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ABSTRACT 

The solvation and solvent selectivity of polymer composites in different solvents is an important 

subject in colloid and polymer chemistry. Two multiparameter linear models based on theoretical 

and empirical parameters were constructed / validated, for 59 and 54 solvents respectively, to 

predict relative energy difference (RED) of solvents and a conductive polymer composite 

containing carbon nanotube. In addition to excellent external prediction ability, models 1 (QSPR) 

and 2 (LSER) covered 87% and 93% of cross-validated variance respectively. Different 

statistical methods were applied to test and validate models. From the description view, it was 

showed by model 1 that the compactness of solvent structure, mass and polar interactions are 

important in the resistance of polymer and its RED in the desired solvent. In addition to the 

Hildebrand solubility parameter, acidity of solvent and hydrogen bonding interactions has direct 

relationship with RED. Both models confirmed the moderate and complex effect of polar 

interactions in the solvation of desired polymer composite in different solvents. 

Keywords: Linear solvation energy relationship, Polymer composite/carbon nanotube, QSPR, 
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1. Introduction 

Electrically conductive polymer composites (CPCs) are a kind of smart materials which have 

come into the focus of research because of their highly applicable characteristics. Smart 

materials are solid-state transducers that have different sensing and actuating properties like 

electroactivity, piezoelectric electrostrictivity, pyroelectricity, magnetostrictivity and 

piezoresistivity.
1
 The most promising and viable strategy for the successful development of 

electrically conductive polymer composites (CPCs) is the blending of a customary polymer with 

electrically conductive fillers. 

The exceptional intrinsic properties of carbon nanotubes (CNTs), such as thermal and 

electrical conductivity or mechanical properties, has made them one of the most promising 

nanomaterials used to modify the properties of polymer and conductive polymer composites 
2
. 

Moreover, CNTs have high length/diameter ratio (aspect ratio) of about 100-1000 which leads to 

moderately low percolation threshold in composite materials in comparison with carbon fibers or 

carbon black 
3
. Conductive polymer/nanofiller composites have been widely investigated in 

industry and academia because of their outstanding multifunctional properties compared to 

conventional conductive polymer composites (CPCs). Polymer/carbon nanofiller composites can 

be used for the electrostatic dissipation (ESD) 
4
, electromagnetic interference- shielding (EMI- 

shielding) 
1,5,6

, electrostatic painting 
7
, and mechanical reinforcement 

8,9
. Some of the important 

aspects related to CPCs are their relative resistance change and solvent selectivity as a key 

property of these sensory polymers 
10

. 

Few reports have been published on the establishment of correlation between relative 

resistance change of CPCs and solvents’ solubility parameters. Chen et al. reported that 

waterborne polyurethane composites filled with carbon black show a maximum relative 

resistance change that correlates with the polar component of Hansen solubility (δP) 
11

. Fan et al. 

found the same result for thermoplastic polyurethane multifilament covered with carbon 

nanotube networks 
12

. The study on the role of difference of the solubility parameters between  

polymer matrix and  tested solvents (∆δ) in polystyrene/carbon black composites were also done 

by Li et al 
13

. Flory-Huggins interaction parameter, χ12, was also utilized to correlate relative 

resistance change of CPCs/CNTs against some solvent vapors 
14,15

, however this approach is 

almost not sufficiently accurate 
16

. Villmow et al. investigated the relative resistance change of a 
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CPC with 1.5 wt.% CNT immersed in different organic solvents and calculated the Hansen 

solubility parameters of the CPC 
16

. They also described the selectivity of the CPC by using two 

parameters, namely the distance in Hansen space Ra and the solvents’ molar volume Vmol.  

In the current study, we focused on CPCs based on polycarbonate (PC) filled with 1.5 

wt.% carbon nanotubes 
16

 in different solvents in order to scrutinize the details of the interactions 

between solvent and CPCs and the role of solvent characteristics in the dispersibility of CPCs 

and their solvent selectivities. We used quantitative structure property relationship (QSPR) and 

linear solvation energy relationship (LSER), one of the well-known approaches of QSPR, to 

predict the relative energy difference (RED) of CPC/CNT and different solvents. In the proposed 

approach for the first time, some solvent empirical parameters were utilized to clear solvent-

polymer interaction in addition to the prediction purpose. Here, we tried to emphasize the role of 

solvent in solvent-sensory polymers using a predictive and descriptive method. 

