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Bis(phosphine oxide)/ triphenylamine based material for 

solution-processed blue electrofluorescent and green 

electrophosphorescent devices 

Wei Jiang*, Peng Cui, Xinxin Ban, Yueming Sun*  

 

A novel material TPA-BPhPO with the photoluminescence 
quantum yield of 68% and the triplet energy of 2.48 eV has 
been designed and synthesized.  High external quantum 
efficiencies of 1.41% and 9.3% were achieved in solution-
processed blue electrofluorescent and green 
electrophosphorescent devices, respectively. 

Solution-processed organic lighting-emitting diodes (OLEDs) are 
attracting more and more attention due to simple and low cost 
fabrication processes.1-5 From the perspective of the flexible 
application, solution-processed white OLEDs with high power 
efficiencies are required. In pursuing efficient solution-processed 
white OLEDs, recent reports are almost based on phosphorescent 
emitters that have an inherently higher efficiency in converting both 
singlet and triplet excitons into photons than their fluorescent 
counterparts.6-15 However, one of the serious weaknesses of this 
system is that fast chemical degradation processes usually occur in 
blue phosphorescent emitters (such as FIrpic and FIr6) during device 
operation.16, 17 Recently, fluorescent/phosphorescent hybrid structure 
devices have been developed to solve this problem.18-20  In this 
strategy, the device harvests 100% internal quantum efficiency by 
utilizing the 25% singlet excitons formed from charge recombination 
in blue-emitting fluorescent host material while transferring the 
remaining 75% triplet excitons to green, orange or red 
phosphorescent emitter. In order to realize this point, the 
multifunctional blue fluorophors should be developed to be used as 
blue emitters and host materials for phosphorescent dopants 
simultaneously, which are demanded to possess both high 
fluorescence quantum efficiency and high triplet energy. Up to now, 
many efficient blue fluorophors such as anthracene21-23, pyrene24, 25, 
fluorene26-28 and carbazole29-31 derivatives have been developed with 
success. However, most successfully developed blue fluorophors are 
inferior in triplet energy due to their long effective conjugation 
length and only few reports on efficient blue fluorophors with high 
triplet energy were found in the literatures. For example, Wong et al 
reported an efficient bipolar deep-blue emitter CPhBzIm with a high 
triplet energy (ET=2.48 eV).32 Zhang et al reported an ideal sky-blue 
emitter DADBT with ET value of 2.38 eV and a high efficiency blue 
OLEDs with an external quantum efficiency of 5.12% was 

achieved.33 Therefore, there is a strong demand for the development 
of multifunctional blue fluorophors with high triplet energies. 

In this work, we have designed and synthesized a new 
triphenylamine (TPA)-based blue fluorophor 4'-(diphenylamino)-
[1,1'-biphenyl]-3,5-diyl)bis(diphenylphosphine oxide (TPA-BPhPO), 
containing a bis(diphenylphosphine oxide) unit for the purpose of 
improving fluorescent quantum yield, due to its strong 
intramolecular charge transfer character. Diphenylphosphine oxide 
(PO) is known to be an excellent electron transport material with a 
high triplet energy34-37, while TPA is commonly used in hole-
transporting and host materials for its excellent hole-transporting 
property and high triplet energy.38-41 As a result, TPA-BPhPO is 
expected to possess bipolar transporting nature and balance the 
charge fluxes in emitting layer. TPA-type materials usually have 
high HOMO levels, which are close to the work function of ITO or 
the widely used hole injection material PEDOT:PSS, thus facilitating 
the transfer of holes in the devices. Furthermore, TPA-BPhPO 
possesses a high triplet energy, which is suitable to serve as an 
appropriate host for green PhOLEDs. 

 

 
Scheme 1 Synthetic routes toward TPA-BPhPO. 
 

As shown in Scheme 1. TPA-BPhPO can easily be synthesized 
through a two-step reaction with moderate yield. First, BphPO-Br is 
synthesized by the C-P coupling reaction between 1-bromo-3,5-
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diiodobenzene and diphenylphosphine and then oxidized with an 
excess of 30% hydrogen peroxide solution in 50.6% yield. TPA-
BPhPO is achieved by the palladium-catalyzed Suzuki coupling 
reaction of BPhPO-Br with the TPA boronic esters in 65% yield. 
The final product is purified by silica gel chromatography and 
further purified by recrystallizaiton from ethyl acetate solvent before 
device fabrication. The structures of compounds are fully 
characterized by 1H-NMR, 13C-NMR, mass spectrometry and 
elemental analysis, as described in the experimental section. The 
thermal property of TPA-BPhPO is investigated by thermal 
gravimetric analyses (TGA) and differential scanning calorimetry 
(DSC). As shown in Fig. S2,  TPA-BPhPO exhibits excellent 
thermal stability with the same decomposition temperature (Td , 5% 
weight-loss) of 416 °C, with the glass transition temperature (Tg) of 
92 °C. The surface roughness of neat TPA-BPhPO and 8wt% 
Ir(mppy)3 doped TPA-BPhPO on ITO/PEDOT:PSS is investigated 
by AFM (Fig. S3). The films are smooth and free of pinholes, with 
root-mean-square (RMS) values of 0.82 and 0.75 nm, respectively. 
These results demonstrate that TPA-BPhPO is capable of forming 
amorphous films and enables the fabrication of devices through 
solution processing. 

