

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Three-dimensionally ordered macroporous
2	SiO ₂ -supported transition metal oxide
3	catalysts: Facile synthesis and high catalytic
4	activity for diesel soot combustion
5	Xuehua Yu ^{1,2} , Zhen Zhao ¹ *, Yuechang Wei ¹ *, Jian Liu ¹ , Jianmei Li ¹ , Aijun Duan ¹ ,
6	Guiyuan Jiang ¹
7	1. State Key Laboratory of Heavy Oil Processing and Beijing Key Laboratory of Oil
8	and Gas Pollution Control, China University of Petroleum, 18# Fuxue Road, Chang
9	Ping, Beijing 102249, China
10	2. Institute of Catalysis for Energy and Environment, Shenyang Normal University,
11	Shenyang 110034, China
12	
13	Author information
14	Corresponding authors:
15	* Tel: 86-10-89731586; Fax: 86-10-69724721; E-mail zhenzhao@cup.edu.cn;
16	weiyc@cup.edu.cn
17	
18	
19	
20	
21	
22	

1

RSC Advances Accepted Manuscript

1

2 Abstract

3 Three-dimensionally ordered macroporous (3DOM) SiO₂ was synthesized by colloidal crystal template (CCT) method, and 3DOM SiO₂-supported transition metal 4 oxides catalysts were prepared by facile incipient-wetness impregnation method. The 5 as-prepared catalysts show well-defined three-dimensionally ordered macroporous 6 7 structures. The transition metal oxides formed different sizes of nanoparticles and 8 loaded on the 3DOM SiO_2 . The as-prepared catalysts show high catalytic activities for soot combustion. Among the studied catalysts, 3DOM MnO_x/SiO₂ catalyst (molar 9 ratio of Mn to Si is 1:4) shows the highest catalytic activity among the studied 10 catalysts, e.g. T₁₀, T₅₀ and T₉₀ are 297, 355 and 393 °C, respectively, and S^m_{CO2} is 11 95.5%. The catalytic performance of 3DOM SiO₂-supported transition metal oxide 12 13 catalysts are mainly controlled by three factors: the macroporous effects of 3DOM 14 structure, the redox properties of transition metal oxides and the sizes of transition metal oxides NPs. 3DOM SiO₂-supported transition metal oxide catalysts are 15 16 promising for practical applications in soot combustion owing to high activity and low 17 cost.

18

Keywords: Three-dimensionally ordered macroporous (3DOM) catalysts; SiO₂;
transition metal oxide; catalytic activity; soot combustion

21

22

23

2 1 Introduction

Nowadays, toxicological and epidemiological studies indicate that soot particles of 3 diesel exhaust are threatening the environment and people's health.¹ A great number 4 of illness, which include irritation of the eyes, throat vomiting, light-headedness, 5 headache, heartburn, bronchitis, lung cancer or even premature death and so on, have 6 been triggered by soot particles.² In addition, soot particles are also a main source of 7 urban atmospheric particulate matters (PM2.5).³ A lot of previous works demonstrated 8 that the exhaust of diesel engine is one of the largest contributors to soot particles in 9 the most large and medium-sized cities. Therefore, elimination of diesel engine 10 exhaust (especially for soot particles) is urgent for development of society and 11 economy.⁴ Indeed, great efforts have been made to reduce the soot particles to meet 12 the stringent environmental regulations and protect human health.⁵ Researches 13 indicate that the after-treatment of diesel exhaust is one of the most perspective 14 techniques, and the catalyst is one of important controlling factors for soot 15 elimination.^{6,7} Therefore, the development of novel catalyst is one of the most 16 important tasks for elimination of soot particles. 17

A number of catalysts have been studied for soot combustion at low temperatures, including noble metals⁸, perovskite-type oxides⁹, CeO₂-based oxides^{10,11}, etc. Since it is a gas-solid-solid reaction for catalytic soot combustion, it is affected by two factors, the contact efficiency between soot and catalyst, and the intrinsic activity of catalyst. Because traditional catalysts show smaller pore sizes (<10 nm) than soot particles

(>20 nm), soot particles are difficult to enter the inner pores of these catalysts.¹² 1 Recently, three-dimensionally ordered macroporous materials with uniform pore size 2 (>50 nm) and well-defined structure have been applied in the field of heterogeneous 3 catalysis.¹³⁻¹⁵ Due to ordered macroporous structures, soot particles could easily enter 4 their inner pores, and thus they flexibly access the active sites. A series of 3DOM 5 metal mixed oxides, including La_{1-x}K_xCoO₃¹⁶ and Ce_{1-x}Zr_xO₂¹⁷ and so on, have been 6 prepared in our group, and they all show better catalytic performances than 7 corresponding nanoparticle catalysts for soot oxidation. The intrinsic activity of 8 catalyst is another factor for enhancing catalytic activity after resolving the contact 9 efficiency. To further improve the intrinsic activity of catalysts, our group have 10 prepared a series of 3DOM oxides-supported Au or/and Pt catalysts.¹⁸⁻²² Those 11 12 catalysts all exhibit super high catalytic activities for soot combustion. However, due to the limited resources, noble metal catalysts are very expensive than metal oxide 13 catalysts, which restricts the extensive application of noble metal catalysts. 14

15 In the past decades, low-cost catalysts, including single metal oxides, mixed metal oxides, perovskites, spinels, alkali earth metals and alkali metals, etc. showed high 16 catalytic activity for soot combustion.²³⁻²⁶ As always, nano-catalysts have been used in 17 the field of catalysis and they show excellent catalytic activities in many reactions 18 especially for oxidation reactions.²⁷⁻²⁹ Therefore, the nano-catalysts are also expected 19 to exhibit high catalytic activities for soot combustion.^{31,32} However, design and 20 preparation of low cost catalysts to combine nano-effect and macroporous effect are 21 promising for increasing of catalytic activity for soot combustion and practical 22

application. Researchers have demonstrated that transition metal oxides with changing valence states display excellent redox properties when they are applied in the oxidation reactions.³³⁻³⁶ Based on the above reasons, transition metal oxides nanoparticles (NPs) supported on 3DOM SiO₂, are expected to enhance catalytic performance for soot combustion by making the best of nano-effect and macroporous effect in 3DOM SiO₂-supported transition metal oxide catalysts.

7 In this paper, 3DOM SiO₂ support was synthesized by colloidal crystal template (CCT) method. 3DOM SiO₂-supported transition metal oxide catalysts were 8 prepared by incipient wetness impregnation method. The physical and chemical 9 properties of as-prepared catalysts were characterized by means of X-ray 10 diffraction (XRD), scanning electron microscopy (SEM), transmission electron 11 12 microscopy (TEM), temperature-programmed reduction with H_2 (H_2 -TPR) measurements, UV-Vis diffuse reflectance spectra (DRS) and X-ray photoelectron 13 spectra (XPS) etc. The catalytic performances of as-prepared catalysts were 14 evaluated for soot combustion, and the effects of different transition metal oxide on 15 the catalytic activities for soot combustion were investigated. 16

- 17 2 Experimental
- 18 2.1 Catalysts preparation

19 2.1.1 Synthesis of highly well-defined PMMA microspheres

The synthesis of monodispersed PMMA (polymethyl methacrylate) microsphere and the assembly template are similar to that described previously²². Detailed procedures are described in supporting information.

RSC Advances Accepted Manuscript

1 2.1.2 Synthesis of $3DOM SiO_2$

3DOM SiO₂ was synthesized by colloidal crystal template (CCT) method with 2 PMMA arrays as template and using tetraethyl orthosilicate (TEOS) as precursors. In 3 a typical procedure, 4.6 g TEOS was dissolved into the mixture of water (2.5 mL), 4 alcohol (5 mL) and HCl aqueous solution (2mol/L, 2.5 mL). After that, the 5 hydrolyzation was proceeded in a water bath at 35 °C for 4 h. Then, 3g PMMA arrays 6 7 were added into the above solution for impregnation. After complete impregnation, 8 the PMMA arrays with the precursor solution were separated by vacuum filter and 9 dried at 30 °C for 24 h. The dried samples were calcined to remove the CCT in a tube furnace with an air flow (80 mL min⁻¹). The temperature-rising rate was 1 °C min⁻¹ 10 from room temperature to 600 °C, and the temperature of calcination at 600 °C was 11 12 kept for 4 h, and then 3DOM SiO₂ supports were obtained.

13 2.1.3 Synthesis of 3DOM SiO₂-supported transition metal oxide catalysts

3DOM SiO₂-supported transition metal oxide catalysts were prepared by 14 15 incipient-wetness impregnation method. In a typical procedure, a certain amount of transition metal nitrates (50 wt% Mn(NO₃)₂ aqueous solution, Fe(NO₃)₃·9H₂O, 16 Co(NO₃)₂·6H₂O, Ni(NO₃)₂·6H₂O, Cu(NO₃)₂·3H₂O) were dissolved into deionized 17 water, and then the above aqueous solution was added into 3DOM SiO₂. After that, 18 the impregnated sample was dealt with ultrasonic for 10 min and dried at 80 °C for 24 19 h. Then, the sample was calcined at 550 °C for 4 h in tube furnace and 3DOM 20 21 SiO₂-supported transition metal oxide catalysts were obtained. The stoichiometric ratios of raw materials for 3DOM SiO₂-supported transition metal oxide catalysts are 22

Page 7 of 45

RSC Advances

listed in the Table 1. In addition, different loading amounts of manganese nitrate on
 3DOM SiO₂ were also prepared and the corresponding dosages of raw materials are
 also listed in the Table 1.