2. Materials and Methods 

2.1. Data set preparation and processing 

In this work, two kinds of models were used for the examination of the dispersibility of 

PC/CNT composite in different solvents. In the first model, the theoretical and structural 

descriptors of solvents were used to construct a QSPR model to predict the RED numbers of 

PC/CNT composite in 59 solvents adapted from literature 
16

. RED number of 0 is found for no 

energy difference. RED numbers less than 1.0 indicate high affinity; RED equal to or close to 1.0 

is a boundary condition; and progressively higher RED numbers indicate lower affinities 
17

. The 

name of solvents and their RED values are presented in Table 1. In the first step, the chemical 

structures of these 59 solvents were drawn in Hyperchem software (Version 7, Hypercube Inc., 

http://www.hyper.com, USA) and optimized using semi-empirical method of AM1. Then, 

molecular descriptors were calculated for desired solvents from the optimized chemical 

structures by Dragon software (Milano Chemometrics and QSAR research group; 

http://michem.disat.unimib.it/chm/). Furthermore, it was crucially important to do several 

complementary works. In other words, numerous molecular descriptors were lessened by 

removing descriptors that could not be calculated for every structure in the dataset and those 

descriptors with an essentially constant or near constant value for all structures. Additionally, to 

Page 4 of 29RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



4 

 

decrease the redundancy in the descriptors data matrix, the correlations among X-variables and 

with the RED vector were examined, and among the detected collinear variables (i.e., R
2
 > 0.95) 

one with the highest correlation with RED was retained and the others were removed from the 

data matrix. After these steps 834 descriptors were remained for each solvent. 

In the second model based on empirical solvent scales, 127 scales of three principal classes 

(Equilibrium-kinetic, Spectroscopic and Multiparameters of other measurements) 
18

 were used 

for LSER modeling the RED of polymer-solvents. Among 59 solvents used in the previous 

model, the experimental parameters of 54 solvents were available and were used in the model 

construction and validation. Here again, the correlation between solvent scales were checked to 

delete the redundant parameters. 

2.2. Data Modeling 

The main goal of QSPR is to establish a significant relation based on few structure-based 

molecular descriptors which can accurately predict an experimental property/activity (here RED 

of polymer/solvent samples). As it is feasible to produce a great number of molecular descriptors 

for each solvent in the dataset, a thorny problem is the selection of the set of molecular 

descriptors in order to build an accurate relationship. In the presented work, multiple linear 

regression analysis (MLR) with stepwise selection of variables (using SPSS software, SPSS Inc., 

version 15.0) was applied to relate the solvent structural parameters with the solubility of 

PC/CNT composite. 

In order to better performance, all selected-independent and dependent variables, theoretical 

descriptors/empirical solvent scales and RED vector were auto scaled. For model evaluation, the 

data of both models (QSPR and LSER) were divided to two parts; training set for model building 

and test set for checking the model’s predictability. Cross validation and y-scrambling were also 

done to test the stability and significance of models. 

All calculations were run on a laptop computer under the Windows XP operating system. 

MATLAB (version 7, Math work, Inc., http://mathworks.com, USA) was used for the MLR 

analysis and other statistical calculations. 

3. Results and Discussion 
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3.1. Model construction based on structural parameters of solvents (Model 1) 

The study was conducted based on 834 solvent structural parameters for 59 solvents with 

known RED number for PC/CNT composite 
16

. Hence, a data matrix with the size of 59 × 834 

was achieved. Randomly, 13 solvents out of 59 (about 20%) were chosen as test samples, while 

the remaining 46 solvents (about 80%) were utilized as the training set. It is noteworthy to 

mention that the RED numbers of solvents in training set covered the RED number of the whole 

data set. The range of 0.18 to 3.45 of RED numbers was selected for the training set and the 

values of test set were in the range of 0.26 to 1.90. It is clear that the concept of RED in PC/CNT 

as a composite material is defined as similar as this concept in regular polymers. 

Seven different models were created step by step through the stepwise regression run but 

some of them may be over fitted. Cross-validation method was applied for each model so that the 

most convenient correlation equation was selected. The plot of variation of the calibration-

squared correlation coefficient (R
2

cal) and cross validation (Q
2
), are illustrated in Fig. 1a. As can 

be seen, the model performance refined up to four variables by introducing each new variable 

and after that no drastic change was observed. The resultant four-parametric equation is: 

RED = 0.895(±0.024) – 0.283(±0.025)FDI + 0.236(±0.30)GATS1e – 0.148(±-.033)BEHe8 + 

0.106(±0.034)RDF010m     (1) 

N = 59, Ntrain = 46, Ntest = 13, R
2

train = 0.91, Q
2

LOO = 0.87, F = 102.58, Fcrit. = 2.60 

In this equation, FDI is related to folding degree index, GATS1e is Geary autocorrelation 

coefficient lag1 which is weighted by atomic Sanderson electronegativities, BEHe8 shows the 

highest eigenvalue (number 8) of Burden matrix weighted by atomic Sanderson 

electronegativities and RDF010m is a radial distribution function descriptor weighted by atomic 

Sanderson electronegativities and atomic masses respectively (Table 2). With the relative amount 

of contribution of each of these parameters, it is possible to estimate relevant information about 

solvent-PC/CNT composite interaction in the solution phase and will be discussed more in the 

next parts of manuscript. 

