

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Preparation of M/γ -Al ₂ O ₃ sorbents and their desulfurization performance
2	in hydrocarbons
3	Junjie Liao, Yashan Wang, Liping Chang, Weiren Bao [*]
4	State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi
5	Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan
6	030024, P.R. China
7	Abstract: M/γ -Al ₂ O ₃ sorbents with different metals (Ag, Cu, Ni, Zn) as the active component
8	loaded on γ -Al ₂ O ₃ support were prepared by incipient wetness impregnation method, and their
9	adsorption behavior for thiophene was investigated. The results show that all those metals can
10	obviously promote the desulfurization activity of the prepared sorbents, and Ag is the best one.
11	And then silver was selected to modify γ -Al ₂ O ₃ with different loading amount, and the
12	desulfurization behavior of Ag/γ - Al_2O_3 series sorbents in thiophene-benzene solution was
13	evaluated. It was found that the silver content has a significant impact on desulfurization
14	efficiency, and the A15 sorbent with 13.7 wt% silver has the best adsorption desulfurization
15	performance. XRD results show that the simply Ag^0 is the main active component in
16	Ag/γ - Al_2O_3 sorbent. SEM/EDS and BET characterizations show that the specific surface area
17	and pore volume decrease obviously when silver loading amount is more than 13.7wt%,
18	because of the agglomeration of silver. The desulfurization mechanism of Ag/γ - Al_2O_3 sorbent
19	was explored by using thiophene which has both a conjugated pi bond and sulfur,
20	tetrahydrothiophene which has sulfur but no conjugated pi bond, benzene which has a
21	conjugated pi bond but no sulfur, cyclohexane which has no conjugated pi bonds or sulfur as
22	the model compounds. The desulfurization efficiencies of A15 sorbent in thiophene-benzene,

* Corresponding author: Weiren Bao Tel/Fax:+86 351 6010482

E-mail: baoweiren@tyut.edu.cn

RSC Advances Accepted Manuscript

23 thiophene-cyclohexane, thiophene-tetrahydrothiophene-benzene and 24 thiophene-tetrahydrothiophene-cyclohexane solutions were compared. The results indicate that the thiophene adsorption on Ag/γ - Al_2O_3 sorbent is mainly dominated by two kinds of 25 26 connection between thiophene and silver. One is the connection between conjugated pi bond 27 and silver (π -complexation), and the other one is the connection between sulfur and silver (S-metal bond). This is also the main reason that benzene has the competitive adsorption 28 29 behavior on thiophene.

30 **Keywords:** thiophene, adsorption, desulfurization, Ag/γ - Al_2O_3 sorbent, adsorption 31 mechanism

32 **1. Introduction**

Benzene is an important chemical feedstock, which is widely used for synthesizing of 33 polymer¹, resin², fiber³, pharmaceuticals, pesticides, explosives, dyes and so on. But as its 34 35 main source, the coking benzene contains a certain content of sulfur-containing compounds, especially thiophene, which will have bad effects on further uses of benzene⁴. Accordingly, 36 37 the attempts have been made for the purification of coking benzene and some methods to chemically remove thiophene impurities from benzene have been presented. Nowadays, the 38 39 methods industrialized for the benzene desulfurization purification mainly include the sulfuric 40 acid washing, the catalytic hydrogenation and the extractive rectification. However, the sulfuric acid refining method has the disadvantages of equipment corrosion and 41 environmental pollution⁵, the catalytic hydrogenation method consumes hydrogen and has 42 high operating costs, the extractive rectification method consumes large amount of energy and 43 desulfurization efficiency is not very high⁶. In contrast, selective adsorption method has the 44 great potential with the advantages of smaller equipment corrosion, less environmental 45 pollution, lower operating costs, and no hydrogen consumed. 46

