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Yanga

The phase transition of complex fluids is intrinsically a multi-scale problem. In this paper we pro-
posed a multi-scale two-fluid model, that couples a coarse-grained microscopic method to the
two-fluid framework for studying the multi-phase fluids under shear flow. In this model the macro-
scopic viscoelastic stress is calculated by tracking massive microscopic Brownian configuration
fields in the simulation box. Both of the macroscopic and the microscopic equations are solved
using a modified PISO iterative algorithm based on finite volume discretization scheme. Our 2D
numerical results reproduce numerous dynamic phenomena reported in literature and show that
the theoretical model presented here could be a possible multi-scale approach to numerically
study the multi-phase viscoelastic fluids under flow.

1 Introduction
Phase separation is a fundamental phenomenon that is commonly
observed in complex fluids. Driven by the thermodynamical and
the viscoelastic forces, the system can produce spatially hetero-
geneous patterns. After the experimental result presented by Sil-
berberg1 showing that the phase transitions of polymer solutions
can be strongly influenced by flow, there have been numerous re-
ports on the shear-induced phase separation in complex fluids2–5.
Typically, the morphology of the field will form into band struc-
tures under shear flow. As a closely related phenomenon, the
shear-banded flows also have been widely studied. The reader
interested in the shear-banding and its relations to the phase sep-
aration under shear flows may refer to the four review papers6–9.

Although most of the numerical study of the shear-induced
phase transition considered the system in a thermal-equilibrium
state, most systems found in nature are not in such an ideal state.
In this paper we focused on the non-equilibrium phase separa-
tion under shear flow. In classical binary fluids, the spinodal de-
composition will occur after a temperature quench without flow.
This non-equilibrium phase separation has been well understood
through numerous early experimental10–14 and numerical15–17

research. Additionally, a number of intriguing effects induced by
shear were observed, typical results included the highly elongated
domains in very weak shear and a string phase in steady state un-
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der strong shear. For colloidal systems under shear the reader
could refer to the review paper by Lowen18. Stansell’s group19,20

provided convincing evidences for the non-equilibrium steady
states through numerical simulation. Fielding21 presented an in-
depth numerical study on the role of inertia in non-equilibrium
steady states and confirmed that the nonequilibrum steady states
free of finite-size effects only existed in the systems with inertia.

Theoretically, modeling the phase transition under flow in-
volves the thermodynamics, hydrodynamics and the viscoelas-
tic effects. For simplicity, most of the previous study about the
non-equilibrium phase transition adopted a simple model ignor-
ing the viscoelastic effects. As a macroscopic approach, the two
fluid model22–25 was widely used to investigate the phase sep-
aration in viscoelastic fluids. Numerous extensions26–29 of the
original two-fluid model was proposed recently and the results re-
vealed that the model could capture the essential features of the
viscoelastic phase separation. The two-fluid theoretical frame-
work could be used to replace the previous simple models19–21

for studying the non-equilibrium viscoelastic phase separation.

Compared with the classical viscous fluids, predicting the flow
characteristics of a complex fluid is much more difficult since the
macroscopic viscoelastic stress is determined by the complex mi-
croscopic dynamics of molecular chains. That means intrinsically
the phase transition of complex fluids is a multi-scale problem.
The atomistic modelling is the most detailed approach to describe
the rheological behaviour in complex fluids, however, consider-
ing the massive computer resource requirement, this microscopic
approach is limited to flow geometries of molecular dimensions.
Thus some micro-macro methods30 were introduced that coupled
the coarse-grained molecular kinetic theory to the macroscopic

Journal Name, [year], [vol.], 1–9 | 1

Page 1 of 9 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



continuum equations. The Brownian configuration field (BCF)
method proposed by Hulsen et al.31 is a promising new multi-
scale approach to model the viscoelastic fluids. The key idea of
the BCF method is using Brownian configuration fields instead
of tracking discrete particles, and that significantly reduces the
drawbacks of the CONNFFESSIT method introduced by Laso and
Ottinger32. In practice the BCF method works very well and has
been applied to simulation of numerous viscoelastic flows, includ-
ing the flow past a cylinder31,33, viscoelastic free surface flows34,
contraction and expansion flows35, Couette flow, Poiseuille flow,
lid driven cavity flow36 and flow between eccentrically rotating
cylinders37. Due to the spatial smoothness, the BCF method has
a considerable increased numerical stability. This advantage was
confirmed in previous research and Mangoubi38 recently gave an
in-depth analysis about the origin of the numerical stability of the
BCF method.

