This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Highly active Au–Pd nanoparticles supported on three-dimensional graphene–carbon nanotube hybrid for selective oxidation of methanol to methyl formate†

Ruiyi Wang,ab Zhiwei Wu,a Guofu Wang,a Zhangfeng Qin,*a Chenmeng Chen,c Mei Dong,a Huaqing Zhu,a Weibin Fan*a and Jianguo Wang**

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000xx

Au–Pd nanoparticles supported on graphene–carbon nanotube hybrid exhibit high catalytic activity in selective oxidation of methanol to methyl formate at low temperature, owing to the strong interaction between graphene and Au–Pd as well as the spacing and bridging effect of nanotube inserter on the hybrid three-dimensional structure.

Selective oxidation of alcohols to corresponding carbonyl compounds such as ketones, aldehydes and esters is a viable approach to get various valuable chemicals. However, such a process often involves the use of stoichiometric oxygen donors such as dichromate, permanganate and hydrogen peroxide, which are either costly or harmful to the production facilities and environment. As a result, a great deal of effort has been made to explore the catalytic oxidation processes with molecular oxygen as an oxidant; among them, the selective oxidation of methanol to methyl formate (MF) is regarded as an environmentally benign route to get valuable methanol-down-stream products. Wide array of catalysts have been reported in methanol oxidation, including non-noble metal oxides (SnO2-MoO3, V2O5-TiO2 and Fe2O3/SiO2),8–12 heteropoly acids13 and supported noble metals14; however, their performances (in terms of methanol conversion and selectivity to MF at low temperature) are still somewhat insufficient for practical application.

Ever since the excellent work of Wittstock and coworkers on the synthesis of MF over AuAg alloy catalyst at low temperature,15 alcohol oxidation over bimetallic catalysts under mild conditions has attracted extensive attentions. In our previous work, Au–Pd bimetallic nanoparticles supported on graphene (Au–Pd/Graphene) exhibit high catalytic activity in the selective oxidation of methanol to MF, owing to the synergism of Au and Pd as well as the strong interaction between graphene and Au–Pd nanoparticles.18

Graphene, a single layer of carbon atoms densely packed into a hexagonal honeycomb network, is a promising catalyst support owing to its large surface area, special structure and unique conductive properties. A series of graphene-supported monometallic and bimetallic nanoparticles such as Pt19,20, Pd21–22, Au23, Pd–Ag24 and Au–Pd25 exhibited impressive catalytic performance in various reactions. However, graphene as a catalyst support is prone to agglomerate irreversibly in the moulding process due to the strong π–π stacking and van der Waals interaction,26 which is deleterious to the catalytic activity. To solve this problem, Si and Samulski used platinum nanoparticles of 3–4 nm in diameter as a spacing inserter adhered to graphene;27 however, it is difficult to get stable metallic nanoparticles with an appropriate size to inhibit the face to face aggregation of graphene sheets. Recently, doping with carbon nanotubes (CNT) have been widely used to modify the graphene sheets, especially in the field of electrochemistry.28–32 The incorporation of CNT can effectively inhibit the irreversible aggregation of graphene and even bridge the defects of graphene sheets and improve its electrons transfer capacity.21,33

To enhance the catalytic activity of Au–Pd/Graphene, in this work, graphene (Gr) was doped with carbon nanotubes (CNT). The Gr–CNT hybrids were obtained by the solution self-assemble method (ESI†), i.e. by sonicating the aqueous colloidal suspensions of graphene oxide (GO) and acid-functionalized CNT (Fig. S1, ESI†); the Gr–CNT hybrids are denoted as Gr–CNT(w), where w is the weight ratio of graphene to carbon nanotubes. With Gr–CNT(w) as the support, Au–Pd/Gr–CNT(w) catalysts were prepared through the deposition–precipitation method (ESI†), where the loadings of Au and Pd were designed to be 2 and 1 wt.%, respectively. The actual loadings of Au and Pd were also determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES), as given in Table S1, ESI†, which proves that the actual loadings of Au and Pd are very close to the designed values and the loss of Au and Pd is negligible upon the aqueous rinsing during the catalyst preparation.