47 However, lots of literature about selective adsorption method are all almost focused on the

desulfurization in the transportation fuels⁷⁻¹⁵, only a few on the purification of benzene¹⁶⁻¹⁹. 48 49 Some researchers reported that the transition metal-based sorbent is effective for selectively adsorbing the sulfur compounds in the liquid hydrocarbon fuels at ambient temperature under 50 atmospheric pressure with low investment and operating cost²⁰. Transition metal (Cu, Zn, Ni 51 or Ag) could enhance adsorption properties for thiophene and toluene on some sorbents, such 52 as Y-zeolites^{21, 22}, because Cu and Ag in sorbents are likely combine S-containing compounds 53 by π -complexation²³, Ni and Zn in the S-sorb desulfurization catalyst invented by Sinopec 54 and Philips companies play a very important role on the desulfurization process^{24, 25}. 55 Nevertheless, a common problem is that the aromatic compounds, e.g. benzene, have the 56 competitive adsorption with thiophene^{8, 26, 27}, because benzene has very similar physical and 57 chemical properties as that of thiophene, and thus have an obvious competitive effect on 58 thiophene adsorption. Therefore, most of these sorbents reported for desulfurization of liquid 59 fuel could not remove enough thiophene from benzene to give the required low sulfur 60 61 concentration because the adsorptive removal of thiophene from liquid fuel and benzene is 62 quite different. For liquid fuel, its main components are saturated hydrocarbons, the 63 competitive effect of which is much less and can be ignored, whereas for conking benzene, 64 the main component is benzene. Even though there is the study about the competitive adsorption of thiophene and benzene²⁸, it is only the removal of thiophene from fuel 65 containing the similar level of benzene, in which the competitive adsorption is much smaller 66 comparing with benzene solvent. Therefore, it is difficult to remove thiophene with the ppm 67 level from benzene because of the competitive adsorption of aromatic compound with very 68 69 similar physical and chemical properties. In order to improve the sulfur capacity and 70 efficiency of sorbents removing thiophene from benzene, it is necessary to study their 71 adsorption mechanism and optimize the technological parameters.

In this paper, γ -Al₂O₃ was selected as the support and different metal nitrates were chosen

as the precursors of active components because of their high water solubility and the easy decomposition during heating. A series M/γ -Al₂O₃ sorbents were prepared by incipient

wetness impregnation method. And then the removal of thiophene from benzene was investigated. In order to investigate the adsorption mechanism of thiophene on M/γ -Al₂O₃ sorbent, the adsorption behaviors of the aromatic hydrocarbon (benzene) and the unsaturated cyclic sulfur organic-compound (thiophene) and their saturated analogs (cyclohexane and tetrahydrothiophene, respectively) on M/γ -Al₂O₃ sorbent were compared.

80 **2. Experimental**

73

74

81 2.1. Preparation of sorbents

 γ -Al₂O₃ powder (0.177–0.125 mm), a meso-pore material, which was purchased from Shandong Kunpeng New Materials Co. Led., was used as the support of sorbent. Before use, it was dried at 120 °C for 4 h to remove the water. Then, it was respectively incipient wetness impregnated in the aqueous solution of Cu(NO₃)₂, Ni(NO₃)₂, Zn(NO₃)₂ and AgNO₃ with a predicted volume for 4 h. The samples prepared were dried at 80 °C for 2 h, calcined in Muffle furnace at 500 °C for 4 h to obtain the experimental sorbents.

88 The actual silver loading amount of the prepared samples was quantified using the Volhard method. The samples were first dried overnight at 220 °C, and dissolved with excess HNO₃ 89 90 and titrated with a standard thiocynate solution with an Fe(III) indicator. And the amount of 91 copper, nickel and zinc loaded on γ -Al₂O₃ was analyzed by atomic absorption 92 spectrophotometer (AAS). The series sorbents prepared and their metal loaded amounts were shown in **Table 1**. A0 denotes the blank γ -Al₂O₃ support, which is the original γ -Al₂O₃ 93 following the sorbent preparation procedure without adding any metal. A5, A10, A15 and 94 A20 respectively denote the sorbent with different Ag content. C5, N5, Z5 denote the sorbent 95 96 with Cu, Ni and Zn as the active component respectively.