As a multi-scale approach, the BCF method requires much
more computational resources compared to purely macroscopic
approaches, both for CPU time and memory. Therefore, most
simulations based on BCF method are by now restricted to 2D
spaces and homogeneous flow fields. The most largest scale of
BCF simulation was presented by Griebel and Ruttgers39, in this
study they gave the first 3D multi-scale FENE simulations using
the BCF approach for square-square contraction flows. Neverthe-
less, to our best knowledge, there is so far no applications of the
BCF approach for simulations of viscoelastic phase transition in
complex fluids.

In this paper, we couple the BCF approach into the two-fluid
framework and numerically solve this multi-scale two-fluid model
through finite volume method. We mainly focus on the 2D sim-
ulation results of non-equilibrium phase separation phenomenon
in dilute polymer solutions.

The remainder of the paper is organized as follows. In the
next section the governing equations of a multi-scale two-fluid
model are presented and the numerical algorithms for solving the
equations are describes in Section 2. Followed by the simulation
results and discussions in Section 4, Section 5 contains our con-
clusions.

2 A multi-scale two-fluid model
For modeling the multi-phase fluid dynamics of a dilute poly-
mer solution, we propose a multi-scale approach derived from
the two-fluid concept and couple the Brownian Configuration
Fields (BCF) method for computing the viscoelastic stress. The
governing equations are divided into parts for the macroscopic
and the microscopic description, respectively. At the first, we give
the Navier-Stokes equation and the evolution equation for the
composition field on the macro-scale; Subsequently, we specify
the alternative approaches for calculating the stress tensor on the
micro-scale involving stochastic differential equations.

2.1 Macroscopic equations

We consider the isothermal and incompressible fluid of polymer
solution with density ρ. From the macroscopic viewpoint, the mo-
tion of a polymer solution fluid can be governed by the continuity

and the momentum balance equation:

~∇ ·~v = 0 (1)

and

ρ
D~v
Dt

= ηs∇
2~v−~∇p− (2φA−1)~∇µ +~∇ ·σσσp (~r, t) (2)

where the material derivative D~v
Dt =

∂~v
∂ t +~v ·~∇~v. Involving the ther-

mal and the viscoelastic forces, the momentum balance equation
is derived using the Rayleigh’s Variational Principle. For details
the reader could refer to Onuki’s publications22,40. Here φA de-
notes the volume fractions of the component A: the polymer so-
lute, thus the fraction of the Newtonian solvent (component B)
can be calculated as φB = 1−φA. In Eqn.(2)~v and p are the volume
average velocity of the fluid and the pressure field, respectively.
ηs represents the solvent viscosity and σσσp is the time-dependent
viscoelastic stress tensor contributed from the polymer dynam-
ics. The viscoelastic stress term ~∇ · σσσp and the osmotic stress
~∇µ are two significant contributions originated from the poly-
mer chain dynamics and the thermodynamic effects, respectively.
The thermodynamic effects in two-fluid framework are described
through the chemical potential difference µ = µA−µB. The chem-
ical potentials are approximately defined in a Ginzburg-Landau
scheme40, thus µ is assumed to be the functional derivative of
the mixing free energy with respect to local volume fraction as

µ =
δFmix [φA (~r)]

δφA (~r)
(3)

We take a first order approximation of the Flory-Huggins-de
Gennes mixing free energy function as

Fmix [φA (~r)] =
∫

d~r
{

fmix +(Γ/2) [∇φA]
2
}

(4)

and

fmix/kBT = (1/MA)φA lnφA +(1/MB)φB lnφB +χφAφB (5)

where Γ is the interfacial tension coefficient, Mi is the molecular
weight of each component polymer and χ is the Flory-Huggins
interaction parameter.

The evolution equation for the volume fraction can be ex-
pressed as

DφA (~r, t)
Dt

= ~∇ ·

[
φ 2

A(1−φA)
2

ς

(
~∇µ−α~∇ ·σσσp

)]
(6)

which bringing the osmotic stress and the viscoelastic stress
term together in the right of the equation. The parameter ς is a
frictional coefficient and α is a dimensionless coefficient given by
α = 1

φA
.