4 2.2 Physical and chemical characterization

XRD patterns were measured on a powder X-ray diffractometer (Bruker D8 5 6 Advance) using CuKa (k=0.15406 nm) radiation with a Nickel filter operating with voltage and current of 40 kV and 40 mA in the 20 range of 10-90° at a scanning step 7 of 0.02° . The patterns were compared with JCPDS reference data for phase 8 identification. The surface morphology of the catalyst was observed by field emission 9 scanning electron microscopy (FESEM) on a Quanta 200F instruments using 10 accelerating voltages of 5 kV. SEM samples were dusted on conducting resin and 11 12 coated with 10 nm Au prior to measurement. The TEM images were obtained using a 13 JEOL JEM-2100 transmission electron microscope. A typical TEM sample was prepared by adding several droplets of a nanoparticles/ethanol mixture onto a 14 15 carbon-coated copper grid. Nitrogen adsorption/desorption isotherms at -196 °C were recorded using a Micromeritics TriStar II 3020 porosimetry analyzer. The samples 16 were degassed at 300 °C for 4 h prior to the measurements. 17

H₂-TPR was performed using a Quantachrome Autosorb-iQ, USA. A sample of 100 mg was loaded into a U-shaped quartz reactor and pre-treated in Ar at 300 °C for 1 h. After cooling to room temperature, the flow gas was switched to 10-vol% H₂/Ar, and the catalyst was heated to 900 °C at a rate of 10 °C min⁻¹. The flow rate of 10-vol% H₂/Ar is 50 mL min⁻¹. The consumption of hydrogen was recorded by thermal conductivity detector (TCD). Calibration of the instrument was carried out with CuO of known amount. X-ray photoelectron spectra (XPS) were recorded on a Perkin-Elmer PHI-1600 ESCA spectrometer using Mg K α X-ray source. The binding energies were calibrated using C1s peak of contaminant carbon (BE = 284.6 eV) as an internal standard.

6 2.3 Activity measurements

7 The catalytic performances of all catalysts were evaluated with a temperature-programmed oxidation reaction (TPO) on a fixed-bed tubular quartz 8 reactor (Φ = 8 mm), and each TPO run from 150 to 650 °C at a 2 °C min⁻¹ rate. The 9 model soot was Printex-U particulates (diameter 25 nm, purchased from Degussa). 10 11 The catalyst (100 mg) and soot (10 mg) were mixed at a weight ratio of 10:1 with a spatula in order to reproduce the loose contact mode. Reactant gases (50 mL min⁻¹) 12 contain 10% O2 and 0.2% NO balanced with Ar. The outlet gas compositions were 13 analyzed with an on-line gas chromatograph (GC, Sp-3420, Beijing) by using FID 14 15 detectors. Before entering the FID detector, CO and CO_2 were fully converted to CH_4 by a convertor with Ni catalyst at 380 °C. The catalytic activity was evaluated by the 16 values of T_{10} , T_{50} and T_{90} , which were defined as the temperatures at 10%, 50% and 17 18 90% of soot conversion, respectively. The selectivity to CO_2 formation (S_{CO₂}) was defined as that the CO_2 outlet concentration (C_{CO_2}) divided by the sum of the CO_2 and 19 CO outlet concentration, i.e., $S_{CO_2} = C_{CO_2}/(C_{CO} + C_{CO_2})$. $S^m_{CO_2}$ was denoted as S_{CO_2} at 20 21 the maximum temperature corresponding to the soot-burnt rate was the highest. In all 22 TPO experiments, the reaction was not finished until the soot was completely burnt

- 1 off.
- 2 3 Results and discussion
- 3 3.1 Catalyst characterization
- 4 3.1.1 The results of XRD

XRD patterns of 3DOM SiO₂-supported transition metal catalysts are shown in 5 6 Figure 1. As shown in Figures 1a-g, different transition metal catalysts exhibit various diffraction peaks. For the pure SiO₂ (Figure 1a), a broad peak at 2 θ of 23.5° can be 7 observed, which is typical peak of amorphous silica.³⁷ An overview of the XRD 8 9 patterns of as-prepared 3DOM transition metal catalysts in Figures 1b-f indicates that transition metal oxides formed after the process of calcination. The detailed 10 11 explanations about 3DOM SiO₂-supported transition metal catalysts are shown in the 12 Supplementary Information. In addition, from the Figures 1b-f, it can be seen that the 13 peak of amorphous silica disappeared when transition metal oxides were supported on the surface of 3DOM SiO₂. The XRD patterns of 3DOM SiO₂-supported MnO_x 14 15 catalysts with different MnO_x loading amounts are shown in Figures 1g-j. With the increasing of MnO_x loading amount, the intensity of diffraction peaks of amorphous 16 SiO₂ becomes weaken and some feature peaks of manganese oxide appear and their 17 intensities enhance. As shown in Figures 1i-j, the diffraction peaks of SiO_2 almost 18 disappear when the loading amount of MnOx is over a certain value (molar ratio of 19 Mn to Si is over 1:4). It is attributed to MnO_x coated on the surface of 3DOM SiO₂. 20

21 *3.1.2 The results of SEM*

Figure 2 shows the SEM images of 3DOM SiO₂-supported transition metal

RSC Advances Accepted Manuscript

1 catalysts with loading of different transition metals. The SEM images show that the macropores with average diameter of ca. 310±20 nm are interconnected through open 2 windows, ca. 90-140 nm in diameter, and the wall thicknesses are ca. 30-50 nm¹⁷. As 3 shown in the Figures 2a-f, it can be seen that the macropores have uniform pore sizes, 4 windows and wall thicknesses, and those macropores are highly periodically arrayed 5 6 and interconnected through small windows. These SEM images clearly demonstrate 7 that all 3DOM samples have long range ordered macroporous structure. As shown in 8 the inserted SEM images, some dark dots in macropores were visible clearly. The 9 SEM images suggest that the process of supporting transition metal oxides on 3DOM SiO₂ has no influence on 3DOM structure. 10

Figure 3 shows the SEM images of 3DOM SiO₂-supported MnO_x catalysts with 11 different MnO_x loading amounts. From the Figure 3 and Figure 2b, it can be seen that 12 13 3DOM structue is clearly observed when the ratio of Mn to Si is lower than 1:4 (Figures 3a,b and Figure 2b), while 3DOM structue has a little destruction when the 14 15 molar ratio of Mn to Si is over 1:4 (Figures 3c,d). The reason for the result may be that the excess MnO_x agglomerated and formed big particles. 3DOM structure of SiO_2 16 is affected by the big particles. From the all SEM images with different MnO_x 17 loading amounts, it can be concluded that 3DOM structue can be maintain when 18 MnO_x loading amount is lower than a certain constant (molar ratio of Mn to Si is 1:4). 19

20 *3.1.3 The results of TEM*

TEM images of 3DOM SiO₂-supported transition metal catalysts with loadings of different transition metals are shown in Figure 4. From the Figure 4a, it can be seen

1	that 3DOM SiO_2 with over-lapped pores can be clearly observed by TEM image. No
2	granular or spherical SiO_2 are observed on the surface of 3DOM SiO_2 . Combined with
3	XRD result of SiO ₂ (Figure 1a), it indicates that the framework of 3DOM SiO ₂ was
4	accumulated by amorphous SiO_2 . As shown in Figures 3b, c, the surface of 3DOM
5	SiO_2 is successfully decorated with well-dispersed MnO_x and $\mathrm{Fe}_2\mathrm{O}_3$ nanoparticles
6	(NPs), and no larger agglomerated particles is observed. The MnO_x NPs with particle
7	size of 10-30 nm and Fe_2O_3 NPs with particle size of 4-13 nm are adhered on the
8	walls of 3DOM SiO ₂ . The average MnO_x and Fe_2O_3 NPs sizes are estimated to be
9	23.5 \pm 3.6 and 8.6 \pm 2.4 nm for 3DOM MnO _x /SiO ₂ and Fe ₂ O ₃ /SiO ₂ catalysts,
10	respectively. And the particle size of Co ₃ O ₄ NPs on 3DOM Co ₃ O ₄ /SiO ₂ , which the
11	average value is about 60 nm in Figure 4d, is much bigger than 3DOM MnO_x/SiO_2
12	catalysts. The TEM image (Figure 4e) of NiO/SiO ₂ catalyst shows that NiO NPs are
13	supported on the surface of 3DOM SiO_2 , while the particle size of NiO NPs is located
14	in the range of 20-50 nm. This large particle size is disadvantageous to the catalytic
15	activity of catalyst. TEM image of CuO/SiO_2 (Figure 4e) shows that the part of dark
16	place is bulk CuO, indicating that bulk CuO formed in the process of calcination. The
17	SEM (Figure 2) and TEM (Figure 4) images of 3DOM SiO ₂ -supported transition
18	metal catalysts suggest that 3DOM structure of SiO_2 well maintains and the transition
19	metal oxides exhibit different particle sizes with different transition metal elements.
20	Figure 5 shows the TEM images of 3DOM $\mathrm{SiO}_2\text{-supported}\ MnO_x$ catalysts with
21	different MnO _x loading amounts. From Figures 5a,b and Figure 4b, it can be seen that