Sorbents	A0	A5	A10	A15	A20	C5	N5	Z5
Metal content (wt%)	0.0	4.6	9.5	13.8	17.6	4.7	4.4	4.5
2.2. Adsorption experim	ents							
In order to choose the suitable active component for thiophene adsorption from benzene,								
1.00 g of A0, A5, C5, N5 and Z5 sorbent was respectively soaked in 4.00 mL								
thiophene-benzene solution with the thiophene concentration of 559.8 mg/L in an ampoule								
bottle at room temperature for 24 h which was considered that it reached the adsorption								
quasi equilibrium and also was proved by the data stated in this paper. After adsorption the								
approximation of this phone in the solution was determined by and shrometography CC 050								
concentration of thiophene in the solution was determined by gas chromatography GC-950								
(Shanghai Haixin chromatography Co., Ltd.) coupled with flame photometric detector (FPD)								
and TCEP-7 column (2.5 m $_{\times}$ $_{\varphi}4$ mm), and the column temperature, inlet temperature and								
detector temperature are 80 °C, 120 °C and 160 °C, respectively. The carrier gas is high purity								
nitrogen, and the column pressure is 0.1 Mpa. The flow rate of high purity hydrogen and air								
for FPD is 40 mL/min a	nd 50 m	L/min, re	espectivel	у.				
			Pactive m	etal compo	onent on tl	niophene	e adsorpt	ion aı
In order to investigate	e the infl	uence of		P				
In order to investigate the corresponding adsor	e the infl rption m	uence of	n, the sor	bents with	h differen	t active	compon	ent a
In order to investigate he corresponding adsor different content were p	e the infl rption m out in 4.0	uence of lechanisr 00 mL d	n, the sor	bents with	h differen fur-contai	t active	componettions sh	ent a
In order to investigate he corresponding adsor lifferent content were p Γ able 2 at room temper	e the infl rption m out in 4.0 rature for	uence of lechanisr 00 mL d r 24 h. T	n, the sor ifferent or he reason	bents with ganic sulf why these	h differen fur-contain e sulfur-co	t active ning solu	compone utions sh g solution	ent a Iown Ins we

molecule has a sulfur atom but does not have a conjugated pi bond, benzene molecule has a conjugated pi bond but does not have a sulfur atom, cyclohexane has no conjugated pi bonds and sulfur, and the structure diagram of those four compounds was shown in **Figure 1**. The

RSC Advances Accepted Manuscript

121	desulfurization efficiency for the sulfur-containing compounds in different solution on the
122	selected sorbent was measured. The effect of the conjugated pi bond on adsorption can be
123	explored by comparing the desulfurization efficiency in thiophene-benzene solution (TH-B)
124	and thiophene-cyclohexane solution (TH-C). The effect of the sulfur atom on adsorption can
125	be explored by comparing the desulfurization efficiency in thiophene-benzene solution (TH-B)
126	and tetrahydrothiophene-benzene solution (THT-B). While,
127	tetrahydrothiophene-thiophene-benzene solution (TH-THT-B) and
128	tetrahydrothiophene-thiophene-cyclohexane solution (TH-THT-C) were used to further
129	explore the adsorption mechanism.

130

Table 2. Solutions used in this study

Solutions	sulfur containing compounds	Solvent	$C_{\text{thiophene}}$	C _{tetrahydrothiophene}
Solutions	sunui-containing compounds	Solvent	(mg/L)	(mg/L)
TH-B	thiophene	benzene	559.8	0.0
THT-B	tetrahydrothiophene	benzene	0.0	592.1
TH-C	thiophene	cyclohexane	592.5	0.0
TH-THT-B	thiophene/tetrahydrothiophene	benzene	545.2	592.1
TH-THT-C	thiophene/tetrahydrothiophene	cyclohexane	543.9	577.6

Figure 1 Structure diagram of benzene, thiophene, cyclohexane and tetrahtdrothiophene
 The desulfurization efficiency (η, %) and thiophene adsorption capacity (Q, mg/g sorbent)

136
$$\eta = \frac{c_0 - c}{c_0} \times 100\%$$
 (1)

137
$$Q = \frac{4 \times (c_0 - c)}{1000}$$
(2)

where, c_o is the initial concentration of thiophene or tetrahydrothiophene in the solution (mg/L); *c* is the concentration of thiophene or tetrahydrothiophene in the solution (mg/L) when it reached the adsorption quasi-equilibrium.

The saturation adsorption capacities, measured my weight method, for benzene, thiophene and hydrotetrathiophene of A15 sorbent are 19.36mg/g, 24.66 mg/g and 36.51mg/g. The best sorbent was put into 4.00 mL thiophene, tetrahydrothiophene and benzene with the analytically pure at room temperature for 24 h respectively, then filtrated and dried in a vacuum oven at 50 °C for 12 h, and the samples prepared were denoted by A15TH, A15THT and A15B respectively.

147 2.3. Characterization of sorbents

The structure of sorbents was characterized by X-ray diffraction (XRD) apparatus of D/max-rB, which was made in Janpan, at a scanning rate of 5 °/min from 30 ° to 80 ° with Cu-K α radial, λ =0.15046 nm X-ray, 40 kV tube voltage and 100 mA tube current. The surface area, pore volume and pore size distribution of the samples were measured by nitrogen adsorption isotherms using a Micromeritics/ASAP2000 apparatus according to the BET and BJH models.