The chemical potential difference can be calculated from
Eqn(3) and the total viscoelastic stress σσσp should be obtained by
solving constitutive equations. As Yuan41 argued that the tube
velocity should be used in the viscoelastic constitutive equation.
The tube velocity may be expressed in terms of the volume aver-
age velocity by

~vT =~v+φA(1−φA)α (~vA−~vB) (7)
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~vA−~vB =
φA(1−φA)

ς

[
−~∇µ +α~∇ ·σσσp

]
(8)

As Eqn(8) shows, the velocity difference between the component
A and B depends on the thermodynamic and viscoelastic forces.
In this paper, we aim to model a polymer solution where only one
component (A) is viscoelastic, the tube velocity is simplified to
~vT =~vA.

2.2 Microscopic equations

On a microscopic viewpoint we set up a FENE dumbbell model
for the dilute polymer solution, where the molecular chain of the
polymer is considered as a suspension dumbbell consisting of two
separate Brownian beads connected with an elastic spring. Using
a vector ~Q to represent the length and the orientation of the con-
necting spring, the spring force can be written as the FENE form
as:

F(~Q) =
~Q

1−|~Q|2/b
, |~Q| ≤ b (9)

where the parameter b gives the dumbbell a maximum extension.

The BCF method introduces N f configuration fields ~Qi(~r, t) to
replace the Fokker-Planck equation for describing the configura-
tion distribution. We rewrite the corresponding stochastic differ-
ential equation as31

d~Qi(~r, t) = [−~v(~r, t) ·∇~Qi(~r, t)+(∇~v(~r, t))T · ~Qi(~r, t))

−F(~Qi(~r, t))
2λ (φA)

]dt +

√
1

λ (φA)
d~Wi(t)

(10)

In this representation d~Wi(t) only depends on time and essen-
tially are independent Gaussian variables with zero mean and
variance dt. Importantly the random variables are independent
on the position ~r. To approximate the actual probability density
function, we solve Eqn.(10) for a number of stochastic realiza-
tions, represented by ~Qi(~r, t), i = 1,2, · · · ,N f . According to the
Kramers expression, the polymer contribution to the extra-stress
σσσp can be given by36

σσσp = (
b+d +2

b
)

ηp(φA)

λ (φA)
(
〈
~Q⊗F(~Q)

〉
− III) (11)

where the factor (b + d + 2)/b only needs to be multiplied for the
FENE model, and d is the dimension of configuration space. Using
a Monte Carlo integration, the ensemble average

〈
~Q⊗F(~Q)

〉
can

be approximately calculated by

〈
~Q⊗F(~Q)

〉
≈

N f

∑
i=1

~Qi(~r, t)⊗F(~Qi(~r, t)) (12)

In polymer solutions, the relaxation time λ and the polymer
viscosity ηp are dependent to the concentration. Here in Eqn.(10)
and Eqn.(11) we use two material functions λ (φA) and ηp(φA) to
describe their relations. For simplicity, we assume a power-law
dependence42 as λ (φA) = λ 0φ 1.5

A and ηp(φA) = η0
pφ 2.25

A .

3 Numerical method

We use a PISO-based iterative solution algorithm to solve the
multi-scale model. This algorithm has been well tested in a nu-
merical study for the dynamics of polymer solutions in contrac-
tion flow43. Recently, it is adopted to study the shear-banding
flows with a macroscopic two-fluid model29. Derived from the
algorithm described in43, the chemical potential difference un-
knowns and the polymer stress unknowns are both explicitly in-
troduced into the momentum equation as source terms, therefore
Eqn.(2) could be rewritten as

∂~v
∂ t

+~v ·~∇~v− ηs

ρ
∇

2~v+
(2φA−1)

ρ

~∇µ−
~∇ ·σσσp (~r, t)

ρ
=−

~∇p
ρ

(13)

After discretizing through finite volume method, this equation can
be abbreviated into a form of the linear system as

A~vn+1 = Hn−∇[p]n (14)

where the brackets [·] represents the numerical approximation of
the unknown fields,the superscript n and n+ 1 denote the value
of the past and the present times of the variable. polymer stress
contribution and the osmotic stress term are treated as the source
terms and are contained in symbol Hn. However, the viscous term
and the convective term are implicitly discretized into the matrix
A of the linear system. Multiplying Eq.(14) by A−1 yields

~vn+1 = ~Un+1−A−1
∇[p]n (15)

where Un+1 = A−1Hn is got by taking the divergence of the
Eq.(15) and applying the continuity condition in Eq.(1). We
can get a Poisson equation for solving the pressure filed in the
pressure-correction step:

∇ ·~Un+1 = ∇ · (A−1
∇[p])n+1 (16)

The Eq.(15) and Eq.(16) defines the key steps for the PISO
algorithm. In this paper, we replace the constitutive equation
part for solving the viscoelastic stress tensor to a microscopic BCF
method. A semi-implicit Euler method39 is employed to solve
the equations of the Brownian configuration fields. Combining
the two parts together, we get the procedure of the iterative al-
gorithm for solving the multi-scale two-fluid model as Algorithm
111.

