
www.rsc.org/advances

RSC Advances

This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. This Accepted Manuscript will be replaced by the edited, 
formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 



Journal Name RSCPublishing 

COMMUNICATION 

This journal is © The Royal Society of Chemistry 2012  J. Name., 2012, 00, 1‐3 | 1 

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 
Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Enhanced photocurrent of ZnO nanorods array 
sensitized with graphene quantum dots 

Bingjun Yang, Jiangtao Chen,* Linfan Cui, Wenwen Liu 

 

 

In this communication, we demonstrate a facile method to 
prepare graphene quantum dots (GQDs) decorated ZnO 
nanorods array (ZNRA) ultraviolet detector. The 
characterization of I-V and time-dependent current behaviors 
under UV light illumination show that, although GQDs have 
little influence on dark conductivity of ZNRA, the coating of 
GQDs has a remarkable sensitization effect on photocurrent of 
ZNRA. This enhancement of the photocurrent was due to the 
interfacial charge transfer from GQDs to ZNRA. 

One-dimensional (1D) nanostructure arrays such as nanorods 
(NRs), nanowires (NWs) and nanotubes (NTs) are of great interest 
because of their unique physical and chemical properties. 1D ZnO 
nanostructures are not only a major focus in nanoscience research 
and provides a fundamental understanding of the physical and 
chemical properties of nanomaterials, but also develops new 
generation nanostructure devices, which due to its wide band gap 
(about 3.37 eV) and high exciton binding energy (about 60 meV) at 
room temperature. It has been extensively investigated because of its 
great potential applications in photodetectors, photocatalysts, gas 
sensors, light-emitting diodes, dye-sensitized solar cells, and so forth. 

The challenge in the widespread use of ZnO in photocatalysts, 
photocurrent and photovoltaic devices is that quick recombination of 
photo-generated electron-hole pairs occurring in or at the surface 
results in low quantum efficiency. Therefore, surface modification of 
ZnO has been developed to promote generation of electron-hole 
pairs and suppress recombination of photogenerated electron-hole 
pairs. Noble metals (e.g. Au, Ag and Pt) and metal sulfides (e.g. CdS 
and ZnS) are usually used to combine with ZnO to form hybrid 
nanostructure, which leads to improved photocurrent and ultraviolet 
photoresponse.1-6 Quantum dots (QDs) provide wide-ranging 
opportunities for harvesting light energy in ultraviolet, visible and 
infrared regions and show extensive applications in QD solar cells.7, 

8 Especially, QDs have been widely employed to decorate ZnO for 
enhancing the photo-generated charge separation and transport to 
ZnO nanostructures. For example, CdS QDs could improve 
ultraviolet photoresponse of ZnO film, which derived from 
suppressed passivation of ZnO film and interfacial carrier transport.9 
Furthermore, CdTe QDs displayed a clear photosensitization effect 

on ZnO ultraviolet sensor due to photoinduced charge transfer from 
CdTe to ZnO.10 The decorating of QDs on ZnO nanostructures can 
generate a new interface and enhance charge separation; thereby 
efficient transfer from QDs to the conduction band of ZnO takes 
place, which can improve the photoresponse under ultraviolet light 
radiation. Meantime, QDs (e.g. CdSe, CdS and PbS) as 
photosensitizers are usually used in photovoltaic devices and 
photoelectrochemical hydrogen generation applications for efficient 
charge transfer.11-13 However, considering the high price, limited 
mineral sources of noble metals, and toxicity of QDs mentioned 
above, it becomes a serious impediment for large-scale applications. 
Thus, it is urgent and important to search for the low-cost and eco-
friendly new materials to replace the aforementioned nanomaterials, 
and then further improve the performance of ZnO-based devices. 
Carbon-based QDs exhibit outstanding properties in photocatalytic 
and photovoltaic applications. It was reported that carbon QDs 
loaded on TiO2 NTs improved the light-to-electricity efficiency, also 
carbon nanoparticles as an interfacial layer between TiO2@ZnO 
NRAs and conjugated polymers enhanced photocurrent 
dramatically.14, 15 Recently, GQDs, single- or few-layer graphene 
with a tiny size of only several nanometers, stand for a new type of 
QDs with the unique properties associated with both graphene and 
QDs. GQDs have shown a great promise in bio-imaging, 
photoelectrochemical water splitting, supercapacitors and lithium 
storage.16-20 The size-dependent band gap and large optical 
absorptivity of GQDs are particularly interesting for its application 
as a photosensitizing material in broadband photodetectors and 
photovoltaic devices.21-23 

It was previously reported that ZnO QDs deposited on graphene 
displayed unique ultraviolet sensing performance due to the high 
surface to volume ratio of the composite together with high carrier 
transport and collection efficiency through the graphene.24 Herein, 
we selected the chemical bath deposition method combined with 
spin-coating process to fabricate GQDs decorated ZNRA on the 
interdigital Au electrodes substrates. The optoelectronic behaviors of 
GQDs coated ZNRA were investigated under ultraviolet light 
illumination, and the enhanced photocurrent of ZNRA was realized, 
which attributed to the charge transfer from GQDs to ZNRA. 

GQDs were synthesized from graphite oxide (GO) powder by 
using a facile one-step solvothermal method.19, 25 GO powder was 
prepared from natural graphite powder by a modified Hummers 
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