FT-IR spectra of samples were recorded on an Equinox55 spectrometer (Bruker, Germany) in the wavenumber range of 400-4000 cm⁻¹, 16 scans were taken at a resolution of 4 cm⁻¹. To prepare pellets, 1mg samples were first ground to powder in an agate mortar and then mixed with 100 mg KBr. A hydraulic press was used to press the resulting mixtures to discs of 10 mm in diameter at 10 MPa for 2 min.

159 **3. Results and discussion**

160 3.1. Selection of active component for desulfurization over prepared M/γ - Al_2O_3 sorbents

161 Figure 2 shows the desulfurization efficiencies and thiophene adsorption capacity of 162 sorbents with different metal components in thiophene-benzene solution. It can be seen that 163 A0 sorbent which is the blank sample, γ -Al₂O₃ support without metal loaded actually, can only adsorb a little thiophene (0.006 mg/g) from benzene with the desulfurization efficiency 164 165 of 2.9%, whereas the desulfurization efficiency of other sorbents with metal loaded (C5, N5, 166 Z5 and A5) is significantly higher. This indicates that the metals (Cu, Ni, Zn and Ag) loaded 167 on γ -Al₂O₃ are the main active components, which play a very important role on thiophene 168 adsorption, and the activity of silver is the highest. It was reported in the literature that after modification γ -Al₂O₃ in Cu(NO₃)₂, Ni(NO₃)₂ or Zn(NO₃)₂ aqueous solution followed by 169 calcination in air, these metal elements will exist as their oxidates²⁹, which belong to Lewis 170 acid. In contrast, thiophene is soft Lewis base³⁰, thus thiophene can combine with such metal 171 oxidates. Moreover, NiO, ZnO, and CuO are intermediate Lewis acids, whereas Ag and Ag₂O 172 173 are both soft Lewis acid. So Ag and Ag₂O has a stronger force with thiophene according to the principle of "Hard and Soft Acid and Base"—hard likes the hard and soft likes the soft³¹. 174 175 This could explain Ag component is more suitable for the preparation of M/γ-Al₂O₃ sorbent 176 for the desulfurization from coking benzene, compared with Cu, Ni and Zn.

178 **Figure 2.** Desulfurization efficiency (a) and thiophene adsorption capacity (b) of sorbents

with different metal loaded in TH-B solution

3.2. Effect of loading amount and distribution of metal component on desulfurization activity
of sorbent

From above experimental results, the desulfurization activity of Ag/γ - Al_2O_3 sorbent is 182 183 higher than others. So it is necessary to investigate the effect of loading amount and 184 distribution of silver on desulfurization activity of Ag/γ - Al_2O_3 sorbent. Figure 3 illustrates the desulfurization efficiency and thiophene adsorption capacity of Ag/y-Al₂O₃ sorbents with 185 different silver loaded amount in thiophene-benzene solution. It can be found that from A0 186 187 sorbent to A15 sorbent, the desulfurization efficiency and thiophene adsorption capacity 188 increase with the increase of silver content (shown in **Table 1**). However, compared with A15 189 sorbent, the silver content of A20 sorbent is higher, but its desulfurization efficiency (30.6%) 190 is much lower than that of A15 sorbent (96.9%). In order to reveal this phenomenon, XRD, 191 SEM/EDS and N2 adsorption were carried out to characterize sliver existing form and 192 distribution and the physical structure of A0, A5, A10, A15 and A20 sorbents, which are the 193 typical properties affecting the desulfurization activity of sorbent.

that the crystal structure of γ -Al₂O₃ is retained after AgNO₃ loaded and followed heat **RSC Advances Accepted Manuscript**