22 the surface of 3DOM SiO_2 is successfully decorated with well-dispersed MnO_x NPs

1	and no larger agglomerated particles is observed when molar ratio of Mn to Si is less
2	than 1:4. The MnO_x NPs with particle size of 10-30 nm are adhered on the walls of
3	3DOM SiO ₂ . However, the particle size of MnO_x NPs increases with increasing of
4	MnO_x loading amount. The particle sizes of MnO_x particles are about 50 nm and 150
5	nm for MnO_x/SiO_2 when molar ratios of Mn to Si are 1:3 and 1:2. It is attributed to
6	that the concentration of impregnation liquid $(Mn(NO_3)_2$ aqueous solution) become
7	higher and higher with the increasing of molar ratio of Mn to Si. As shown in the
8	Figure 5d, most of MnO_x particles are supported on outside surface of 3DOM SiO_2
9	and no small MnO_x particles can be observed on the inner surface of 3DOM SiO ₂ .
10	This agglomeration of active component of MnO_x/SiO_2 catalyst may lead to low
11	catalytic activity for soot combustion when molar ratio of Mn to Si is 1:2.

12 *3.1.4 The results of BET*

Nitrogen adsorption-desorption isotherms for 3DOM SiO₂-supported transition 13 metal catalysts were tested and the results are shown in Figure 6. The as-prepared 14 15 catalysts exhibit similar adsorption-desorption isotherm shapes. However, their hysteretic loops are different when different transition metals support on 3DOM SiO₂. 16 As shown in Figure 6a and b, 3DOM SiO₂ and 3DOM SiO₂-supported MnO_x 17 18 catalyst show obvious hysteretic loops, while the others exhibit small hysteretic loops. 19 The values of surface area, total pore volume and pore size are listed in the Table 2. 3DOM SiO₂ shows the highest surface area among the as-prepared 3DOM catalysts 20 and its value is 270.1 m^2/g . The scraggly surface of 3DOM SiO₂ may contribute to 21 22 enhancing the surface area owing to no nanoparticles on the surface. In addition, Page 13 of 45

RSC Advances

1	3DOM SiO_2 shows the lowest pore size among the as-prepared catalysts. The surface
2	area obviously decreased when transition metals supported on 3DOM SiO_2 . As shown
3	in the Table 2, the order of surface area value for as-prepared catalysts is as follows:
4	$Fe_2O_3/SiO_2 > MnO_x/SiO_2 > NiO/SiO_2 > Co_3O_4/SiO_2 > CuO/SiO_2$. Combined with the
5	TEM images in Figure 4, the reason for this order can be explained by the size of
6	transition metals nanoparticles. In other words, small nanoparticles will contribute to
7	enhancing the surface area owing to high surface area of small NPs. The total pore
8	volume and pore size of as-prepared catalysts are different with the different
9	transition metals. 3DOM SiO_2 shows the highest total pore volume and pore size
10	among the as-prepared catalysts. From the results of SEM and TEM, it can be seen
11	that the pore sizes of as-prepared catalysts are more than 300 nm. However, as
12	shown in the Table 2, the pore sizes of as-prepared catalysts are less than 10 nm. The
13	reason for this phenomenon is that the value of pore size (based on BET results) is
14	calculated by BJH desorption average pore diameter. This calculation method does
15	not contain the macropores. Therefore, the pore sizes (based on BET results) of
16	as-prepared catalysts are less than 10 nm.

17 3.1.5 The results of UV-Vis diffuse reflectance spectra

The UV-Vis DRS of 3DOM SiO₂-supported transition metal catalysts were obtained at room temperature in the range of 200-800 nm. From the Figure 7a, it can be seen that pure 3DOM SiO₂ has almost no absorption in the ultraviolet and visible region.³⁸ As shown in Figure 7b and 8g-j, the relative UV-Vis absorption spectrum of MnO_x/SiO_2 indicated the multivalent oxidation states of Mn. Combined with the XPS

1	results, the peaks in the range of 200-350 nm range could be reasonably assigned to
2	$O^{2-} \rightarrow Mn^{3+}$ charge transfer transitions in the MnO _x . While the broad peak at 450 nm
3	was ascribed to the d-d electron transitions of Mn^{3+} and $Mn^{4+,39}$ From Figure 7c, it
4	can be seen that the absorption of Fe_2O_3/SiO_2 was rapidly faded when wavelengths is
5	longer than 560 nm. The broad absorption from 300 to 560 nm corresponds to the
6	${}^{6}A_{1}+{}^{6}A_{1} \rightarrow {}^{4}T_{1}({}^{4}G)+{}^{4}T_{1}({}^{4}G)$ excitation of an Fe ³⁺ -Fe ³⁺ pair. The absorption at 200 -300
7	nm is ascribed to the ligand to metal charge transfer transitions and partly contributed
8	from the Fe ³⁺ ligand field transitions ${}^{6}A_{1} \rightarrow {}^{4}T_{1}({}^{4}P)$. ⁴⁰ As shown in Figure 7d, the
9	UV-Vis spectra exhibited three different absorbance edges at 200-300, 400-600 and
10	700-800 nm for Co ₃ O ₄ /SiO ₂ . The bands ($\lambda < 500$ nm) can be assigned to the O ²⁻ \rightarrow
11	Co^{2+} charge transfer process, while the band ($\lambda > 700$ nm) was due to the $O^{2-} \rightarrow Co^{3+}$
12	charge transfer. ⁴¹ The UV-Vis DRS of NiO/SiO ₂ is reported in Figure 7e. The
13	spectrum of NiO/SiO $_2$ shows a strong absorption in the UV region, similar to an
14	absorption plateau with two predominant components at 240 and 300 nm, in
15	
	agreement with literature data. ⁴² The absorption spectrum of CuO/SiO ₂ (Figure 7f)
16	agreement with literature data. ⁴² The absorption spectrum of CuO/SiO_2 (Figure 7f) revealed several absorption bands. The band appeared in the 220-360 nm spectral
16 17	
	revealed several absorption bands. The band appeared in the 220-360 nm spectral
17	revealed several absorption bands. The band appeared in the 220-360 nm spectral range can be assigned to the charge transfer transition of the ligand O^{2+} to isolated

21 3.1.6 The results of H_2 -TPR

22 It is well known that soot catalytic combustion is a complicated gas-solid

1	(soot)-solid (catalyst) three-phase reaction. The intrinsic redox properties of catalysts
2	play a key role in the combustion of soot. In this work, the redox properties of
3	catalysts were characterized by H2-TPR measurements and the results are shown in
4	the Figure 8. As shown in Figures 8a-f, the peak positions and types of 3DOM
5	SiO ₂ -supported transition metal catalysts vary with different kinds of transition metal.
6	From the H ₂ -TPR profile of 3DOM SiO ₂ (Figure 8a), it can be seen that no reduction
7	peak is observed, indicating that 3DOM SiO_2 exhibits none redox property. Figure 8b
8	shows the H ₂ -TPR profile of MnO_x/SiO_2 , two main reduction peaks with peak
9	temperatures at 320 and 416 $^{\circ}$ C can be observed. Assuming that MnO is the final state
10	in the reduction of Mn species. ⁴⁴ The peak at 230-350 °C could be assigned to the
11	reduction of MnO_2/Mn_2O_3 to Mn_3O_4 , and the peak at 350-500 °C may be assigned to
12	the reduction of Mn_3O_4 to MnO . The results indicate that substantial amount of Mn^{4+}
13	and Mn^{3+} in MnO_x/SiO_2 catalyst can be reduced to Mn^{2+} below 500 °C, which is
14	consistent with the previous reports. ⁴⁵ Figure 8c depicts the H_2 -TPR profile of
15	Fe ₂ O ₃ /SiO ₂ , two main peaks, whose peak temperatures are located at 351 and 523 °C,
16	are characteristics of two reduction steps. The first peak may be assigned to the
17	reduction of Fe ₂ O ₃ to Fe ₃ O ₄ , whereas the second may be attributed to the transition
18	from Fe_3O_4 to FeO. Besides the above two main peaks, a weak reduction peak located
19	at 600 $^{o}\mathrm{C}$ can be assigned to the reduction of $\mathrm{Fe_3O_4}$ to to FeO in the inner $\mathrm{Fe_2O_3}$
20	nanoparticles. Due to small particle sizes and high dispersion of Fe ₂ O ₃ NPs, the
21	reduction temperatures are lower than previously reported works. Previous studies
22	found that the reduction behavior of Co_3O_4 is highly dependent on the dispersion state

