF-CSIR-CDRI for providing the spectroscopic data and analytical facilities.

Notes and references

- † Electronic supplementary information (ESI) available. See DOI: 10.1039/c4gc0228 7d
- ^aMedicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India

- ^cNational Institute of Pharmaceutical Education and Research, ITI Campus, Raebareli U.P, India
- E-mail: dratulsax@gmail.com; <u>atul_kumar@cdri.res.in</u>, Fax: +91-522-26 234051; Tel: +91-522-26 12411
- (a) C.-J. Li, Acc. Chem. Res., 2010, 43, 581–590; (b) C. I. Herrerías, X. Yao, Z. Li and C.-J. Li, Chem. Rev., 2007, 107, 2546–2562; (c) C.-J. Li and L. Chen, Chem. Soc. Rev., 2006, 35, 68-82; (d) C. J. Li, Chem. Rev., 2005, 105, 3095-3166; (e) A. K. Nezhad and F. Panahi, Green Chem., 2011, 13, 2408–2415.
- (a) P. Wasserscheid and W. Keim, *Angew. Chem. Int. Ed.* 2000, 39, 3772-3789;
 (b) M. Petkovic, K. R. Seddon, L. P. N. Rebelo and C. S. Pereira, *Chem. Soc. Rev.*, 2011, 40, 1383–1403;
 (c) J. P. Hallett and T. Welton, *Chem. Rev.*, 2011, 111, 3508–3576;
 (d) T. Welton, *Chem. Rev.*, 1999, 99, 2071–2084.
- (a) Q. Zhang, K. D. O. Vigier, S. Royer and F. Jerome, *Chem. Soc. Rev.*, 2012, 41, 7108–7146; (b) (b) E. L. Smith, A. P. Abbott, and K. S. Ryder, *Chem. Rev.*, 2014, 114, 11060-11082; (c) A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, and A. R. C. Duarte, *ACS Sustainable Chem. Eng.* 2014, 2, 1063–1071; (d) C. Ruß and B. König, *Green Chem.*, 2012, 14, 2969–2982.
- 4. Z. Duan, Y. Gu, and Y. Deng, Cat. Commun., 7 (2006) 651-656.
- 5. C. O. Kangani, and B. W. Day, Org. Lett., 2008, 10, 2645-2648.
- M. J. Earle, U. Hakala, C. Hardacre, J. Karkkainen, B. J. McAuley, D. W. Rooney, K. R. Seddon, J. M. Thompson and K. Wahala, *Chem. Comm.*, 2005, 903–905.
- 7. G. Sartori and R. Maggi, Chem. Rev. 2006, 106, 1077-1104.
- (a) P. M. Pawar, K. J. Jarag and G. S. Shankarling, *Green Chem.*, 2011,
 13, 2130–2134, (b) F. Jérôme, M. Ferreira, H. Bricout, S. Menuel, E. Monflier and S. Tilloy, *Green Chem.*, 2014, 16, 3876-3880;.(c) S. Handy and N. M. Westbrook, *Tetrahedron Lett.*, 2014, 55, 4969-

- 4971; (d) N. Azizi and Z. Manocheri, res. chem. Intermed, 2012, 38, 1495-1500.
- (a) R. J. Sundberg in The Chemistry of Indoles., Academic Press, New York, 1970; (b) R. K. Brown in Indoles (Ed.: W. J. Houlihan), Wiley-Interscience, New York, 1972. (c) J. T. Li, H. G. Dai and Z. P. Lin, Prog. Chem., 2007, 19, 751; (d) D. J. Faulkner, Nat. Prod. Rep., 2001, 18, 19; (e) A. Kleeman, J. Engel, B. Kutscher and D. Peichert, Pharmaceutical Substances, Thieme, New York, 2001. (f) G. W. Gribble, J. Chem. Soc., Perkin Trans. 1, 2000, 1045; (g) R. J. Sundberg, Prog. Heterocycl. Chem., 1989, 1, 111; (h) A. M. Lobo and S. Prabhakar, J. Heterocycl. Chem., 2002, 39, 429; (i) M. Toyota and M. Ihara, Nat. Prod. Rep., 1998, 15, 327; (j) W. N. Xiong, C. G. Yang and B. Jiang, Bioorg. Med. Chem., 2001, 9, 1773.
- M. Bandini and A. Eichholzer, Angew. Chem. Int. Ed., 2009, 48, 9608
 –9644
- (a) G. Brahmachari and B. Banerjee, ACS Sustainable Chem. Eng. 2014, 2, 2802–2812; (b) S.-Y. Wang and S.-J. Ji, Tetrahedron, 2006, 62, 1527–1535; (c) J. Bergman and N. Eklund, Tetrahadron, 1980, 36, 1445–1450; (d) F. Garrido, J. Ibanez, E. Gonalons and A. Giraldez, Eur. J. Med. Chem. 1975, 10, 143–149; (e) C. Praveen, Y. W. Sagayaraj and P. T. Perumal, Tetrahedron Lett., 2009, 50, 644–647; (f) K. R-Moghadam, M. S-Kiasaraie and H. T-Amlashi, Tetrahedron, 2010, 66, 2316–2321.
- (a) C. Marti and E. M. Carreira, Eur. J. Org. Chem., 2003, 2209-2019;
 (b) C. V. Galliford and K. A. Scheidt, Angew. Chem., Int. Ed., 2007,
 46, 8748-8765;
 (c) H. Lin and S. J. Danishefsky, Angew. Chem., Int. Ed., 2003,
 42, 36-51;
 (d) A. B. Dounay and L. E. Overman, Chem. Rev., 2003,
 103, 2945-2963;
 (e) S. Peddibhotla, Curr. Bioact. Compd., 2009,
 5, 20;
 (f) F. Zhou, Y. L. Liu and J. Zhou, Adv. Synth. Catal., 2010,
 352, 1381-1407.
- V. P. Kumar, V. P. Reddy, R. Sridhar, B. Srinivas, M. Narender, and K. R. Rao, *J. Org. Chem.*, 2008, 73, 1646-1648.
- (a) A. Kumar, V. D. Tripathi and P. Kumar, *Green Chem.*, 2011, 13, 51–54;
 (b) A. Kumar, G. Gupta and S. Srivastava, *Green Chem.*, 2011, 13, 2459–2463;
 (c) A. Kumar, M. K. Gupta and M. Kumar, *Green Chem.*, 2012, 14, 290–295;
 (d) A. Kumar, M. Kumar and M. K. Gupta, *Green Chem.*, 2012, 14, 2677–2681
 (e) A. Kumar, S. Srivastava and G. Gupta, *Green Chem.*, 2012, 14, 3269–3272;
 (f) A. Kumar and R. D. Shukla, *Green Chem.*, 2015, 17, 848–851.

^bAcademy of Scientific & Innovative Research (AcSIR), New Delhi, India.