The textural properties of carbon nanotubes (CNT), graphene (Gr), Gr–CNT hybrids, and corresponding supported Au–Pd catalysts were measured by nitrogen physisorption, as given in Table 1. Although graphene sheets may have a theoretical surface area of 2600 m2 g−1, the surface area of graphene used in this work is only about 218.8 m2 g−1, due to the face to face aggregation of graphene sheets. After doping graphene with CNT (186.4 m2 g−1), the resultant Gr–CNT(6) hybrid displays a surface area of 311.6 m2 g−1, which is much higher than that of either graphene or CNT, suggesting that...
the aggregation of graphene sheets is effectively inhibited by the incorporation of CNT as a spacing inserter. A series of Gr–CNT\(_(w)\) hybrids with different Gr/CNT mass ratios all display a sorption isotherm of type IV with a hysteresis loop according to the IUPAC classification, meaning that they have a mesoporous structure (Fig. S3, ESI†); moreover, a Gr/CNT mass ratio of 5 gives the best doping effect, viz., the highest surface area and mesopore volume. Table 1 also illustrates that after the loading of Au–Pd nanoparticles, the surface areas of Au–Pd catalysts are only slightly decreased, in comparison with the corresponding supports, suggesting that the deposition-precipitation process has little influence on the structure of carbonaceous supports.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m(^2) g(^{-1}))</th>
<th>Pore volume (cm(^3) g(^{-1}))</th>
<th>Pore size (nm)</th>
<th>Particle size (\langle\text{nm}\rangle)</th>
<th>Surface area (%)</th>
<th>Pore (%)</th>
<th>TOF (\text{h}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNT</td>
<td>186.4</td>
<td>0.574</td>
<td>12.3</td>
<td>2.3</td>
<td>90.8</td>
<td>85.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Gr</td>
<td>218.8</td>
<td>0.501</td>
<td>9.2</td>
<td>1.9</td>
<td>90</td>
<td>85.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Gr–CNT(5)</td>
<td>311.6</td>
<td>0.824</td>
<td>10.6</td>
<td>5.6</td>
<td>90</td>
<td>85.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Au–Pd/CNT</td>
<td>175.3</td>
<td>0.584</td>
<td>13.3</td>
<td>20.5</td>
<td>94</td>
<td>88.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Au–Pd/Gr–CNT(5)</td>
<td>193.7</td>
<td>0.562</td>
<td>11.6</td>
<td>7.5</td>
<td>94</td>
<td>88.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Au–Pd/Graphene</td>
<td>301.4</td>
<td>0.724</td>
<td>10.5</td>
<td>3.3</td>
<td>94</td>
<td>88.9</td>
<td>0.2</td>
</tr>
</tbody>
</table>

The reactions were carried out at 45 °C (ESI†); 60 mg catalyst was loaded and the feed stream consisted of 6.4 vol.% CH\(_3\)OH, 70.2 vol.% O\(_2\), and balanced argon, with a flow rate of 42.8 mL min\(^{-1}\), equivalent to a gas hourly space velocity (GHSV) of 42,800 mL g\(^{-1}\) h\(^{-1}\); the loadings of Au and Pd for all supported Au–Pd catalysts are 2 and 1 wt.%, respectively. Mean particle sizes were estimated by measuring the sizes of randomly selected 100 typical particles in the TEM images. The products consist of MF and CO\(_2\). The conversion of methanol is determined by \(\eta = n_{\text{MeOH,feed}}/n_{\text{MeOH,outlet}}\times 100\%\), where \(n\) is the carbon number in one molecule of product (ESI†). Turnover frequency (TOF), the number of methanol molecules converted to MF per active site and hour, is estimated on basis of total Au and Pd atoms at 45 °C (ESI†).

As shown in Fig. 1, an intense peak at 12.22°, typical for C(001), is present in the X-ray diffraction (XRD) pattern of graphene oxide (GO). After reduction, a new diffraction peak at 25.51°, corresponding to C(002) appears at the XRD pattern of graphene, which most of the oxygen-containing functional groups are removed. Compared with graphene, the characteristic C(002) peaks of Gr–CNT(5), Gr–CNT(3) and Gr–CNT(1) hybrids are shifted slightly to higher angles due to the incorporation of CNT. After the loading of Au–Pd particles, the characteristic peaks at 38.19° and 44.38°, corresponding to Au(111) and Au(200), respectively, are observed in the XRD pattern of Au–Pd/Gr–CNT(5), whereas no diffraction peaks for Pd are detected, probably due to its relatively low content and high dispersion.

![Figure 1](image.png)

Fig. 1 XRD patterns of (a) graphene oxide (GO), (b) graphene (Gr), (c) carbon nanotubes (CNT), (d) Au–Pd/Gr–CNT(5), (e) Gr–CNT(5), (f) Gr–CNT(3), and (g) Gr–CNT(1).

For Au–Pd/Gr–CNT(5), the scanning electron microscope (SEM) image in Fig. 2a shows that carbon nanotubes are uniformly inserted into the two layers of graphene sheets, suggesting that three dimension (3D) Gr–CNT hybrids are formed by the solution self-assemble method (ESI†). The transmission electron microscope (TEM) image in Fig. 2b indicates that spherical Au–Pd nanoparticles are uniformly dispersed on the surface of Gr–CNT hybrids. The HRTEM image in Fig. 2c illustrates that the particles of Au–Pd alloy with a d-spacing of 0.230 nm are mainly anchored on the interfaces of carbon nanotubes and graphene nanosheets; it is estimated by randomly selecting 100 typical particles that the particle size of Au–Pd alloy is in the range of 1–8 nm with an average of 3.3 nm (Fig. 2d). Comparatively, the Au–Pd particles in Au–Pd/Graphene and Au–Pd/CNT have a mean particle size of 7.5 and 20.5 nm, respectively. The doping of graphene with CNT is propitious to reduce the size of metal nanoparticles dispersed on the hybrid support, owing to the high surface area and confined space of the Gr–CNT hybrids.