1	of cobalt. Large particles of Co_3O_4 were usually reduced to metallic cobalt by a single
2	step while nanoparticles often went through a two-step process. ⁴⁶ As shown in the
3	Figure 8d, two reduction peaks, of which a minor reduction peak at 329 °C and main
4	reduction peak at 376 °C, are observed for Co_3O_4/SiO_2 catalyst owing to Co_3O_4 NPs
5	with particle size of 60 nm. The two overlapped reduction peaks are corresponded to
6	the reduction of $Co_3O_4 \rightarrow CoO \rightarrow Co.^{47}$ Figure 8e shows the H ₂ -TPR profiles of
7	NiO/SiO ₂ catalyst. Two overlapped reduction peaks with two peak maxima at 350 $^{\circ}\text{C}$
8	and 415 °C are obtained, which are consistent with the reduction of two types of
9	Ni^{2+}/Ni^{3+} species to metallic nickel. ^{48,49} The H ₂ -TPR profile of CuO/SiO ₂ is shown in
10	Figure 8f. The minor shoulder reduction peak at 222 °C is assigned to reduction of
11	dispersed copper oxide, while the main reduction peak at 281 °C is corresponded to
12	reduction of CuO. ^{42,50} The different reduction peaks of 3DOM SiO ₂ -supported
13	transition metal catalysts indicate that those catalysts may exhibit various catalytic
14	activities for soot combustion. Figures 8g-j display the H_2 -TPR profiles of 3DOM
15	MnO_x/SiO_2 catalysts with different MnO_x loading amounts. Two main reduction
16	peaks can be obtained in Figures 8g-j. The peak temperatures increase with the
17	increasing of MnO_x loadings. The first and second reduction peak temperatures
18	increase from 300 to 336 °C and from 417 to 456 °C, respectively, for the sample with
19	molar ratio of Mn to Si from 1:16 to 1:2. The possible reason for this result is that
20	particle size of MnO_x increases with the increasing of MnO_x loadings (Figure 5). In
21	addition, the intensity of H_2 consumption peak also increases with the increasing of
22	MnO_x loading amounts. Based on the above results of H ₂ -TPR, transition metal

oxides show high redox property owing to different chemical valence states of
transition metal. The catalytic activity is possibly associated with the changing
capacity of varied oxidation states and with "oxygen mobility" in the oxide lattice.
This property may contribute to the enhancement of catalytic activity for soot
combustion.

6 *3.1.7 The results of XPS*

7 Figure 9Aa displays the XPS spectrum of Mn 2p for 3DOM MnO_x/SiO₂ catalysts. 8 The Mn 2p spectrum is significantly broadened and showed some asymmetry towards both Mn $2p_{3/2}$ and Mn $2p_{1/2}$ peaks. The binding energies of the XPS Mn $2p_{3/2}$ peak are 9 found to be in the range 639.0-645.0 eV. Two kinds of Mn species including Mn^{3+} (ca. 10 641.5eV), and Mn^{4+} (644.5 eV) are presented on the surface of as-prepared catalysts. 11 12 Meanwhile, the Mn $2p_{1/2}$ peak also shows two kinds of Mn species at BEs range of 650-657 eV.²² From Figure 9Ab, it can be seen that the Fe 2p spectrum of Fe₂O₃/SiO₂ 13 is split into $2p_{3/2}$ (710.6 eV) and $2p_{1/2}$ (724.1 eV) doublets due to the spin-orbit 14 15 coupling. According to the previous reports, the remarkable features of Fe_2O_3/SiO_2 in XPS spectrum is a characteristic of Fe^{3+} in Fe_2O_3 .⁵¹ In addition, there is a satellite 16 peak at 718.9 eV beside the main peak of Fe $2p_{3/2}$ at 710.9 eV, which is also an 17 evidence for Fe³⁺ in Fe₂O₃. The XPS result of Fe₂O₃/SiO₂ is also in good agreement 18 19 with the XRD result. As shown in Figure 9Ac, two spin orbit components of Co (Co $2p_{3/2}$ at 779.6 eV and Co $2p_{1/2}$ at 795.1 eV) and two weak satellites at higher energy 20 21 (786-790 and 800-805 eV) for both Co peaks are obtained. The BE difference between Co $2p_{1/2}$ and Co $2p_{3/2}$ peaks is 15.5 eV, and it is in agreement with previously 22

reported for Co ₃ O ₄ . ^{52,53} The Ni 2p XPS spectrum (Figure 9Ad) shows two
characteristic double peaks of Ni $2p_{1/2}$ and Ni $2p_{3/2}$. The additional peak located at
around 879.2 eV and 860.8 eV are the satellite of Ni $2p_{1/2}$ and Ni $2p_{3/2}$. ⁵⁴ According to
the literature, the satellite peaks of Ni $2p_{1/2}$ and Ni $2p_{3/2}$ indicate that Ni^{3+} ions or
Ni^{2+} -OH species is present in NiO/SiO ₂ . Here, the Ni^{3+} only refers to a structure
containing vacancies in the NiO but does not indicate an existence of Ni_2O_3 phase in
NiO/SiO ₂ . ⁵⁵ Figure 9Ae shows the spin-orbit split of Cu $2p_{1/2}$ and Cu $2p_{3/2}$ at 954.6 eV
and 934.5 eV, respectively. The gap between Cu $2p_{1/2}$ and Cu $2p_{3/2}$ is 20.1 eV, which is
similar with the standard spectrum of CuO. The existence of satellite peaks (943.7 and
962.5 eV) is an indicator of the Cu^{2+} ions, which is excluded the possibility of Cu_2O
phase in $C_{\rm U}\Omega/{\rm Si}\Omega_{\rm c}$ catalyst ⁵⁶

11	nhaaa	:	CuO/SiO ₂	ootolr	t 56
11	phase	ın	CuO/SiO_2	cataly	/st.

The corresponding O 1s XPS spectra are present in Figure 9B. Three types of O species is defined as O-I, O-II and O-III. The O-I component located at 529.5 eV are ascribed to lattice oxygen ions bonded to transition metal cations⁵⁷. Because of different transition metals, the BEs of O-I have a small shift from 529.4 to 530.4 eV. The dominating O-II component at BEs 532.6~ 533.1 eV is obviously related to O^{2-} species in SiO₂ (Si-O-Si environments).⁵⁸ The minor O-III component located at ~535.1 eV may include contributions from Si-OH groups. As shown in Figure 9C, the values of BEs for Si 2p are changed with different transition metals. The Si 2p spectra of the catalysts (Figure 9C) are dominated by a peak centered at BEs of 103.0~103.6 eV, characteristic of Si⁴⁺ in SiO₂. The reason for shifted BEs is that different transition metals change the chemical environment of Si-O-Si bands. In addition, as shown in

Table S1, the surface compositions of as-prepared catalysts are different with bulk
composition. The surface oxygen ratios are higher than corresponding bulk oxygen
ratios, indicates that as-prepared catalysts will exhibit high catalytic activity for soot
combustion.

5 3.2 Activity test

6 *3.2.1 Catalytic activities for soot combustion*

7 The catalytic activities of 3DOM SiO₂-supported transition metal catalysts for soot 8 oxidation were evaluated and the results are listed in Table 3. To compare the catalytic activities of as-prepared catalysts, the combustion reactions of pure soot and 3DOM 9 SiO₂ were also estimated under the same reaction conditions. For the pure soot, the 10 T₁₀, T₅₀ and T₉₀ are 482, 564 and 609 °C, respectively. The 3DOM SiO₂ also shows 11 12 somewhat catalytic activity for soot combustion, and the T₁₀, T₅₀ and T₉₀ are 354, 503 and 550 °C, respectively. This result indicates that the 3DOM structure of SiO₂ can 13 enhance the contact area between soot and reaction gas when the soot and SiO₂ are 14 15 met. All the 3DOM SiO₂-supported transition metal catalysts show high catalytic activities for soot combustion. However, different SiO₂-supported transition metal 16 catalysts exhibit various catalytic activities. Compared the values of ΔT_{10} , ΔT_{50} and 17 ΔT_{90} of 3DOM SiO₂-supported transition metal catalysts in the Table 3, 3DOM 18 MnO_x/SiO_2 catalyst shows the highest catalytic activity for soot combustion, the ΔT_{10} , 19 ΔT_{50} and ΔT_{90} of are 173, 202 and 212 °C, respectively. These results suggest that 20 21 MnO_x is optimal choice for soot combustion in those transition metal oxides. In 22 addition, 3DOM SiO₂-supported transition metal catalysts show much higher CO₂

1 selectivity for soot combustion than that of pure soot combustion, and the values are 2 all surpassed 90%. The CO₂ selectivity value of 3DOM MnO_x/SiO_2 catalyst is as high as 95.5%. These experimental results suggest that 3DOM MnO_x/SiO_2 catalyst is 3 promising catalysts for soot combustion. In order to more clearly describe the results 4 of Table 3, the CO₂ concentration profiles for soot combustion over 3DOM 5 SiO₂-supported transition metal catalysts were listed in the Figure S1. From Figure 6 7 S1A, it can be seen that the CO_2 concentration profiles are corresponding to the results 8 of Table 3. 3DOM SiO₂-supported transition metal catalysts with various transition metal exhibit different catalytic activities. As shown in Figure S1B, the changing 9 tendency of catalytic activities is very similar to the result of Table 3. 10