199 treatment. Other peaks at 38.12°, 44.30°, 64.44° and 77.40°, corresponding to the simply 200 Ag^{0} crystals³², show that the active component mainly appears in the form of Ag^{0} after 201 calcination step during preparation. Figure 5 shows the thermal decomposition process of 202 AgNO₃ in air. The decomposition begins at about 450 °C, which is the same as the result 203 reported by literature²⁹, and when the decomposition finished, about 64% of the total weight 204 left, which is just the silver content in pure AgNO₃. So from this point, AgNO₃ loaded on 205 206 sorbent should be decomposed under the experimental condition (calcinations temperature was 500 °C) and the chemical reaction follows the equation of $2AgNO_3 = 2Ag+O_2+2NO_2^{33, 34}$. 207 In order to further investigate the silver existing form, FT-IR was carried out to characterize 208 209 A15 sorbent. As shown in Figure 6, for A15 sorbent, its XPS spectral of the core level of both Ag 3d_{3/2} (a) and O 1s all could be deconvoluted into three peaks. As demonstrated in 210 211 Figure 6(a), in the XPS spectral of Ag 3d3/2, the peaks at 373.7 eV, 374.6 eV and 375.5 eV are corresponding to Ag^{0 35, 36}, Ag₂O and Ag-O-Al species, respectively. As listed in Figure 6(b), 212 213 n the XPS spectral of O1s the peak at 530.6 eV is attributed to Al₂O₃, and the peaks at 532.2 eV 214 and 533.0 eV should belong to Ag₂O and Ag-O-Al species, respectively. As listed in Figure 7, in the spectrum of A0, the peaks at 3438 cm⁻¹ and 1636 cm⁻¹ are attributed to -OH groups, the 215 peaks at 760 cm⁻¹ and 574 cm⁻¹ belong to O-Al bond, whereas in the spectrum of A15, the 216 intensity of peaks at 2955 cm⁻¹, 2926 cm⁻¹ and 2855 cm⁻¹ are obviously increases, and some 217 new peaks, 1385 cm⁻¹, 1385 cm⁻¹ and 1116 cm⁻¹ appear, which are attributed to Ag₂O, and the 218 peak at 1743 cm⁻¹ may be corresponding to Ag-O-Al. The XRD, XPS and FT-IR results all 219 220 suggest that silver exists in Ag0, Ag₂O and Ag-O-Al forms on γ -Al₂O₃ support, and among of 221 them Ag is the main component.

223

Figure 4. XRD patterns of Ag/γ - Al_2O_3 series sorbents prepared (a: Ag, b: γ - Al_2O_3)

225

226

Figure 5. TG and DTG curves of AgNO₃ in air

Figure 7. FT-IR spectral of A0 and A15 sorbents

231 Silver distribution on the surface of Ag/γ - Al_2O_3 sorbents was measured by SEM/EDS, and 232 the results are shown in Figure 8. On the surface of A10 sorbent, silver distributes 233 homogeneously, and there is no sliver agglomeration in the surface EDS image, which could 234 explain the relative high desulfurization efficiency of A10 sorbent. On A15 sorbent's surface, 235 most of sliver is still distributed very well which should explain why the desulfurization 236 efficiency of A15 sorbent is higher than that of A10 sorbent. Moreover, a few small 237 particles which are the sliver agglomeration verified from the EDS results, appear on A15 238 sorbent could explain why the desulfurization efficiency increment from A10 to A15 is not so 239 obvious as that from A5 to A10. This should explain why the desulfurization efficiency of 240 A15 sorbent is slightly higher than that of A10 sorbent. However, for A20 sorbent, most of its 241 surface was covered by sliver agglomeration particles, which could aromatically decrease its 242 desulfurization efficiency, and this is why the desulfurization activity of A20 sorbent is much 243 lower than that of A15 sorbent.

244

229

230

245

Figure 8. SEM and EDS results of A10, A15 and A20 sorbents

248 Figure 9 provides the nitrogen adsorption and desorption isotherms of sorbents. The adsorption isotherms of all the sorbents belong to the typical IV type, and all sorbents have 249 250 mesoporous adsorption behavior. In adsorption isotherms, as the relative pressure increasing 251 from 0.4 to 0.7, the curves rises up sharply, which can be attributed to the occurrence of 252 capillary condensation. And in adsorption/desorption branches, a hysteresis loop is appeared, 253 which indicates the mesopore characteristic of the adsorption-desorption isotherms. The 254 corresponding surface area and pore size distribution of Ag/γ-Al₂O₃ sorbents are respectively listed in Table 3. The pore volume and BET specific area (S_{BET}) of Ag/ γ -Al₂O₃ sorbents all 255

decreases with the silver content increasing. The decrease of S_{BET} for the A20 sorbent with 20% Ag content should be due to the agglomeration of the active component, which can be observed in its SEM/EDS image (**Figure 8**), and this is also why the total pore volume and the average pore diameter (shown in **Table 3**) of A20 sorbent is much less than that of A15 sorbent.