Moreover, as the Au–Pd particle size in Au–Pd/Gr–CNT(5) is greatly reduced, the Au–Pd alloying degree in Au–Pd/Gr–CNT(5) is also enhanced markedly, in comparison with the partial alloying of twinned Au–Pd structure in Au–Pd/Graphene. Wang and coworkers also found that gold nanoparticles aggregation can be effectively inhibited when entrapped or confined by the “rigid” mesoporous carbonaceous framework.

The X-ray photoelectron spectroscopy (XPS) spectra of Au–Pd supported on CNT, graphene and Gr–CNT(5) are shown in Fig. 3. Au 4f spectra can be fitted into four peaks (Fig. 3i), two peaks for Au\(^{0}\) centered at binding energies (BEs) of 84.0 and 87.6 eV and other two for cationic gold species Au\(^{+}\) centered at 85.3 and 89.2 eV. In Pd 3d XPS spectra, the peaks at 335.6 and 340.8 eV are attributed to Pd\(^{2+}\) species and the peaks around 338.1 and 343.9 eV are related to Pd\(^{0}\) species (Fig. 3ii). In comparison with those of Au–Pd/CNT and Au–Pd/Graphene, the peaks for both Au\(^{0}\) and Pd\(^{2+}\) in the XPS spectra of Au–Pd/Gr–CNT(5) are shifted distinctly towards lower BEs, suggesting that the synergism of Au–Pd bimetallic nanoparticles is enhanced in Au–Pd/Gr–CNT(5). Venezia and coworkers also observed evident shifts of both
Au 4f/2 and Pd 3d spectra towards lower BEs for bimetallic gold-palladium catalysts, compared with monometallic gold and palladium catalysts, indicating an electronic interaction between gold and palladium.35

![SEM image (a), TEM image (b), HRTEM image (c), and Au–Pd particle size distribution (d) of the Au–Pd/Gr–CNT(5) catalyst.](image)

Fig. 2 SEM image (a), TEM image (b), HRTEM image (c), and Au–Pd particle size distribution (d) of the Au–Pd/Gr–CNT(5) catalyst.

It was considered that CNT inserted between graphene nanosheets may act as a bridge connecting the defects for electron transfer and then improve their conductivity and catalytic activity.21,33 Moreover, the graphene support is rich in π electrons, which can promote the reduction of Pd2+ to Pd0 with the help of Au atoms in AuPd alloy.18 In this work, the XPS results further illustrate that the electron exchange between gold and palladium is greatly enhanced in Au–Pd/Gr–CNT(5) by doping graphene with CNT; the fraction of Pd0 in Au–Pd/Gr–CNT(5) is about 67.3%, much higher than the value of 56.7% in Au–Pd/Graphene (Table S2, ESI†).

The states of Pd on various carbonaceous supports are further determined by the X-ray absorption near-edge spectroscopy (XANES), as shown in Fig. 4. In the Pd K-edge XANES spectra, the absorption threshold resonance, called a white line, appears between 24 360 and 24 380 eV, corresponding to the electronic transitions that arise from 1s to unoccupied 4p states above the Fermi level. The second (24 385 eV) and third (24 435 eV) peaks are attributed to 1s to dp and 1s to dsp transitions, respectively. The white line intensity is sensitive to the change in electron occupancy of valance orbital and can be used to estimate the density of unoccupied states and the change in the state of Pd species, whereas the energy shift is related to a change in the effective number of valence electrons at the absorbing site. Fig. 4 shows that Pd/Graphene is similar to PdO reference in the edge, suggesting that Pd2+ is the major Pd species in Pd/Graphene. For Au–Pd/Graphene, however, a fraction of Pd2+ is reduced to Pd0; after doping graphene with CNT, the fraction of Pd2+ reduced to Pd0 in Au–Pd/Gr–CNT(5) is even higher. A quantitative analysis with PdO and Pd foil as references (Table S2, ESI†) illustrates that the fractions of Pd0 in Au–Pd/Gr–CNT(5) and Au–Pd/Graphene are about 75.0% and 61.3%, respectively.