As shown in Table 3, the catalytic activities of 3DOM SiO₂-supported transition 11 metal catalysts with varied transition metal oxides follow the order: $MnO_x/SiO_2 >$ 12 $Co_3O_4/SiO_2 > Fe_2O_3/SiO_2 > CuO/SiO_2 > NiO/SiO_2$. Combined the results of TEM 13 (Figures 4) and H₂-TPR (Figures 8b-f), the different particle sizes, redox properties of 14 15 transition metal oxides and valence state of transition metal element can explain the varied catalytic activities of 3DOM SiO₂-supported transition metal catalysts. The 16 17 H₂-TPR results of as-prepared catalysts indicate that CuO/SiO₂ may give the highest catalytic activity for soot combustion due to the lowest reduction temperature among 18 those catalysts. However, TEM image of CuO/SiO₂ exhibits that bulk CuO is formed, 19 20 which is disadvantage for soot combustion owing to low contact effect between soot 21 and catalyst. In addition, previous reports have proved that CuO does not have the capacity of adsorbing oxygen.^{59,60} Therefore, CuO/SiO₂ catalyst presents very low 22

1	activity for particulate matter oxidation. TEM image of Fe ₂ O ₃ /SiO ₂ displays that
2	Fe_2O_3 NPs with particle size of 4-13 nm are highly dispersed on the wall of 3DOM
3	SiO ₂ . This result suggests that soot and Fe ₂ O ₃ /SiO ₂ catalyst may be well contacted
4	with soot. And 3DOM Fe_2O_3/SiO_2 catalyst is presumed to show high catalytic activity.
5	In fact, it exhibits lower catalytic activity than MnO_x/SiO_2 and Co_3O_4/SiO_2 catalysts.
6	The reason for this phenomenon is that 3DOM Fe_2O_3/SiO_2 catalyst shows the highest
7	reduction temperature among those catalysts. Based on the above two reasons, 3DOM
8	Fe ₂ O ₃ /SiO ₂ catalyst exhibits low catalytic activity for soot combustion. Except for
9	particle sizes and redox properties, the valence states also exhibit significant influence
10	on catalytic activity. As shown in the results of XPS, there are two kinds of valence
11	states for MnO_x/SiO_2 while only one kind of valence state for other catalysts. The
12	catalyst with different valence states will enhance the capability of oxygen activation.
13	In the process of soot combustion, the redox reaction of Mn^{3+}/Mn^{4+} in the MnO_x/SiO_2
14	is in favor of forming oxygen vacancies on the surface of catalysts, and then the active
15	oxygen can be easily generated on the vacancies sites. Therefore, MnO_x/SiO_2 shows
16	the highest catalytic activity for soot combustion.

In order to demonstrate the impaction of NO, we also tested the catalytic performance of MnO_x/SiO_2 under different reaction conditions, and the results are listed in the following Table S2. Compared with pure soot, the MnO_x/SiO_2 catalyst shows super catalytic activity for soot combustion when they reacted under the same reaction conditions (2000 ppm NO, 10% O₂). This result indicates that our prepared catalysts exhibit high catalytic performance for soot combustion when NO is

participated in soot combustion. As shown in Table S2, the catalytic activities of MnO_x/SiO₂ catalyst decrease with the decreasing of concentrations of NO. However, the catalytic activity of MnO_x/SiO_2 is also much higher that pure soot even no NO is participated in the reaction. Those above results obviously demonstrate that the reaction pathways of soot combustion can be divided into two parts: One is that active oxygen species directly oxidize soot particles; the other one is that NO₂ acts as intermediate to catalyze soot oxidation.

The MnO_x loading amount has a significant effect on the catalytic performance of 8 3DOM MnO_x/SiO_2 . The catalytic activity first increases with the increasing MnO_x 9 loadings (molar ratio of Mn to Si is 1:4), and then it decreases with further increasing 10 of MnO_x loading amount. The H₂-TPR results of 3DOM MnO_x/SiO₂ with different 11 MnO_x loadings indicate that high MnO_x loadings give large amount of H₂ 12 13 consumption, which can increase the catalytic activity for soot combustion. However, there is a suitable MnO_x loading amount for the catalyst to get high catalytic activity. 14 15 Combined the TEM results in Figure 5, the particle sizes of $MnO_x NPs$ increase from 20 nm to 150 nm with increasing MnOx loadings (molar ratio of Mn to Si increased 16 17 from 1:16 to 1:2). The free spread of soot particles in 3DOM structure would be blocked by big MnO_x NPs (150 nm) owing to 90-140 nm of interconnected windows 18 in 3DOM MnO_x/SiO₂ (Figure 3). According to the above reasons, 3DOM MnO_x/SiO₂ 19 20 catalyst (molar ratio of Mn to Si is 1:4) exhibits the highest catalytic activity.

21 3.2.2 Stability of 3DOM MnO_x /SiO₂ catalyst

In order to demonstrate the stability of as-prepared catalysts, the catalytic activity

1

2

3

4

5

6

7

8

9

10

11

RSC Advances

and CO_2 selectivity of 3DOM $\text{MnO}_x/\text{SiO}_2$ catalyst in five cycles were examined and
the results are shown in Figure 10. The catalytic activity and CO_2 selectivity of
3DOM MnO_x/SiO_2 catalyst keep constant after reaction for five times under the
condition of loose contact between catalysts and soot particles. The temperature
values of T_{10} , T_{50} and T_{90} are 297±5, 355±6 and 393±5°C, respectively. Meanwhile,
the CO ₂ selectivity value is higher than 95% even after five-cycle reaction. The
stability test results indicate that 3DOM MnO_x/SiO_2 catalyst has good stability for
soot combustion.
3.2.3 The effect of 3DOM structure in as-prepared catalysts on soot
combustion
As a gas-solid-solid reaction, soot combustion is affected by two factors, including
redox property of catalyst and contact efficiency between soot and catalyst. Besides
the high redox property, the contact between soot and catalysts also plays an

redox property of catalyst and 12 13 the high redox property, the important role in improving the catalytic activity. Because loose contact between soot 14 15 particles and catalysts is a main way of contact in the process of after-treatment for diesel engine exhaust, it is extremely important to study and design the active 16 17 catalysts, which can improve the contact efficiency between the catalysts and soot particles under loose contact conditions. In this work, 3DOM SiO₂-supported 18 transition metal catalysts with uniform macropores are designed and synthesized to 19 20 enhance the contact efficiency. As shown in Figure 2 and Figure 4, the average 21 diameter of ordered macroporous is about 310 nm and diameter of transition metal oxides NPs is lower than 50 nm (except for Co₃O₄/SiO₂ and CuO/SiO₂). Therefore, 22

1	soot particles could easily across those macropores and contact with transition metal
2	oxides NPs (supported on the wall of 3DOM SiO_2). To demonstrate the macroporous
3	effect, the soot and 3DOM MnO_x/SiO_2 catalyst was studied under the same conditions
4	of TPO reaction to demonstrate the contact efficiency. In this confirmatory experiment,
5	the reaction temperature of soot and 3DOM catalyst was programmed to 290 °C,
6	which means the soot was not ignited. From the TEM image of Figure 11a, it can be
7	seen that soot particles entered into the macropores of 3DOM MnO_x/SiO_2 catalyst. In
8	addition, the outside soot particles could enter the inner pores of 3DOM catalyst with
9	the help of the reaction gas flow (O ₂ , NO and Ar) during the reaction process owing to
10	a gas-solid-solid reaction for soot combustion. More importantly, the rising reaction
11	temperature may be contributed to accelerating the movement of soot particles. Under
12	the influence of gas flow and rising temperature, the outside soot particles can easily
13	enter into the 3DOM structure and contact the inner active sites of 3DOM catalyst. As
14	shown in the Figure 11b, the macropores of 3DOM MnO_x/SiO_2 are well contacted
15	with soot particles, indicating that 3DOM structure is a desirable feature for diesel
16	soot combustion. As shown in the HRTEM images (Figure 11c), the soot and $\mbox{MnO}_{\rm x}$
17	NPs are well contact with each other in the inner of 3DOM structure. Therefore, the
18	number of available active sites of catalysts can be maximized through macroporous
19	effect, especially for inner active sites of catalysts. More active sites would result in
20	higher catalytic activity. TEM results directly demonstrate that soot particles can
21	easily enter the interior of 3DOM catalysts with the help of the airflow in the reaction
22	process under the loose contact conditions, and have less resistance to go through the

catalyst structure. In fact, our group has synthesized a series of 3DOM materials and
they show higher catalytic activities than the corresponding particle materials.
Therefore, it is significantly important to study and design 3DOM structure for soot
combustion.