261

Figure 9. N₂ adsorption and desorption isotherms of Ag/γ -Al₂O₃ sorbents

263

 Table 3. Surface area and pore volume of different sorbents

Sorbents	Specific surface area (m ² /g)	Pore volume (cm ³ /g)	Average pore diameter (nm)
A0	156	0.208	36.8
A5	146	0.180	35.0
A10	132	0.170	33.5
A15	132	0.154	31.5
A20	120	0.145	27.9

264 3.3. Adsorption desulfurization mechanisms of Ag/γ - Al_2O_3 sorbent

Adsorption results of Ag/γ -Al₂O₃ sorbents in TH-B and TH-C solutions are shown in Figure 10. In TH-C solution, the desulfurization efficiency of all these Ag/γ -Al₂O₃ sorbents is about 100%, whereas, in TH-B solution, it is lower for A10 and A15 sorbents, and much lower for A5 and A20 sorbents. This suggests that benzene presents the competitive adsorption with thiophene over Ag/γ -Al₂O₃ sorbent. This competitive adsorption effect should

be attributed to the connection between the active component and the conjugated pi bond as well as the π -complexation, because the structures of thiophene and benzene are very similar to each other with the unsaturated organic compounds, and the similar composition of six electron conjugated pi bond, which could connect to silver on these sorbents by π -complexation. However, for cyclohexane, it does not have conjugated pi bond, and thus does not have competitive adsorption effect, which is why the desulfurization efficiency of all the Ag/ γ -Al₂O₃ sorbents is close to 100%.

277

Figure 10. Comparison of desulfurization efficiency of different Ag/γ - Al_2O_3 sorbents in TH-B and TH-C solutions

280 Figure 11 shows the desulfurization efficiency of Ag/γ - Al_2O_3 sorbents in TH-B and THT-B solutions. It can be found that the desulfurization efficiency of all the Ag/y-Al₂O₃ sorbents in 281 282 THT-B solution is higher than that in TH-B solution, which means that the removal of 283 tetrahydrothiophene from benzene is much easier than that of thiophene from benzene, and 284 the removal efficiency of tetrahydrothiophene from benzene over Ag/γ - Al_2O_3 sorbents is 285 around 99%. It indicates that benzene almost has no competitive adsorption effect on the adsorption of tetrahydrothiophene on Ag/γ-Al2O3 sorbents' surface even benzene could 286 287 connect to silver by π -complexation, which means that tetrahydrothiophene molecule could

288 be adsorbed on Ag/y-Al₂O₃ sorbents by a different way. And thus, in addition to the π -complexation adsorption mechanism discussed above, there should be another adsorption 289 mechanism between thiophenes and silver. If a comparison is made between 290 291 tetrahydrothiophene and thiophene molecules, it is very easy to find that both of them all have 292 sulfur atoms, which have lone-pair electrons. So it is probable that tetrahydrothiophene and 293 thiophene can act as the n-type donors by donating the lone-pair electrons that lie in the plane of the ring to the silver on $Ag/\gamma - Al_2O_3$ sorbents to form S-Ag bond (S-M mechanism³⁷), 294 295 because silver has unoccupied orbital, which could accept this donation.

Figure 11. Desulfurization efficiency of Ag/γ -Al₂O₃ sorbents in TH-B and THT-B solutions Figure 12 show the FT-IR spectral of different samples in the range of 4000 cm⁻¹-400 cm⁻¹ (a), 3100 cm⁻¹-2700 cm⁻¹ (b) and 1800 cm⁻¹-1000 cm⁻¹ (c). It can be seen that, after benzene, thiophene and tetrahydrothiophene absorbed on A15 sorbent, the intensity of the peaks at 2925 cm⁻¹, 2926 cm⁻¹, 2855 cm⁻¹ and 1385 cm⁻¹ all decreased significantly, and the peaks at 1743 cm⁻¹, 1462 cm⁻¹, 1116 cm⁻¹ disappeared, which suggest that the Ag₂O and Ag-O-Al spices all can combine to benzene, thiophene and tetrahydrothiophene.