Moreover, N is the number of solvent, R
2

train is the squared correlation coefficient of 

calibration (training set) and Q
2

LOO is the squared correlation coefficients for leave-one-out 
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cross-validation and their values show the goodness and stability of the proposed model. F is the 

Fischer F-statistic and Fcrit is the F-critical value. The high value of calculated F (in comparison 

with Fcrit) verified the statistical significance of the resultant model. Also, the values in 

parentheses are the coefficients’ standard deviation and their low values indicate the significance 

of the selected parameters. On the other hand t-test showed the significance of the model with p-

values almost equal to zero (Table S1, Supporting information). It is worth mentioning that this 

equation explained more than 91% of the variances in the PC/CNT composite solubility data 

with an excellent statistical quality. 

After auto scaling of the selected parameters, the obtained standardized MLR-coefficients 

were used to calculate values of RED number for training and test set which the predicted REDs 

are shown in Table 1. To check the stability of the proposed model, leave-one-out and leave-two 

out cross validations were also done and the squared correlation coefficients for cross-validation 

(Q
2

LOO and Q
2

L2O) were obtained equal to 0.87 and 0.86 respectively. These parameters were 

indicators of model stability and prediction ability. 

Furthermore, it has been proposed that the true predictive power of a QSPR model should be 

evaluate by an external test set of compounds that were not used in the model construction 
19

. 

Hence, the squared correlation coefficient (R
2

test) and root mean square error of the test set 

(RMSEP) were calculated for further checking. It is worth mentioning that the R
2

test and RMSEP 

were obtained equal to 0.91 and 0.31 respectively, which are another evidence of the excellent 

predictability of the obtained QSPR model. For better visualization, the predicted values were 

plotted versus the experimental values of the model in Fig. 1b. This figure displayed an 

outstanding agreement between experimental and predicted values of RED based on proposed 

model. 

Model validation is by far the most crucial step of QSPR and a great number of 

procedures have been generated for the determination of the quality of QSPR model 
20

. As it was 

explained, cross-validation and external validation procedures were established in this work for 

this goal. As a general rule of thumb, some statistical parameters including cross-validation 

square correlation coefficient (Q
2

cv), prediction residual sum of squares and root mean square 

error in cross-validation (RMSEcv) are the most powerful parameters to check the cross-

validation predictability 
21

. In comparison with R
2

cal, which can be soared by adding more 
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parameters, Q
2

cv declined in the present of an over parameterized model 
22

. Therefore, Q
2

cv value 

is far more meaningful for measuring the average predictive power of a model and also it can be 

considered to select the optimum number of parameters (four-parametric linear model in this 

study). 

The permutation test named y-randomization or y-scrambling (randomization of 

response, i.e., RED in this study) is another procedure for checking the significance of the Q
2

cv 

value 
23

. In the current study, RED in the training set was scrambled 50 times and as the statistic 

parameter of the permutation test, a maximum of the cross- validated squared correlation 

coefficient of the scrambled data (Q
2

MS) was calculated, which was 0.32 and was so far from the 

Q
2

cv of the original model. This parameter could confirm that the model 1 was not obtained by 

chance. 

3.2. Model construction based on empirical solvent scale 

The data of 54 solvents out of 59 solvents for solvent empirical parameters were available in 

literature and the data of 5 solvents (isophorone, mesityl oxide, diethylene glycol monobuthyl 

ether, diethylene glycol monoethyl ether acetate and ethylene glycol monoethyl ether acetate) 

were not found. Therefore, this model was constructed based on the solvent empirical parameters 

of 54 solvents and after deleting the collinear variables, the data matrix with the size of 54×121 

was obtained. 

42 solvents were selected randomly for training set, whereas 12 solvents were dedicated to 

test set. As mentioned earlier, the RED number of training set covered the RED number of the 

whole data set. 