5 4. Conclusions

6 In summary, 3DOM SiO₂ support was successfully synthesized by CCT method. 7 Different transition metal oxides NPs with varied sizes are supported on the skeleton 8 of 3DOM SiO₂ by simple incipient-wetness impregnation method. All 3DOM 9 SiO₂-supported transition metal catalysts show high periodical arrayed macropores and interconnected small windows. 3DOM SiO₂-supported catalysts with different 10 11 transition metal oxides NPs exhibit different catalytic activities for soot combustion. 12 Compared with pure soot, 3DOM MnO_x/SiO₂ catalyst with molar ratio of Mn:Si is 1:4 shows the highest catalytic activity among the as-prepared catalysts, which T_{10} , T_{50} 13 and T₉₀ are 297, 355 and 393 °C, respectively. The CO₂ selectivity of as-prepared 14 15 catalysts is also higher than 93%. The macroporous effects of 3DOM structure, redox properties of transition metal oxides and sizes of transition metal oxide NPs 16 significantly affect the catalytic activity for soot combustion simultaneously. The 17 as-prepared catalysts are promising for practical applications in the catalytic oxidation 18 of diesel soot particles owing to high activity and low cost. 19

20

21 Acknowledgements

22 This work was financially supported by NSFC (Nos. 21177160, 21303263 and

1	21477164), Beijing Nova Program (NO. Z141109001814072), Specialized Research
2	Fund for the Doctoral Program of High Education of China (NO. 20130007120011)
3	and the Science Foundation of China University of Petroleum-Beijing (No.
4	2462013YJRC13 and 2462013BJRC003).
5	
6	References
7	1 T. W. Hesterberg, C. A. Lapin and W. B. Bunn, Environ. Sci. Technol., 2008, 42,
8	6437-6445.
9	2 R. Prasad and V. R. Bella, Bull. Chem. Rea. Eng. Catal. 2010, 5, 69-86.
10	3 M. V. Twigg, Appl. Catal., B, 2007, 70, 2-15.
11	4 M. R. Heal, P. Kumar and R. M. Harrison, Chem. Soc. Rev. 2012, 41, 6606-6630.
12	5 D. R. Treea and K. I. Svensson, Prog. Energy Combust. Sci., 2007, 33, 272-309.
13	6 J. P. A. Neeft, M. Makkee and J. A. Moulijn, Appl. Catal., B, 1996, 8, 57-78.
14	7 A. Bueno-López, Appl. Catal., B, 2014,146, 1-11.
15	8 X. D. Wu, S. Liu and D. Weng, Catal. Sci. Technol., 2011,1, 644-651.
16	9 Y. Teraoka, K. Nakano, W. F. Shangguan and S. Kagawa, Catal. Today, 1996, 27,
17	107-113.
18	10 X. D. Wu, F. Lin, H.B. Xu and D. Weng, Appl. Catal., B, 2010, 96, 101-109.
19	11 Q. Q. Yang, F. N. Gu, Y. F. Tang, H. Zhang, Q. Liu, Z. Y. Zhong and F. B. Su, RSC
20	Adv., 2015, 5 , 26815-26822
21	12 J. A. Sullivan, P. Dulgheru, I. Atribak, A. Bueno-López and A. García-García, Appl.
22	Catal., B, 2011, 108-109, 134-139.
23	13 H. Arandiyan, H. X. Dai, J. G. Deng, Y. X. Liu, B. Y. Bai, Y. Wang, X. W. Li, S. H.
24	Xie and J. H. Li, J. Catal., 2013, 307, 327-339.
25	14 M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, W. Ueda and R. Abe, Chem.
26	Commun., 2008, 48, 6552-6554.
27	15 A. Stein, B. E. Wilson and S. G. Rudisill, Chem. Soc. Rev., 2013, 42, 2763-2803.
28	16 J. F. Xu, J. Liu, Z. Zhao, C. M. Xu, J.X. Zheng, A. J. Duan, G. Y. Jiang and J.

1	<i>Catal.</i> , 2011, 282 , 1-12.
2	17 G. Z. Zhang, Z. Zhao, J.F. Xu, J.X. Zheng, J. Liu, G.Y. Jiang, A.J. Duan and H. He,
3	Appl. Catal., B, 2011, 107, 302-315.
4	18 Y. C. Wei, J. Liu, Z. Zhao, Y.S. Chen, C.M. Xu, A.J. Duan, G. Y. Jiang and H. He,
5	Angew. Chem. Int. Ed., 2011, 50, 2326-2329.
6	19 Y. C. Wei, J. Liu, Z. Zhao, A. J. Duan, G. Y. Jiang, C.M. Xu, J. S. Gao and H. He,
7	Energy Environ. Sci., 2011, 4, 2959-2970.
8	20 Y. C. Wei, J. Liu, Z. Zhao, C. M. Xu, G. Y. Jiang and A. J. Duan, Small, 2013, 9,
9	3957-3963.
10	21 Y. C. Wei, Z. Zhao, J. Liu, S.T. Liu, C.M. Xu, A.J. Duan and G.Y. Jiang, J. Catal.,
11	2014, 317 , 62-74.
12	22 X. H. Yu, J. M. Li, Y. C. Wei, Z. Zhao, J. Liu, B. F. Jin, A. J. Duan and G. Y. Jiang,
13	Ind. Eng. Chem. Res., 2014, 53, 9653-9664.
14	23 Z. L. Zhang, Y. X. Zhang, Q. Y. Su, Z. P. Wang, Q. Li and X.Y. Gao, Environ. Sci.
15	Technol., 2010, 44, 8254-8258.
16	24 X.D. Wu, S. Liu, D. Weng and F. Lin, Catal. Commun., 2011,12, 345-348.
17	25 S. Quiles-Díaz, J. Giménez-Mañogila and Avelina García-García, RSC Adv.,
18	2015,5, 17018-17029.
19	26 H. Zhang, F. Gu, Q. Liu, J. J. Gao, L. H. Jia, T. Y. Zhu, Y. F. Chen, Z. Y. Zhong
20	and F. B. Su, RSC Adv., 2014,4, 14879-14889
21	27 D. Fino and V. Specchia, Powder Technol., 2008, 180, 64-73.
22	28 X. H. Yu, J. H. He, D.H. Wang, Y. C. Hu, H. Tian and Z. C. He, J. Phys. Chem. C
23	2012, 112 , 851-860.
24	29 Y. X. Liu, H. X. Dai, J. G. Deng, X. W. Li, Y. Wang, H. Arandiyan, S. H. Xie, H.
25	G.Yang and G. S. Guo, J. Catal., 2013, 305, 146-153.
26	30 S. Liu, X. D. Wu, D. Weng, M. Li and R. Ran. ACS Catal., 2015, 5, 909-919.
27	31 P. Legutko, T. Jakubek, W. Kaspera, P. Stelmachowski, Z. Sojka and A. Kotarba,
28	Catal. Commun., 2014, 43, 34-37.
29	32 E. Aneggi, N.J. Divins, C.de Leitenburg, J. Llorca and A. Trovarelli, J. Catal., 2014,
30	312 , 191-194.

1 33 P. Yang, S. H. Yang, Z. N. Shi, Z. H. Meng and R. X. Zhou, Appl. Catal., B 2015,

2 **162**, 227-235.

- 34 Q. Shen, M. F. Wu, H. Wang, C. He, Z. P. Hao, W. Wei and Y. H. Sun, *Catal. Sci. Technol.*, 2015, 5, 1941-1952
- 5 35 J. Ballester, A. M. Caminade, J. P. Majoral, M. Taillefer and A. Oualib, *Catal. Commun.*, 2014, 47, 58-62.
- 7 36 J. L. Ren, Y. F. Yu, F. F. Dai, M. Meng, J. Zhang, L.R. Zheng and T. D. Hu,
 Nanoscale, 2013,5, 12144-12149
- 9 37 R. M. Rioux, H. Song, J. D. Hoefelmeyer, P. Yang and G. A. Somerjai, J. Phys.
- 10 *Chem. B*, 2005, **109**, 2192-2202.
- 11 38 J. L. Lu, K. M. Kosuda, R. P. Van Duyne and P. C. Stair, J. Phys. Chem. C, 2009,
- **113**, 12412-12418.
- 13 39 Y. L. Nie, C. Hu, L. Yang and J. C. Hu, Sep. Purif. Technol., 2013, 117, 41-45.
- 14 40 M. Mohammadikish, *Ceram. Int.*, 2014, 40, 1351-1358.
- 15 41 S. Farhadi and J. Safabakhsh, J. Alloys Compd., 2012, 515, 180-185.
- 42 G. Garbarino, I. Valsamakis, P. Riani and G. Busca, *Catal. Commun.*, 2014, 51,
 37-41
- 18 43 S. Morpurgo, M. L. Jacono and P. Porta, J. Mater. Chem., 1994, 4, 197-205.
- 19 44 M. Sun, L. Yu, F. Ye, G. Q. Diao, Q. Yu, Z. F. Hao, Y. Y. Zheng and L. X. Yuan,
- 20 *Chem. Eng. J.*, 2013, **220**, 320-327.
- 45 G. D. Yadav and R. K. Mewada, *Chem. Eng. J.*, 2013, **221**, 500-511.
- 46 W. Q. Song, A. S. Poyraz, Y. T. Meng, Z. Ren, S.Y. Chen and S. L. Suib, Chem.
- 23 *Mater.*, 2014, **26**, 4629-4639.
- 47 Y. Lou, L. Wang, , Z. Y. Zhao, Y. H. Zhang, Z. G. Zhang, G. Z. Lu, Y. Guo and Y. L.
 Guo, *Appl. Catal.*, *B*, 2014, 146, 43-49.
- 48 B. Solsona, P. Concepción, S. Hernández, B. Demicol and J. M. L. Nieto, *Catal. Today*, 2012, **180**, 51-58.
- 49 T. Takeguchi, S. Furukawa and M. Inoue, J. Catal., 2001, 202, 14-24.
- 50 S. Bennici, A. Gervasini, N. Ravasio and F. Zaccheria, *J. Phys. Chem. B*, 2003, 107,
 5168-5176.