In Algorithm 111 ~Ni(0,1) denotes a vector containing a triple of
independent Gaussian random variables with zero mean and vari-
ance one. To discretize the governing equations of the multi-scale
two-fluid model, Eqn.(1) to Eqn.(12), we use an Open Source
CFD toolbox released by the OpenCFD Ltd, named OpenFOAM.
The equations are discretized through finite volume method,
which locally satisfied the physical conservation laws through
computing each term of the governing equations by integral over
a control volume. For spatial discretization terms the 2nd-order
Gauss MINMOD and Gauss Linear scheme are applied and the
temporal terms are discretised using a simple Euler scheme. Fi-
nally these equations will reduce to linear systems, thus using
the iterative solvers predefined in OpenFOAM we can get the so-
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Data: Mesh data, initial conditions
Result: ~v, p, σσσp, φA

1 read the mesh data and the initial conditions;
2 initialization;
3 while tn+1 not reach the end of the simulation time do
4 for i = 1 to N f do
5 Solve Eq.(10) to get the configuration field ~Qi(~r, t) at

time tn+1 using a semi-implicit Euler method:

(1+ ∆tn

2λ (φ n
A)(1−|

~Qn+1
i (~r)|2/b)

) ~Qn+1
i (~r) = ~Qn

i (~r)+ [−~vn(~r) ·

∇ ~Qn
i (~r)+(∇~vn(~r))T · ~Qn

i (~r, t))]∆tn +
√

∆tn

λ (φ n
A)
~Ni(0,1);

6 end
7 Compute the polymer stress tensor using Kramers’

expression

σσσn+1
p (~r) = ( b+d+2

b )
ηp(φ

n
A)

λ (φ n
A)

(
N f

∑
i=1

~Qn+1
i (~r)⊗F( ~Qn+1

i (~r))− III);

8 Solve the discretised momentum equation (Eq.(13)) to
obtain the estimated components ~U (n+1)∗ ;

9 Solve the pressure-correction equation (Eq.(16)) to
obtain the pressure field p(n+1)∗;

10 Calculate the corrected velocity field~v(n+1)∗ by solving
Eq.(15);

11 Repeat the steps 888∼ 111000 using the corrected
p(n+1)∗,~v(n+1)∗ until all corrections are negligibly small for
the solutions at the present time~vn+1 and pn+1;

12 Solve Eq.(6) using σσσn+1
p and~vn+1 to obtain the volume

fraction φ
n+1
A ;

13 n← n+1;
14 end

Algorithm 1: The iterative algorithm to solve the multi-scale
two-fluid model

lutions of the equations at every time step. Typical solvers in
the toolbox include the conjugate (PCG) and biconjugate gradi-
ent (PBiCG) methods. For details please refer to the OpenFOAM
Manual.

4 Results and discussions
In this section we focus on the two-dimensional simulation with
a simulation box in square shape, and the cell number is set to
Ncell = 256× 256. The Algorithm 1 is parallelized by a mesh-
decomposition approach. In principle, all of the mesh cells are
firstly decomposed into numerous parts and then distributed to
different processor cores for computing. Therefore all of the sec-
tions of the algorithm are calculated in parallel.

We run the simulation on a high performance computing clus-
ter located in the State Key Laboratory of High Performance Com-
puting of NUDT. In this cluster each computing node contains 12
Intel Xeon E5-2620 2.10GHz CPU cores and a total main memory
of 16GB. Each calculation presented in the paper costs around 2
days to 7 days on 16 CPU cores depending on the shear rates.

