This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A novel molecular-based phase change material, 1,4-dimethyl-1,4-diazabicyclo [2.2.2] octane bis(perchlorate), $\text{C}_8\text{H}_{18}\text{N}_2^{2+}\cdot\text{2ClO}_4^-$, was synthesized. Differential scanning calorimetry (DSC) measurement detected that this compound underwent a reversible phase transition at ca. 201.7 K, which was also confirmed by dielectric measurements. The single crystal X-ray diffraction data suggests that the phase transition undergoes from a room temperature paraelectric phase with a space group of Pnma to a low temperature paraelectric one with a space group of P2$_1$/n. The order-disorder transition of ClO$_4^-$ anions and the ordering of twisting motions of dabco ring may drive the phase transition.
Temperature-induced reversible structural phase transition of 1,4-dimethyl-1,4-diazabicyclo[2.2.2]octane bis(perchlorate)

Li-Zhuang Chen,* Xing-Xing Cao, Deng-Deng Huang and Qi-Jian Pan

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

1,4-Dimethyl-1,4-diazabicyclo[2.2.2]octane bis(perchlorate), C₈H₁₈N₂⁷⁺·2ClO₄⁻, was synthesized and separated as colorless rodlike crystals. Differential scanning calorimetry (DSC) measurement detected that this compound underwent a reversible phase transition at ca. 201.7 K with a hysteresis of 5.1 K width, which was also confirmed by dielectric measurements. Single crystal X-ray diffraction data suggested that there was a transition from a room temperature phase with the space group of Pnma (a=15.5417(14) Å, b=13.3677(12) Å, c=20.7728(19) Å, V=4315.7(7) Å³ and Z=12) to a low temperature one with a space group of P2₁/n (a=13.331(3) Å, b=15.185(4) Å, c=20.477(5) Å, β=90.895(3)°, V=4144.8(17) Å³ and Z=12), and symmetry breaking occurred with an Aizu notation of mmF2/m. The order-disorder transition of ClO₄⁻ anions and the ordering of twisting motions of dabco ring may drive the phase transition.

Introduction

Because of discovering the phase transition materials including the ferroelectrics, substantial attention has recently been focused on the simple molecular-ionic salts, which contain an organic cation and acid radicals, owing to they having potential applications in signal processing, data storage, sensing, and switchable dielectric devices, etc. [1]. It is crucial to prepare new temperature-triggered molecular-based phase transition materials, not only for the theoretical study the relationship of structure–property, but also for exploring the novel physical properties [2-4]. Constructing new types of compounds is the key problem in developing phase transition materials, which needs understanding the origin of phase transition deeply. Up to now, the order–disorder type is always the most commonly employed mechanism in the theory of phase change materials [5]. We have chosen 1,4-diazabicyclo[2.2.2]octane (dabco) as an organic cation, not only due to its high order symmetry, but it allows the design of molecular-based phase transition materials, which has been verified recently, due to ‘frozen’ ordering or molecular rotation in the crystal lattice, which provides lots of room for us to explore phase transition materials from the viewpoint of structural engineering [6-8]. Due to the moderate size and highly symmetric shape, the well-known ball like anions such as ClO₄⁻, are stable and prone to position changes with varying temperature and weak interactions in crystals. The interaction of the cations with the monovalent tetrahedral counter anions (e.g.ClO₄⁻, BF₄⁻) is expected to generate the phase transition materials. 1,4-diazabicyclo[2.2.2]octane (dabco) forms monosalts with mineral acids, which have exceptional dielectric properties. These monosalts can be described by a general formula dabcoHX where X= ClO₄⁻ and BF₄⁻[9]. Taking all these into consideration, we report a new compound herein with reversible structural phase transition properties, 1,4-dimethyl-1,4-diazabicyclo[2.2.2]octane bis(perchlorate), as a continuation of our systematic studies of phase transitions [10]. Which was based on the potential bridging ligand, 1,4–dimethyl-1,4-diazabicyclo[2.2.2]octane-1,4-diiumdibromide. The complex can be described by a general formula (CH₃-Dabco-CH₃)₂⁺·2Br⁻, which was further characterized by variable-temperature single crystal X-ray diffraction, differential scanning calorimetry (DSC) and dielectric constant measurements.