- 1 51 P. F. Xie, L.F. Chen, Z. Ma, C.Y. Huang, Z. W. Huang, Y. H. Yue, W. M. Hua, Y.
- 2 Tang and Z. Gao, *Microporous Mesoporous Mater.*, 2014, **200**, 52-60.
- 52 Z. L. Chen, S. H. Chen, Y.H. Li, X. H. Si, J. Huang, S. Massey and G. L. Chen.
 Mater. Res. Bull., 2014, 57, 170-176.
- 5 53 G. L. Chen, X. L. Si, J. S. Yu, H. Y. Bai and X. H. Zhang, *Appl. Surf. Sci.*, 2015,
 330, 191-199.
- 7 54 F. D. Qu, Y. F. Wang, J. Liu, S. P. Wen, Y. Chen and S. P. Ruan, Mater. Lett., 2014,
- 8 132, 167-170.
- 9 55 L. Cao, D. X. Wang and R. Wang, *Mater. Lett.*, 2014, **132**, 357-360,.
- 10 56 K. Mageshwari, D. Nataraj, T. Pal, R. Sathyamoorthy and J. Park, J. Alloys Compd.
- 11 2015, **625**, 362-370.
- 57 R. R. Hu, C. F. Yan, L. Y. Xie, Y. Cheng and D. Z. Wang, *Int. J. Hydrogen Energy*,
 2011, 36, 64-71.
- 14 58 S. P. Chenakin, G. Melaet, R. Szukiewicz and N. Kruse, J. Catal. 2014, 312, 1-11.
- 15 59 G. Corro, S. Cebada, U. Pal, J. L. G. Fierro and J. Alvarado, *Appl. Catal., B*, 2015,
- 16 **165**, 555-565.
- 17 60 F. E. López-Suárez, A. Bueno-López and M. J. Illán-Gómez. *Appl. Catal., B*, 2008,
- **84**, 651-658.
- 19

Captions for Tables

Table 1 Expression ways of nominal ratio for the preparation of 3DOM SiO₂-supported transition metal oxide catalysts

Table 2 Physicochemical properties of as-prepared catalysts

Table 3 Catalytic activities of 3DOM SiO₂-supported transition metal catalysts for soot combustion

Table 1 Expression ways of nominal ratio for the preparation of 3DOM SiO ₂ -supported						
transition metal oxide catalysts						

Catalysts	Kinds of Nitrates	^b M:Si	$M(NO_3)_x/g$	3DOM SiO ₂ /g
MnO _x /SiO ₂	^a Mn(NO ₃) ₂	1:4	0.7516	0.5
Fe ₂ O ₃ /SiO ₂	Fe(NO ₃) ₃ ·9H ₂ O	1:4	0.6112	0.5
Co ₃ O ₄ /SiO ₂	$Co(NO_3)_2 \cdot 6H_2O$	1:4	0.8484	0.5
NiO/SiO ₂	Ni(NO ₃) ₂ ·6H ₂ O	1:4	0.6106	0.5
CuO/SiO ₂	$Cu(NO_3)_2 \cdot 3H_2O$	1:4	0.5074	0.5
MnO_x/SiO_2-1	$Mn(NO_3)_2$	1:16	0.1879	0.5
MnO_x/SiO_2-2	$Mn(NO_3)_2$	1:8	0.3758	0.5
MnO_x/SiO_2-4	$Mn(NO_3)_2$	1:3	1.1274	0.5
MnO_x/SiO_2-5	$Mn(NO_3)_2$	1:2	1.5032	0.5

a: 50 wt% Mn(NO₃)₂ aqueous solution

b: Molar ratio of transition metal elements to SiO2, M means transition metal elements

•		Manuscript
		Accepted
		Advances /
		RSC

Table 2 Physicochemical properties of as-prepared catalysts

Catalysts	Surface area $(m^2/g)^a$	Total pore volume $(cm^3/g)^b$	Pore size (nm) ^c
SiO_2	270.1	0.231	8.2
MnO_x/SiO_2	180.5	0.208	7.6
Fe ₂ O ₃ /SiO ₂	215.4	0.135	7.8
Co ₃ O ₄ /SiO ₂	145.7	0.117	6.9
NiO/SiO ₂	156.7	0.129	6.8
CuO/SiO ₂	136.5	0.099	6.5

a: Calculated by BET method; b: Calculated by BJH desorption cumulative volume of pores between 1.7 nm and 300 nm diameter; c: Calculated by BJH desorption average pore diameter

combustion							
Catalysts	$T_{10}/^{o}C$	T ₅₀ /°C	T ₉₀ /°C	Sco ^m /%	ΔT_{10}	ΔT_{50}	ΔT_{90}
Pure soot	482	564	609	71.6			
3DOM SiO ₂	354	503	550	78.1	128	61	59
MnO_x/SiO_2	297	355	393	95.5	185	209	216
Fe ₂ O ₃ /SiO ₂	316	420	480	93.8	166	144	129
Co ₃ O ₄ /SiO ₂	309	362	397	96.9	173	202	212
NiO/SiO ₂	348	449	496	96.4	134	115	113
CuO/SiO ₂	325	410	452	96.6	157	154	157
MnO_x/SiO_2-1	306	382	427	93.1	176	182	182
MnO_x/SiO_2-2	304	377	416	94.5	178	187	193
MnO_x/SiO_2-4	297	358	397	94.6	185	206	212
MnO_x/SiO_2-5	303	361	398	95.6	179	203	211

Table 3 Catalytic activities of 3DOM SiO₂-supported transition metal catalysts for soot

 ΔT_{10} : The difference value of T_{10} between pure soot and catalysts

 ΔT_{50} : The difference value of T_{50} between pure soot and catalysts

 ΔT_{90} : The difference value of T_{50} between pure soot and catalysts

Captions for Figures

Fig. 1 X-ray diffraction patterns of 3DOM SiO₂-supported transition metal catalysts. a: SiO₂, b: MnO_x/SiO₂(" \blacktriangle " represents for Mn₂O₃ and " \bigtriangleup " represents for Mn₃O₄), c: Fe₂O₃/SiO₂(" \bigstar " represents for Fe₂O₃), d: Co₃O₄/SiO₂(" \bigstar " represents for Co₃O₄), e: NiO/SiO₂(" \blacksquare " represents for NiO), f: CuO/SiO₂(" \blacksquare " represents for CuO); molar ratio of Mn to Si: g: 1:16; h: i:8; c: 1:3; j: 1:2.

Fig. 2 SEM images of 3DOM SiO₂-supported transition metal catalysts. a: SiO₂; b: MnO_x/SiO_2 ; c: Fe₂O₃/SiO₂; d: Co₃O₄/SiO₂; e: NiO/SiO₂; f: CuO/SiO₂.

Fig. 3 SEM images of 3DOM SiO₂-supported MnO_x catalysts. Molar ratio of Mn to Si: a: 1:16; b: 1:8; c: 1:3; d: 1:2

Fig. 4 TEM images of 3DOM SiO₂-supported transition metal catalysts. a: SiO₂; b: MnO_x/SiO_2 ; c: Fe₂O₃/SiO₂; d: Co₃O₄/SiO₂; e: NiO/SiO₂; f: CuO/SiO₂.

Fig. 5 TEM images of 3DOM SiO_2 -supported MnO_x catalysts. Molar ratio of Mn to Si: a: 1:16; b: 1:8; c: 1:3; d: 1:2

Fig. 6 Nitrogen adsorption-desorption isotherms of 3DOM SiO₂-supported transition metal catalysts. a: SiO₂; b: MnO_x/SiO_2 ; c: Fe₂O₃/SiO₂; d: Co₃O₄/SiO₂; e: NiO/SiO₂; f: CuO/SiO₂.