The top and bottom boundaries are no-slip walls and periodic
boundary condition is applied to the other two sides of the sim-
ulation box. As presented in numerous previous study27,29, care
has been taken in all simulations to ensure that there are suffi-
cient lattice sites (seven at least) across the sharpest interfaces
and also that the simulation results are independent of any fur-

ther refinement of lattice density.
To apply a required shear rate γ̇, a velocity with the magnitude

of U0 = γ̇(L/2) is set to the top and bottom walls in equal speed
and opposite directions , where L is the distance between the
walls. Other parameters remain constant throughout all of the
simulations and are set as shown in Table 1 :

Table 1 Parameters used in simulations

Parameter Value
ηs 0.1

kBT 1.3
MA 1.0
MB 1.0
Γ 1.0
ς 0.1
b 20.0

λ 0 10.0
η0

p 20.0

For this set of parameters, the critical point is at (χ = 2.0,φ 0
A =

0.5) as shown in Fig. 1. By changing the value of χ and the initial
volume fraction φ 0

A, different regions in the phase diagram can be
explored. For simplicity, in this paper we fix the initial volume
fraction φ 0

A = 0.5 for studying a symmetric binary fluid and φ 0
A =

0.3 for a asymmetric case.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

φ
A
0

χ

 

 

two−phase

homogeneous

A

two−phase

homogeneous

AB

binodal
spinodal

Fig. 1 Equilibrium phase diagram of Flory-Huggins free energy with
parameters: MA = MB = 1.0 and kBT = 1.3. The homogeneous and
two-phase fluid areas are bordered by binodal and spinodal lines, and
between the two is a metastable region. The two bold crosses marked
the parameters used in this paper: A: (φ 0

A ,χ) = (0.5,3.0) and B:
(φ 0

A ,χ) = (0.3,3.0)

In the simulations, we employ the 2D FENE dumbbell model to
predict the viscoelastic stress of a shear-shinning fluid. Compared
to the simple Hookean dumbbell model, the extensibility param-
eter b controls the fluid’s shear thinning behaviour. As shown
in numerous publications39,44,45, the steady-state numerical re-
sults of the stress varied significantly by changing the value of b.
To give a preliminary validity of the numerical scheme presented
in Section 3, we perform the steady shear flow simulations with
fixed Weissenberg Number We = γ̇λ ∈ [1,103], and by setting the
cell number of the mesh Ncell = 1 the spatial discretization is ne-
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Fig. 2 The scaled steady-state shear stress (scaled by
η0

p
λ 0 ) and the total

viscosity over We with b = 5,10,20,50 for N f = 50000

glected. For fixed We, each simulation evolved N f = 50000 Brow-
nian Configuration fields until a steady state is reached. Thus we
can measure the resulting stresses and finally give the value of the
total viscosity of the fluid ηt and the shear stress for correspond-
ing We.

The results are presented in Fig. 2. The viscosity ηt in
Fig. 2(a) decreases with We increasing. This typical shear-shining
behaviour was observed experimentally in polymer solutions46

and compared numerically using a macroscopic PTT constitutive
model and a multi-scale model coupling the BCF scheme39. The
corresponding constitutive curves are presented in Fig. 2(b).
All the curves follow similar trends and the larger extensity lead
to greater stresses as shown in the results. In practice the maxi-
mum Weissenberg number achievable reduces as b increasing. As
pointed by Chauviere44, increased b means that the configuration
domain becomes larger, therefore more refined meshes would be
necessary in order to capture localized features. We choose a
moderate value of the extensity b = 20 for all the simulations be-
low.

For the convergence study, we compared the simulation results
with the steady-state solutions in Fig. 2 under different mesh
width and various number of configuration fields N f . The time
step size is restricted by the CFL condition ∆t ≤ ∆x/|umax| in our

10
−3

10
−2

10
−3

10
−2

10
−1

mesh width 

er
ro

r(
T

xy
)

(a) Error vs. mesh width for N f = 500

0 1000 2000 3000
10

−3

10
−2

10
−1

N
f
 

er
ro

r(
T

xy
)

(b) Error vs. N f for Ncell = 2562

Fig. 3 The convergence study with different mesh width and number of
configuration fields. The error(Txy) is calculated through the steady-state
truncation error of the shear stress normalized by the results for
Ncell = 1.

(a) t = 6λ (b) t = 12λ (c) t = 18λ

(d) t = 24λ (e) t = 30λ (f) t = 42λ

Fig. 4 Time series of phase separation after a deep quench into the
spinodal region through the symmetric initial composition φ 0

A = 0.5 and
χ = 2.5

simulations. The results are presented in Fig. 3. For a constant
N f = 500, the truncation error for the steady-state shear stress is
linearly decreased as increasing the number of cells. Differently,
with a fixed mesh size Ncell = 2562, the error is rapidly reduced
to around 10−2 as N f increased to 500, however there is no sig-
nificant variation from N f = 500 to N f = 3000. Considering the
massive computing resource requirements for large N f , we choose
N f = 500 for all the simulations presented below.