Experimental

Materials and measurements

All reagent-grade chemicals and solvents were obtained from commercial sources and used without further purification. Infrared spectra were recorded on a SHIMADZU IR prestige-21 FTIR-8400S spectrometer in the range of 4000–500 cm⁻¹ with samples in the form of potassium bromide pellets. X-ray powder diffraction (XRPD) data were collected by a Siemens D5005 diffractometer with Cu-Kα radiation (λ= 1.5418 Å). Elemental analyses were taken on a Perkin-Elmer 240C elemental analyzer. Thermo gravimetric analyses (TGA) were conducted on a NETZSCH TG 209 F3 thermo graviometer with the heating rate of 10 K/min in a N₂ atmosphere.
NongH atoms were refined anisotropically using all reflections by means of the SHELXLTL software package respectively [11].

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>298</th>
<th>150</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₃H₇ClN₂O₃</td>
<td>C₃H₇ClN₂O₃</td>
<td>C₃H₇ClN₂O₃</td>
</tr>
<tr>
<td>Formula weight</td>
<td>326.14</td>
<td>326.14</td>
<td>326.14</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n</td>
<td>P2₁/n</td>
<td>P2₁/n</td>
</tr>
<tr>
<td>a (Å)</td>
<td>15.417(14)</td>
<td>13.365(3)</td>
<td>13.331(3)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>13.367(12)</td>
<td>15.240(3)</td>
<td>15.185(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>20.7728(19)</td>
<td>20.432(4)</td>
<td>20.477(5)</td>
</tr>
<tr>
<td>α(°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β(°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>γ(°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>4315.7(7)</td>
<td>4161.2(14)</td>
<td>4144.8(17)</td>
</tr>
<tr>
<td>Z</td>
<td>12</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Dₐ (g/cm³)</td>
<td>1.575</td>
<td>1.634</td>
<td>1.640</td>
</tr>
<tr>
<td>μ(μm)</td>
<td>0.489</td>
<td>0.507</td>
<td>0.509</td>
</tr>
<tr>
<td>F (000)</td>
<td>2136</td>
<td>2136</td>
<td>2136</td>
</tr>
<tr>
<td>θ range [°]</td>
<td>1.64 to 25.68</td>
<td>1.00 to 25.60</td>
<td>0.99 to 25.68</td>
</tr>
<tr>
<td>Collected reflections</td>
<td>31453</td>
<td>31453</td>
<td>31339</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>7776</td>
<td>7776</td>
<td>7793</td>
</tr>
<tr>
<td>Friedel pairs</td>
<td>0.0787, 0.1863</td>
<td>0.0643, 0.1542</td>
<td>0.0737, 0.1834</td>
</tr>
<tr>
<td>Goodness of fit on F²</td>
<td>0.0606, 0.2117</td>
<td>0.0747, 0.1639</td>
<td>0.0890, 0.2030</td>
</tr>
<tr>
<td>Largest peak and hole (e Å⁻³)</td>
<td>0.564 and -0.632</td>
<td>1.478 and -0.768</td>
<td>1.428 and -0.775</td>
</tr>
</tbody>
</table>

Synthesis of compound 1

1,4-dimethyl-1,4-diazabicyclo[2.2.2]octane-1,4-dium dibromide (3.02 g, 10 mmol) and Perchloric acid (2 g, 20 mmol) were mixed in aqueous solution (30 ml) (Scheme 1). After being stirred for 30 min in air, the reaction mixture solution was evaporated slowly at room temperature for 3 days, and colorless rodlike crystals were obtained in 53% yield (based on Perchloric acid). IR spectra of compound 1: 3438(s), 3041(vs), 2999(vs), 2898(w), 2018(s), 1829(w), 1629(w), 1468(vs), 1375(s), 1335(s), 1105(vs), 919(w), 885(s), 843(s), 622(w). Anal. (%) calcd for C₃H₇ClN₂O₃: C, 36.48; H, 6.19; N, 9.56; Found: C, 32.71; H, 6.13; N, 9.49. (Caution! Although no problems have been encountered herein, perchlorates are potentially explosive and should be handled with care and only in small quantities).