Fig. 7 UV-Vis DRS of 3DOM SiO₂-supported transition metal catalysts. a: SiO₂, b: MnO_x/SiO_2 , c: Fe₂O₃/SiO₂, d: Co₃O₄/SiO₂, e: NiO/SiO₂, f: CuO/SiO₂; molar ratio of Mn to Si: g: 1:16; h: i:8; c: 1:3; j: 1:2

Fig. 8 H₂-TPR profiles of 3DOM SiO₂-supported transition metal catalysts. a: SiO₂, b: MnO_x/SiO_2 , c: Fe₂O₃/SiO₂, d: Co₃O₄/SiO₂, e: NiO/SiO₂, f: CuO/SiO₂; molar ratio of Mn to Si: g: 1:16; h: i:8; c: 1:3; j: 1:2

Fig. 9 XPS spectra of 3DOM SiO₂-supported transition metal catalysts. a: MnO_x/SiO₂; b: Fe₂O₃/SiO₂; c: Co₃O₄/SiO₂; d: NiO/SiO₂; e: CuO/SiO₂.

Fig. 10 Stability tested results of 3DOM MnO_x/SiO_2 catalyst for soot combustion (molar ratio of Mn to Si is 1:4,)

Fig. 11 TEM (a,b) and HRTEM (c) images of 3DOM MnO_x/SiO₂ and soot particles

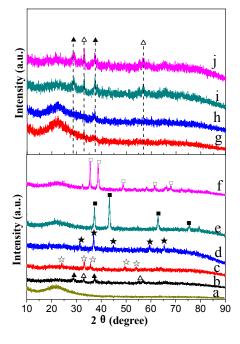


Fig. 1 X-ray diffraction patterns of 3DOM SiO₂-supported transition metal catalysts. a: SiO₂, b: MnO_x/SiO₂("▲" represents for Mn₂O₃ and "△" represents for Mn₃O₄), c: Fe₂O₃/SiO₂("☆" represents for Fe₂O₃), d: Co₃O₄/SiO₂("★"represents for Co₃O₄), e: NiO/SiO₂("■"represents for NiO), f: CuO/SiO₂("□"represents for CuO); molar ratio of Mn to Si: g: 1:16; h: i:8; c: 1:3; j: 1:2.

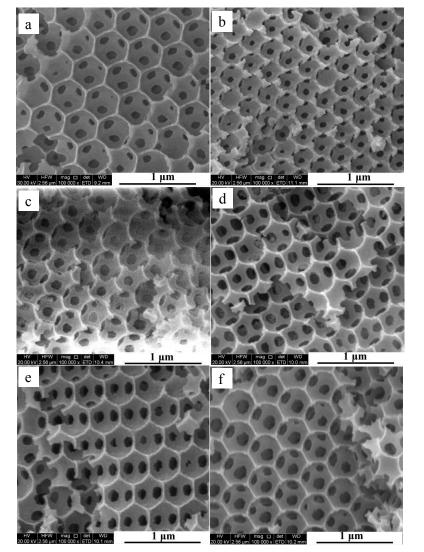


Fig. 2 SEM images of 3DOM SiO₂-supported transition metal catalysts a: SiO₂; b: MnO_x/SiO₂; c: Fe₂O₃/SiO₂; d: Co₃O₄/SiO₂; e: NiO/SiO₂; f: CuO/SiO₂.

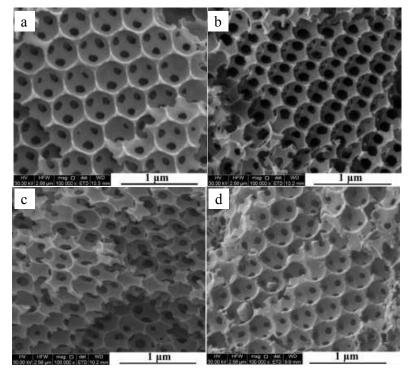


Fig. 3 SEM images of 3DOM SiO₂-supported MnO_x catalysts. Molar ratio of Mn to Si: a: 1:16; b: 1:8; c: 1:3; d: 1:2

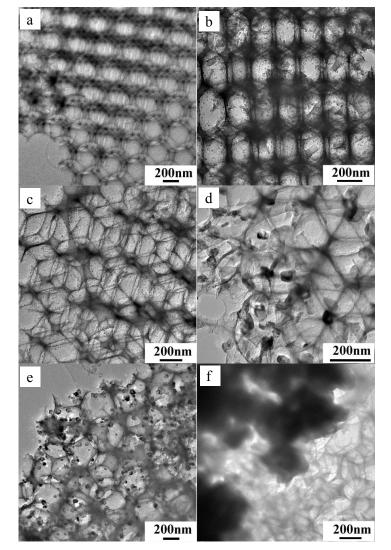


Fig. 4 TEM images of 3DOM SiO₂-supported transition metal catalysts. a: SiO₂; b: MnO_x/SiO₂; c: Fe₂O₃/SiO₂; d: Co₃O₄/SiO₂; e: NiO/SiO₂; f: CuO/SiO₂.

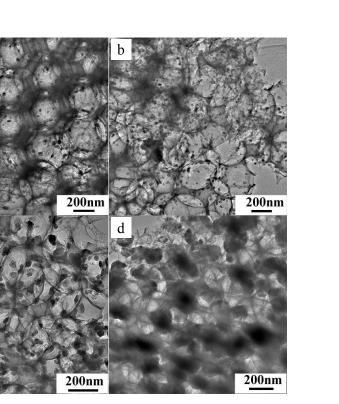


Fig. 5 TEM images of 3DOM SiO₂-supported MnO_x catalysts. Molar ratio of Mn to Si: a: 1:16; b: 1:8; c: 1:3; d: 1:2

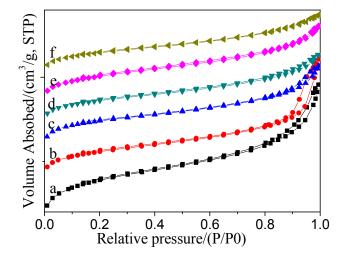


Fig.6 Nitrogen adsorption-desorption isotherms of 3DOM SiO₂-supported transition metal catalysts a: SiO₂; b: MnO_x/SiO₂; c: Fe₂O₃/SiO₂; d: Co₃O₄/SiO₂; e: NiO/SiO₂; f: CuO/SiO₂.

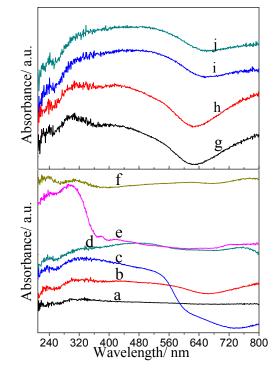


Fig. 7 UV-Vis DRS of 3DOM SiO₂-supported transition metal catalysts. a: SiO₂, b: MnO_x/SiO₂, c: Fe₂O₃/SiO₂, d: Co₃O₄/SiO₂, e: NiO/SiO₂, f: CuO/SiO₂; molar ratio of Mn to Si: g: 1:16; h: i:8; c: 1:3; j: 1:2

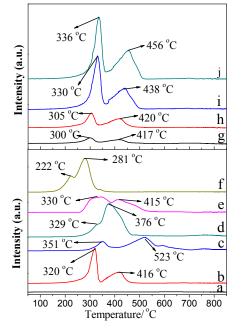


Fig. 8 H₂-TPR profiles of 3DOM SiO₂-supported transition metal catalysts. a: SiO₂, b: MnO_x/SiO₂, c: Fe₂O₃/SiO₂, d: Co₃O₄/SiO₂, e: NiO/SiO₂, f: CuO/SiO₂; molar ratio of Mn to Si: g: 1:16; h: 1:8; i: 1:3; j: 1:2

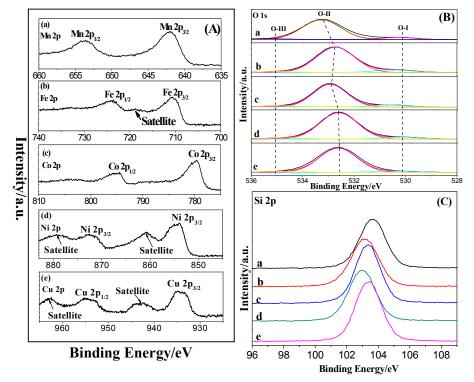


Fig. 9 XPS spectra of 3DOM SiO₂-supported transition metal catalysts. a: MnO_x/SiO₂; b: Fe₂O₃/SiO₂; c: Co₃O₄/SiO₂; d: NiO/SiO₂; e: CuO/SiO₂.

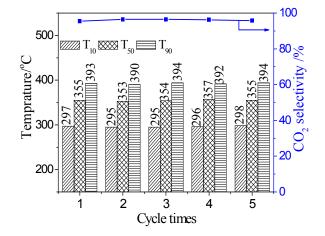


Fig. 10 Stability tested results of 3DOM MnO_x/SiO₂ catalyst for soot combustion (molar ratio

of Mn to Si is 1:4)

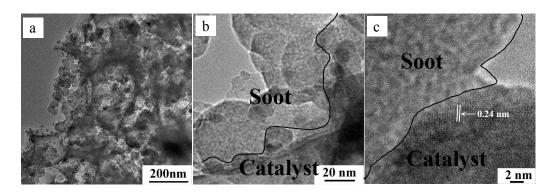


Fig. 11 TEM (a,b) and HRTEM (c) images of 3DOM MnO_x/SiO₂ and soot particles