304

305

Figure 12. FT-IR spectral of different samples in the range of 4000 cm⁻¹-400 cm⁻¹ (a), $3100 \text{ cm}^{-1}\text{-}2700 \text{ cm}^{-1}$ (b) and $1800 \text{ cm}^{-1}\text{-}1000 \text{ cm}^{-1}$ (c)

In order to further understand the π -complexation and S-M mechanisms proposed above, 307 the desulfurization behavior in TH-THT-C and TH-THT-B solutions over Ag/y-Al2O3 308 309 sorbents was studied, and the results were shown in **Figure 13**. The desulfurization efficiency 310 for tetrahydrothiophene and thiophene in TH-THT-C solution is 100%, whereas that for 311 thiophene in TH-THT-B solution (95.8%) is relatively lower. It indicates that thiophene almost has no competitive effect on tetrahydrothiophene adsorption, which may because the 312 S-Ag bond formed between tetrahydrothiophene and silver is stronger than that formed 313 314 between thiophene and silver, for the sulfur atom in tetrahydrothiophene molecule has two 315 lone-pair electrons, whereas the sulfur atom in thiophene molecule only has one lone-pair 316 electrons. It could also explain why the adsorption rate of tetrahydrothiophene (shown in 317 Figure 14) in these two solutions is much higher than that of thiophene.

RSC Advances Accepted Manuscript

318

Figure 13. Comparison of thiophene adsorption over A15 sorbent in TH-THT-B and

320

TH-THT-C solution

Figure 14. Adsorption curves of thiophene and tetrahydrothiophene over A15 sorbent in
 thiophene-tetrahydrothiophene-cyclohexane and thiophene-tetrahydrothiophene-benzene
 solutions

325 4. Conclusions

Copper, nickel, zinc and silver elements loaded on γ -Al₂O₃ could significantly improve the desulfurization activity of M/ γ -Al₂O₃ sorbents, and silver is the best. On Ag/ γ -Al₂O₃ sorbent, the loading amount and distribution of silver are the main factors influencing the desulfurization capacity of sorbent. With the increase of silver content in sorbent from 0 to 13.8%, the desulfurization efficiency increases, whereas when it is increased to 17.6%, the sliver agglomeration appears very seriously, and thus its desulfurization efficiency decreases

333

RSC Advances

 π -complexation and S-M bond between thiophene and silver. The competitive adsorption of

334	benze	the with thiophene over Ag/γ - Al_2O_3 sorbent is caused by the π -complexation				
335	mechanism.					
336	5 Acknowledgements					
337	Th	e authors gratefully acknowledge Mr. Yanjun Zhang and Ms Yanna Han for the samples				
338	preparation and SEM/EDS characterization, respectively. The financial support of National					
339	Natural Science Foundation of China (51372161, 21406151), Research Fund for Doctoral					
340	Program of High Education (20131402110010) and Shanxi Scholarship Council of China					
341	(2012-0039) were highly appreciated.					
342	Refer	ences				
343	1.	P. F. McMillan, Nat Mater, 2007, 6, 7-8.				
344	2.	R. Ruhela, A. Rao, N. Iyer, A. Das, P. Kumar, A. K. Singh, B. S. Tomar and R. C. Hubli, RSC Advances,				
345		2014, 4, 62654-62661.				
346	3.	T. Fukuda, Y. Hayasaki, T. Hasumura, Y. Katsube, R. L. D. Whitby and T. Maekawa, RSC Advances,				
347		2015, 5, 12671-12677.				
348	4.	J. Liao, Y. Wang, L. Chang and W. Bao, Green Chemistry, 2015, 17, 3164-3175.				
349	5.	United States Pat., 2707699, 1955.				
350	6.	United States Pat., 3879268, 1975.				
351	7.	Y. Shen, X. Xu and P. Li, RSC Advances, 2012, 2, 6155-6160.				
352	8.	F. Duan, C. Chen, G. Wang, Y. Yang, X. Liu and Y. Qin, RSC Advances, 2014, 4, 1469-1475.				
353	9.	P. S. Kulkarni and C. A. M. Afonso, Green Chemistry, 2010, 12, 1139-1149.				
354	10.	X. Li, X. Zhang and L. Lei, Separation and Purification Technology, 2009, 64, 326-331.				
355	11.	G. Bai, X. Lan, X. Liu, C. Liu, L. Shi, Q. Chen and G. Chen, Green Chemistry, 2014, 16, 3160-3168.				
356	12.	A. Samokhvalov, E. C. Duin, S. Nair, M. Bowman, Z. Davis and B. J. Tatarchuk, The Journal of				
357		Physical Chemistry C, 2010, 114, 4075-4085.				
358	13.	C. Shen, Y. J. Wang, J. H. Xu, Y. C. Lu and G. S. Luo, Green Chemistry, 2012, 14, 1009-1015.				
359	14.	C. Li, D. Li, S. Zou, Z. Li, J. Yin, A. Wang, Y. Cui, Z. Yao and Q. Zhao, Green Chemistry, 2013, 15,				
360		2793-2799.				
361	15.	T. Jin, Q. Yang, C. Meng, J. Xu, H. Liu, J. Hu and H. Ling, RSC Advances, 2014, 4, 41902-41909.				
362	16.	Y. Zeng and S. Ju, Separation and Purification Technology, 2009, 67, 71-78.				
363	17.	L. Song, T. Bu, L. Zhu, Y. Zhou, Y. Xiang and D. Xia, The Journal of Physical Chemistry C, 2014, 118,				
364		9468-9476.				
365	18.	J. Liao, W. Bao, Y. Chen, Y. Zhang and L. Chang, Energy Sources, Part A: Recovery, Utilization, and				
366		Environmental Effects, 2012, 34, 618-625.				
367	19.	J. Liao, W. Wang, Y. Xie, Y. Zhang, L. Chang and W. Bao, Separation Science and Technology, 2012,				