Single-crystal X-ray Crystallography

Single-crystal X-ray data were performed on a Bruker SMART-APEX II CCD with Mo–Kα radiation (λ = 0.71073 Å). A colorless rodlike crystal of approximate dimensions 0.30 × 0.30 × 0.20 mm was used in data collection at 298K, 150K and 100 K. Data processing including empirical absorption correction was performed using SADAB. The structures of 1 were solved by direct methods and refined by the full-matrix method based on F² by means of the SHELXLTL software package respectively [11]. Non-H atoms were refined anisotropically with all reflections with I > 2σ (I). All H atoms were found in the difference maps. However, carbon-bond H atoms were added geometrically and refined using riding model with Uiso = 1.2Ueq. Asymmetric units and packing views were drawn with DIAMOND (Brandenburg and Putz, 2005). Distances and angles between some atoms were calculated using DIAMOND and other calculations were carried out using SHELXLTL. Crystallographic data and structure refinement of the 298 K, 150K and 100 K phases are listed in Table 1.

Dielectric Measurements

The complex dielectric permittivity ε (ε = ε′ – iε″) was measured on Tonghui TH2828A in the frequency range from 5 KHz to 1 MHz with the temperature from 100 to 300 K respectively, at the AC voltage of 1 V. Pellet sample was prepared at 10 MPa and the pressed powder pellet deposited with silver-conducting glue was used for dielectric studies.

DSC Measurement

The differential scanning calorimetry (DSC) analysis of crystal 1 (19.74 mg) were performed using a Perking-Elmer Diamon D instrument in the temperature ranges of 160 to 260 K in an aluminum crucibles, accompanied by a rate of 10 K/min on cooling/heating at atmospheric pressure. DSC curves of 1 obtained in a heating-cooling mode at 5 K/min, 10 K/min, 15 K/min and 20 K/min respectively, as shown in Figure S4.

XRPD

The phase purity of 1 was determined by XRPD. The XRPD of 1 at 100K, 120K, 150K, 183K, 223K, 248K and 298K, were shown in Fig. 1. The peak positions of the experimental and simulated XRPD patterns are in good agreement, as shown in Figure S5, S6, S7. The intensity differences may be attributed to the preferred orientation of the powder sample.
Fig. 1 The XRPD of 1 at 100K, 120K, 150K, 183K, 223K, 248K and 298K respectively.

DSC

Differential Scanning Calorimetry (DSC) measurement is well-known as one of the thermodynamic methods which was used to confirm the phase transitions triggered by temperature. Heat anomalies can be observed when the compound undergoes structural phase transition during heating and cooling, accompanied by thermal entropy change. Reversible heat anomalies can be detected, these may be caused by the disorder-order of ClO_4^-, by DSC measurement upon heating and cooling. Upon cooling and then heating the crystalline sample, DSC shows a main exothermic peak at 201.7 K and a main endothermic peak at 206.8 K respectively, as showing in Fig. 2. This couple of exothermic and endothermic peaks represent a reversible phase transition, this phase transition is accompanied by release of heat and thermodynamic quantities (internal energy, enthalpy, volume etc.) are discontinuous, which is known as first order phase transition.

Fig. 2 Caption DSC curves of 1 obtained in a heating-cooling mode.

Crystal structure of 1

In order to confirm the phase transition of 1, the crystal structures were further resolved at 298K, 150K and 100K respectively, for forthcoming comparative investigation. (Fig. 3a-c). Variable-temperature X-ray single-crystal diffraction reveals that 1 belongs to the orthorhombic crystal system with a centrosymmetric space group of Pnma (No.62) and the point group D_{2h} at room temperature (298 K). When the temperature decreases to 100 K, the crystal structure of 1 changes to a monoclinic crystal system with the centrosymmetric space group $\text{P2}_1/n$ (No.14) and the point group C_{2h}. During the cooling process, the symmetry breaking occurs with an Aizu notation of mmmF2/m [12].