 

 
Fig. 1 (a) Absorption spectra of TPA-BPhPO in dichloromethane 
solution, photoluminescence spectra of TPA-BPhPO in 
dichloromethane solution and in the film state, and phosphorescent 
spectra of TPA-BPhPO in 2-methyltetrahydrofuran at 77K; (b) 
Transient photoluminescence decay curve of 5 wt% Ir(mppy)3-doped 
TPA-BPhPO film monitored at 520 nm. 

 
The room temperature UV-vis absorption of TPA-BPhPO in 

CH2Cl2 is investigated. As shown in Fig. 1a, two absorption bands 
around 306 and 348 nm are observed, which can be attributed to the 

n-π* transitions of TPA moiety and intramolecular charge transfer 
(ICT) transition from the electron-donating triphenylamine to the 
electron-accepting PO moiety, respectively. The photoluminescence 
(PL) emission of TPA-BPhPO in dilute CH2Cl2 exhibits peak at 449 
nm, while its thin film shows  a 10 nm hypsochromic shift with a PL 
quantum yield of 0.68. The triplet energy of TPA-BPhPO is 
estimated from the 0-0 transitions in their low-temperature 
phosphorescent spectra, giving a value of 2.48 eV. The ET value of 
TPA-BPhPO is high enough to be used as a host material for the 
green triplet emitter. To further confirm its exciton confinement 
property, the transient photoluminescence decays of TPA-BPhPO 
film doped with 5% Ir(mppy)3 is measured. As shown in Fig. 1b, the 
Ir(mppy)3-doped film exhibits monoexponential decay curve, which 
demonstrate that the energy back-transfer from Ir(mppy)3 to TPA-
BPhPO is completely suppressed. 

 
Fig. 2 Lippert-Mataga plot of TPA-BPhPO in various solutions. 
 

To gain more insight fluorescence spectra of TPA-BPhPO is 
recorded in various solvents with different polarity. As a change of 
the solvent from n-hexane to acetonitrile, the maximum absorption 
wavelengths are red-shifted from 347 to 358 nm, while the 
maximum emission wavelengths are red-shifted from 403 to 466 nm. 
The large Stokes shift in polar solvents indicates that the excited 
state is stabilized in more polar solvents, as expected for an ICT. To 
obtain more information about the change in the dipole moment 
upon excitation, we use the Lippert-Mataga equation, which express 
the Stokes shift as a function of the solvent polarity parameter.42 

Fig.2 shows the linear Lippert-Mataga plots with the slope value of 
4020 cm-1 for TPA-BPhPO. From the slope of this plot, the 
difference of the dipole moment between the excited state and the 
ground state is estimated to be 17.2 D. This large change in dipole 
moment upon excitation is typical for photoinduced intramolecular 
CT processes, reflecting the effective electronic communication 
between the donor TPA unit and the acceptor PO unit. 

The electrochemical property of TPA-BPhPO is studied in 
solution through cyclic voltammetry (CV) using 
tetrabutylammonium hexafluorophosphate (TBAPF6) as the 
supporting electrolyte and ferrocene as the internal standard. Fig. 3 
shows that TPA-BPhPO has distinct reduction and oxidation 
behaviors, which indicate their potential in bipolar carrier transport. 
During the anodic sweeping in CH2Cl2, the CV curve of TPA-
BPhPO shows reversible oxidation waves with onset potential of 
0.49 V, which arised from its electron-donating TPA unit. On the 
basis of the onset potential for oxidation, the highest occupied 
molecular orbital (HOMO) value of TPA-BPhPO is estimated to be -
5.29 eV, which is close to the work function of PEDOT. The well 
matched energy levels of TPA-BPhPO with PEDOT can lead to the 
reduction of holes injection barrier, thereby facilitating the injection 
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Fig. 4 (a) Schematic diagram of the devices; (b) Luminance 

efficiency versus current density plots; (c) EL spectra for the 
devices. 

 
In summary, a novel material TPA-BPhPO for solution-

processed blue electrofluorescent and green 
electrophosphorescent devices has been designed and 
synthesized. TPA-BPhPO shows the high triplet energy of 2.54 
eV and the good PL quantum yield of 68% at the same time. 
The resulting solution-processed blue electrofluorescent device 
shows a turn-on voltage of 4.0 V and the maximum EQE value 
of 1.41%, while the solution-processed green 
electrophosphorescent device shows a lower turn-on voltage of 
3.5 V and the maximum EQE value of 9.3%.  
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