368		47, 1880-1885.
369	20.	L. Duan, X. Gao, X. Meng, H. Zhang, Q. Wang, Y. Qin, X. Zhang and L. Song, The Journal of Physical
370		<i>Chemistry C</i> , 2012, 116, 25748-25756.
371	21.	A. H. M. S. Hussain, M. L. McKee, J. M. Heinzel, X. Sun and B. J. Tatarchuk, The Journal of Physical
372		Chemistry C, 2014, 118, 14938-14947.
373	22.	L. Wu, J. Xiao, Y. Wu, S. Xian, G. Miao, H. Wang and Z. Li, Langmuir, 2014, 30, 1080-1088.
374	23.	D. Lee, J. Kim, H. C. Lee, K. H. Lee, E. D. Park and H. C. Woo, The Journal of Physical Chemistry C,
375		2008, 112, 18955-18962.
376	24.	J. Gislason, Oil Gas J., 2001, 99, 72-72.
377	25.	C. Song, Catalysis Today, 2003, 86, 211-263.
378	26.	J. Guo, M. J. Janik and C. Song, The Journal of Physical Chemistry C, 2012, 116, 3457-3466.
379	27.	S. Sato, F. Nozaki, SJ. Zhang and P. Cheng, Applied Catalysis A: General, 1996, 143, 271-281.
380	28.	A. J. Hernández-Maldonado and R. T. Yang, Industrial & Engineering Chemistry Research, 2003, 42,
381		123-129.
382	29.	S. Yuvaraj, L. Fan-Yuan, C. Tsong-Huei and Y. Chuin-Tih, The Journal of Physical Chemistry B, 2003,
383		107, 1044-1047.
384	30.	M. Xue, R. Chitrakar, K. Sakane, T. Hirotsu, K. Ooi, Y. Yoshimura, Q. Feng and N. Sumida, Journal of
385		Colloid and Interface Science, 2005, 285, 487-492.
386	31.	R. G. Pearson, Journal of the American Chemical Society, 1963, 85, 3533-3539.
387	32.	S. Ribeiro, C. M. Granadeiro, P. Silva, F. A. Almeida Paz, F. F. de Biani, L. Cunha-Silva and S. S.
388		Balula, Catalysis Science & Technology, 2013, 3, 2404-2414.
389	33.	JW. Kwon, S. H. Yoon, S. S. Lee, K. W. Seo and IW. Shim, Bull. Korean Chem. Soc, 2005, 26,
390		837-840.
391	34.	K. Otto, I. Oja Acik, M. Krunks, K. Tõnsuaadu and A. Mere, J Therm Anal Calorim, 2014, 118,
392		1065-1072.
393	35.	S. M. Hosseini, I. A. Sarsari, P. Kameli and H. Salamati, Journal of Alloys and Compounds, 2015, 640,
394		408-415.
395	36.	S. W. Han, Y. Kim and K. Kim, Journal of Colloid and Interface Science, 1998, 208, 272-278.
396	37.	X. Yan, P. Mei, L. Xiong, L. Gao, Q. Yang and L. Gong, Catalysis Science & Technology, 2013, 3,
397		1985-1992.
398		
399		