Without shear flow, the phase separation will spontaneously
take place after a deep temperature quench and the fluid will
form into two-phase state driven by the thermodynamical forces.
the asymmetry between the components of polymer mixtures can
also strongly change the morphology of phase separation41,47.
Typically, in the zero-shear system an asymmetric quench can lead
to a droplet pattern, other than the bicontinuous pattern for a
nearly symmetric quench48. In order to reproduce the spinodal
decomposition process in a zero-shear system, we carry out two
sets of simulations with symmetric initial composition φ 0

A = 0.5
and asymmetric initial composition φ 0

A = 0.3, respectively. The
time series of the numerical results are presented in Fig. 4 and
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(a) t = 60λ (b) t = 66λ (c) t = 72λ

(d) t = 90λ (e) t = 126λ (f) t = 138λ

Fig. 5 Time series of phase separation after a deep quench into the
spinodal region at an asymmetric initial composition φ 0

A = 0.3 and χ = 2.5

Fig. 5.
Fig. 4 shows the snapshots of the composition field φA for the

critical quench φ 0
A = 0.5. At t = 6λ , the clearly isotropic bicon-

tinuous domain structure has been formed and the difference be-
tween the two phases grows as the phase separation proceeds.
The coarsening of the morphology structure with time can be
clearly seen from the plots. After t = 50λ , the finite-size ef-
fects can not be eliminated and therefore the full hydrodynamic
regime is not obtainable. Fig. 5 is the time series of snapshots
for the asymmetric case with φ 0

A = 0.3. Differently, the polymer-
rich phase (component A) forms a dispersed droplet structure.
As simulation proceeds, the smallest droplets dissolve completely
into the continuous solvent phase and the larger droplets merge
together, thus the average size of the droplets increases with time.

From a microscopic viewpoint, we plot the polymer configu-
rations at the position (64, 64) in Fig. 6 . After visualizing the
configuration vectors in Fig. 6(a), the probability density func-
tion (PDF) for the squared distance ~Q2 which is limited by b = 20
is calculated. From the plots it is clear that most of the configu-
rations are in an equilibrium state in the absence of flow and no
significant molecule extension is found as shown in Fig. 6(b).

For the cases with the fluid under different flow rates, firstly
we plot the simulation results for the homogeneous cases(χ =

1.0,φ 0
A = 0.5) and the two-phase cases (χ = 2.5,φ 0

A = 0.5) in
Fig. 7, along with the corresponding steady-state shear stress with
Ncell = 1. For this set of parameters, the constitutive curve cal-
culated from the microscopic Brownian configurations is strictly
monotonic as indicated in Fig. 7. Additional for a homogeneous
case, the simulation results using the numerical algorithms de-
scribed in Section 3 are coincide well with the steady-state cal-
culations. Whilst the phase separation occurs by changing the
parameter χ = 2.5, the calculated shear stresses are markedly
smaller than the homogeneous cases. This observation is coin-
cide with the numerical results based on a macroscopic constitu-
tive model29. We also tested different number of the Brownian
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e
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(b) The PDF of ~Q2

Fig. 6 The distribution of the configuration vectors sampled at the
position (64, 64) with N f = 500 in a zero-shear system

configurations , and it is observed that larger N f will bring higher
accuracy for the calculations. Considering the simulation time
cost, we choose N f = 500, and it is found the results are generally
satisfactory as shown in Fig. 7.

By applying the shear flow, the phases will be rapidly elongated
and form into band structures. As shown in Fig. 8 for the case of
We = 20.0, snapshots of the composition field at several instants
during the spinodal phase separation give us the detailed infor-
mation for the microstructure evolution driven by the thermody-
namics, hydrodynamics and the viscoelasticity. At the beginning
point, t = 0, the fluids are defined on a completely homogeneous
volume fraction plus a small amplitude Gaussian random noise
with an intensity of 103. As shown in Fig. 8(b)-8(c), shear bands
emerge rapidly and become coarser through a diffusive mecha-
nism. After t = 5.4λ , the wavy structures between the bands have
become extremely unstable and began to evolve in a chaotic man-
ner. At later times presented in Fig. 8(g)-8(l) , it is observed that
wavy structures break up to form droplets,then the droplet in-
teracts with the remaining bands and subsequently forms into a
coarser band. In overall, the dynamical mechanisms by which the
shear bands reach to a steady state are analogical to the phenom-
ena reported in thermodynamical equilibrium shear-banding sys-
tems27,29,41. One is the diffusive mechanism and the another is
the convective through wave instability. By introducing the ther-
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Fig. 8 The snapshots of the composition field of the polymer component at various times t, scaled by the relaxation time λ for the case of We = 20
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Fig. 7 The scaled steady-state shear stress with Ncell = 1,N f = 5×104