It was considered that both Pd0 and Pd2+ may be involved in the catalytic reaction cycles for methanol oxidation; however, CNT inserted in graphene sheets may greatly improve the redox properties of the resultant Au–Pd/Gr–CNT(5) catalyst and then enhance its catalytic activity in methanol oxidation at low temperature. The binding energy shift and the fraction of Pd0 determined by XPS and XAFS is then a reflection of the extent for the synergy between Au and Pd and the redox ability of these supported Au–Pd catalysts, which is related to their catalytic performance. Therefore, both the XPS and XANES results support that the addition of CNT can improve the conductivity of graphene support, promote the reduction of PdO and formation of AuPd alloy, and eventually enhance the catalytic activity of Au–Pd supported on the Gr–CNT hybrids.

![Pd K-edge XANES spectra of the Pd/Graphene (a), Au–Pd/Graphene (b) and Au–Pd/Gr–CNT(5) (c), with Pd foil (d) and PdO (e) as the references.](image)

Fig. 4 Pd K-edge XANES spectra of the Pd/Graphene (a), Au–Pd/Graphene (b) and Au–Pd/Gr–CNT(5) (c), with Pd foil (d) and PdO (e) as the references.
Au–Pd bimetallic catalysts in methanol oxidation, especially
the conversion of methanol and selectivity to MF along with 5
compared with those of some similar catalysts recently 40
The catalytic activity of Au–Pd/Gr–CNT(5) is also
solution self-assemble method (Fig. 2).
are uniformly inserted into the graphene layers through the
species are supported on the 3D Gr–CNT hybrid, where CNTs
mechanical mixing. The promoting effect of CNT on the Au–Pd
inserter into graphene is effective to inhibit the face to face
aggregation of graphene sheets, bridge the defects for electron
transfer and stabilize the hybrid three-dimensional structure.
may also be effective to get highly active catalysts with
 graphene as support for other applications.
The authors thank Dr. J. Ma, Dr. S. Zhang and Prof. Y. Huang at Shanghai Synchrotron Radiation Facility for the help with XAFS measurements as well as the financial support of National Basic Research Program of China (2011CB201400) and National Natural Science Foundation of China (21403268, 21227002, 51302282, 21203231).

Fig. 5 Conversion of methanol (I) and selectivity to MF (II) along with
the reaction temperature for methanol oxidation over (a) Au–Pd/CNT, (b) Au–Pd/Graphene, and (c) Au–Pd/Gr–CNT(5). The loadings of Au and Pd for all supported Au–Pd catalysts are 2 and 1 wt.%, respectively; the feed stream consists of 6.4 vol.% CH$_3$OH, 70.2 vol.% O$_2$, and balanced argon, with a gas hourly space velocity (GHSV) of 42,800 mL g$^{-1}$ h$^{-1}$.

As the pure supports (CNT, Graphene, Gr–CNT) are inert for the methanol oxidation, the catalytic performance of Au–Pd/Graphene + CNT (a physical mixture of Au–Pd/Graphene and CNT) is almost identical to that of Au–Pd/Graphene, as shown in Fig. S7, ES†, both are much poorer than Au–Pd/Gr–CNT(5). This suggests that it is impossible to insert CNT effectively into the graphene layers through later mechanical mixing. The promoting effect of CNT on the Au–Pd/Gr–CNT(5) catalyst may only appear when the Au–Pd species are supported on the 3D Gr–CNT hybrid, where CNTs are uniformly inserted into the graphene layers through the solution self-assemble method (Fig. 2).

The catalytic activity of Au–Pd/Gr–CNT(5) is also
comparable with those of some similar catalysts recently
reported for methanol oxidation to MF in the literature, as given in Table S3, ES†. Although there are many factors
that may influence the catalytic performance of a supported
catalyst, the nature of support plays an important role in
determining the catalyst activity. Au–Pd/Gr–CNT(5), i.e. Au–
Pd supported on 3D Gr–CNT hybrid, exhibits higher activity
in the selective oxidation of methanol to MF at low
temperature, in comparison with those similar catalysts
reported recently. The excellent activity of the Au–Pd/Gr–
CNT(5) catalyst may be ascribed to the enhanced interaction
between graphene and Au–Pd as well as the spacing
and bridging effect of the CNT inserter on the hybrid three-
dimensional structure.

In conclusion, the incorporation of CNT as a spacing
inserter into graphene is effective to inhibit the face to face
aggregation of graphene sheets, bridge the defects for electron
transfer and stabilize the hybrid three-dimensional structure.
As a result, the dispersion of Au–Pd bimetallic particles, the
synergy between Au and Pd and the strong interaction
between Au–Pd particles and graphene support are enhanced
greatly, which endue the Au–Pd bimetallic particles supported
on Gr–CNT hybrids with high catalytic activity in methanol
oxidation at low temperature. Moreover, such an approach
may also be effective to get highly active catalysts with
graphene as support for other applications.

Notes and references

† Electronic Supplementary Information (ESI) available: More experimental details and results of catalyst characterization and reaction tests. See DOI: 10.1039/b000000x/