At room temperature (298 K), the crystals are in the orthorhombic space group Pnma (No. 62), with cell parameters of $a = 15.5417(14)$ Å, $b = 13.3677(12)$ Å, $c = 20.7728(19)$ Å, $V = 4315.7(7)$ Å3 and $Z = 12$. At 150 K, the crystals transforms to a monoclinic crystal system space group $\text{P2}_1/n$ (No.14). As to temperature 100K structure, the crystals adopts the same structure as that at 150K and slight difference can be seen by comparing the crystal data, which suggest that there is no occurrence of phase transition between 150K and 100K, the cell parameters of 1 measured at 100 K with cell parameters of $a = 13.331(3)$ Å, $b = $...
parameters of 1 measured from 270 K to 210 K are slightly disordered ClO− phase. However, there are still having seriously disordered ClO− bonds are similar to those observed in the higher temperature phase transition at 210 K. Particularly compared with those at other words, the influence of thermal expansion and contraction can be excluded. Thus, we can get a conclusion that there is no phase transition at 210 K. Particularly compared with those at 210K, the crystal cell parameters of 1 change dramatically at 200K. In addition, there were no obvious change in crystal cell parameters of 1 measured from 200K to 100K, indicating the absence of phase transition (Fig. 4). The LTP structure keeps a monoclinic crystal system. These measurements are in coincidence with DSC data.

Dielectric Properties

It is well-known that the phase transition will accompany anomaly of physical properties near the structure phase transition point, such as the dielectric constant[14]. Herein, we measured the temperature- and frequency-dependent dielectric properties to confirm the phase transition and molecular motions in complex 1, and plots of the dielectric constant (ε') versus temperature at different frequencies are displayed in Fig. 5.

As expected, a clear dielectric anomaly occurred at about 200K in the dielectric constant upon heating as shown in Fig. 5, which corresponds to the result of DSC and mutations of cell parameters very well. Thus, phase transition triggered by temperature results in dielectric anomaly. Furthermore, these figures show the following features: (i) 1 has an invariant ε' (about 2.7) in the low-temperature regime below 190.0 K; (ii) the dielectric constant rapidly increase when the temperature rises above 200.0 K, and no maximum peak appears in the plots of ε' versus T below 220.3 K; (iii) the increases in the dielectric constant with temperature depend strongly on the frequency of the ac electric filed, which is obvious when the frequency is 5 KHz. In addition, continuously increasing the frequency from 5×10\(^{-3}\)→10\(^{-3}\)→10\(^{-4}\)→10\(^{-6}\) Hz gradually decreases the dielectric constant, which are 27.9, 20.6,
8.4, 4.5 respectively. These features of the dielectric properties reveal compound 1 was a potential tunable dielectric material.

Fig.5 Caption Temperature-dependent dielectric constant of 1 at different frequencies.

Conclusions

In summary, DSC, dielectric measurement and variable-temperature structural analysis revealed that 1,4-dimethyl-1,4-diazabicyclo[2.2.2]octane bis(perchlorate) underwent a reversible phase transition at ca. 201.7 K. Crystal structures of this journal is © The Royal Society of Chemistry [year] information (in CIF format) of complex and TGA of complex reveal compound 8.4, 4.5 respectively. These features of the dielectric properties were prone to the transition of order-disorder under different temperature, along with the ordering of twisting motions of dabcro ring probably drove the phase transition.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21201087), NSF of Jiangsu Province (BK20131244), the Foundation of Jiangsu Educational Committee (11KJB150004), the Qing Lan Project of Jiangsu Province and Jiangsu Overseas Research & Training Program for Province and Jiangsu Overseas Research & Training Program for Innovation Students (SJZZ_0142) and TGA of complex 1 in Electronic supplementary information.

Notes and references

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
E-mail: clz1977@sina.com
Electronic supplementary information (ESI) available: Crystallographic information (in CIF format) of complex 1, these data have been deposited at the Cambridge Crystallography Data Centre: CCDC 1044458 for 298 K, 1044459 for 150 K, and 1044460 for 100 K. In addition, IR, PXRD, and TGA of complex 1 in Electronic supplementary information.

Reference

11 (a) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.