and the simulation results for the homogeneous cases(χ = 1.0,φ 0
A = 0.5)

and the two-phase cases (χ = 2.5,φ 0
A = 0.5) under different flow rates

with N f = 500

modynamical forces in a two-phase region of the phase diagram,
the shear bands are becoming much more unstable and can not
reach a steady state for a long simulation time.

It is clear that the phase separation is directly linked to the
rheological properties of the fluid and the applied flow field. As
presented in Fig. 9, the evolution of the gradient of the veloc-
ity field and the stress field follow the similar patterns as that
of the composition field. In Fig. 9(b) and Fig. 9(c), the ~∇~v and
sigp form into the similar band structures as Fig. 9(a) at t = 35λ .
From Fig. 9(d), we can tell that the osmotic pressure field ~∇µ in-
troduces a interfacial force concentrating at the narrow interfaces
between the polymer-rich region and the solvent-rich region.

To explore the distribution of the molecule configurations un-
der different shear flows, we record the configuration fields at the

(a) φA (b) ~∇~v

(c) σσσ p (d) ~∇µ

Fig. 9 The snapshots of field variables at the same time t = 35λ

lattice point (64, 64) for four different Weissenberg numbers. As
shown in Fig. 10, the corresponding PDF calculations have also
been plotted in the right column of the figure. For the case with
a low shear rate We = 5, the molecule chains are obviously elon-
gated compared to the zero-shear case shown in Fig. 6. In absence
of the flow, most of configurations are restricted in the range of
~Q2 < 5, yet in Fig. and 10(a) and 10(b) a considerable amount of
the molecules have been stretched and the measurement of ~Q2 in-
creased into the range of [5,10]. Under a much higher shear flow
for We = 120 shown in Fig. 10(g) and 10(h), most of the sam-
pled molecules are extremely elongated close to their maximum
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Fig. 10 The distribution of the molecule configurations with N f = 500 under different shear flows at the lattice point (64,64)

as 10 < ~Q2 < 20. From the plots for four different Weissenberg
numbers, we obtain a typical shear flow pattern for both flows as
the higher shear flows leading to stronger molecule extensions.

5 Conclusions

The phase transitions under flow have been extensively studied
experimentally and numerically over the last decades, neverthe-
less, due to the massive computational requirements, there are
still no multi-scale numerical studies that give a linkage between
the microscopic molecule configurations to the macroscopic mor-
phological transitions in a multi-phase fluids under flow. As a
coarse-grained microscopic approach, the Brownian Configura-
tion Fields(BCF) method makes it possible to model the macro-
scopic phenomena of complex fluid on a microscopic viewpoint.

In this paper, we couple the BCF method in a two-fluid frame-
work to model the phase transition under shear flow in dilute
polymer solutions. The governing equations are solved using
a modified PISO iterative algorithm based on the finite volume
scheme. Based on necessary validations, 2D simulation results
of non-equilibrium phase transition after a temperature quench
under shear flow are presented and analyzed. On a macroscopic
viewpoint, we give the time series of the morphological evolu-
tion of the macroscopic variable fields, and the results reproduce
many dynamic phenomena reported in literature, including the
spinodal decomposition, the interface instabilities between the
shear bands, and the dynamic mechanisms to reach coarser band
structures. On a microscopic viewpoint, the distribution of the
molecule configurations in the simulation box could be observed
as the phase transition taking place. The underlying configura-
tion fields are recorded and the corresponding PDFs are analyzed
under various flow rates.

The multi-scale two-fluid model presented here provides a pos-
sible approach to numerically study the multi-phase viscoelastic

fluids under flow. In the future, this model could be used to
quantitatively study some outstanding problems by appropriately
selecting the parameters base on the experimental observations.
Furthermore, we will optimize the parallel algorithms to signifi-
cantly reduce the computational costs.
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