Again, stepwise MLR was employed for selecting the most relevant subset of scales among 

the solvent scales as independent variables. Similar to which was noted for QSPR model, cross 

validation were used to select final model without the risk of over fitting. According to Fig. 2a 

the performance of model was not improved very much after including 4 parameters. So, a four-

parametric equation was selected: 

RED = -0.360(±0.182) + 0.062(±0.007)Ap – 1.697(±0.199)SPP
N
 +0.031(±0.006)δ + 

0.751(±0.239)Xe
R
        (2) 
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N = 54, Ntrain = 42 Ntest = 12, R
2

train = 0.95, Q
2

LOO = 0.93, F = 180.744, Fcrit. = 2.6261 

Because of using the solvent empirical parameters as independent variables of the model, this 

model could be considered as a linear solvation energy relationship (LSER). In the LSER 

approach, the effects of solvent–solute interactions on physicochemical properties and reactivity 

parameters are studied 
24

. So from this aspect, this equation is similar to the LSERs which has 

been proposed by Kamlet and Taft 
25,26

. 

This model confirmed an acceptable relationship between the selected variables and the RED 

number of the solvents which explained %95 of data variance. It is noteworthy to mention that 

the model is statistically significant based on the F-statistics and t-test (See Table S2, Supporting 

information). Besides, the model represented a cross-validation statistics similar to the 

calibration set. The high value of correlation coefficient of leave-one-out and leave-two-out cross 

validation for the LSER model (Q
2

LOO = Q
2

L2O = 0.93) and acceptable value of cross validation 

root mean square error (RMSEcv = 0.27) proved the predictive power and the stability of the 

model based on interstice error in experimental RED data (Table 1). 

The root mean square error and correlation coefficient of the test set (RMSEtest and R
2
test) 

were 0.15 and 0.98 respectively which confirmed the high external predictive ability of the 

model. The y-randomization test also showed this model was not a chancy model (Q
2

MP = 0.29 

compared to Q
2

cv of original model = 0.93). Fig. 2b displays the predicted values versus the 

experimental values of the model which illustrates an outstanding agreement between 

experimental and predicted values of RED. 

3.3. Applicability Domain 

To show the scope and limitation of a QSAR model, the applicability domain (AD) is widely 

utilized. The concept for the applicability domain of a model is closely pertained to the term 

model validation. AD is defined as the substantiation that a model possesses a satisfactory range 

of accuracy within the intended application of the model 
27

. 

The leverage of a compound produces a check for multivariate normality of observation 
28

. In 

other words, it provides a measure of the distance of the compound from the centroid of the 

model space and in the model building; the chemical compounds close to the centroid are less 

influential and beneficial. The so-called influence matrix or hat matrix (H) is given by: 
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H= X (X
T
 X)

-1
 X

T
        (3) 

where X is the descriptor matrix which is derived from the training set, X
T
 is the transpose of 

X and (X
T
 X)

-1
 is the inverse of matrix (X

T
 X). The leverage or hat values (hi) of the i

th
 

compound in the descriptor space are the diagonal elements of H, which can be calculated by: 

hi = xi (X
T
X)

-1
 xi

T
        (4) 

where xi is the descriptor row vector of the interest compound. h* or warning leverage is defined 

as h*=3m/n, where n is the number of training compounds and m is the number of model 

parameters plus one 
28

 (here 4+1 in both models 1 and 2). A compound that possesses a high 

leverage (bigger than a warning value) in the training set enjoys a remarkable influence on the 

regression line and can force the fitted line to be close to the observed of that compound. The 

leverage values for all polymer/solvent samples in training and test sets were calculated for both 

models.  

In addition to the high leverage values, it should be noted that some compound may also 

be outside the AD due to their large standardized residuals 
28

. As a result, Williams plots of the 

models can be utilized to identify the compounds outside the applicability domain 
24

 which are 

shown in Fig. 3a and 3b for QSPR and LSER models respectively. In this famous plot, both 

leverage and standardized residuals are taken into consideration to visualize the applicability 

domain. It is crystal clear that all solvents are in the applicability domain except water in model 2 

and Ethylene glycol in model 1 and 2 and most of solvents have a standardized residual in the 

acceptable range of ±3σ. 

3.4. Interpretation of models 

Simplicity of the use and interpretability are considered as outstanding merits of MLR. In 

addition, in modeling of the target property (RED number), the magnitudes of coefficients show 

the relative significance of the descriptors and their signs indicate the positive or negative 

contribution of the molecular descriptors to the RED. It is notably to mention that the molecular 

descriptors should be mathematically independent of or orthogonal to each other and collinear 

descriptors can cause coefficients larger than expected or produce the wrong signs 
20

. 
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As it is shown in Table 3, which indicates the correlation matrix of variables of both models, 

the correlation coefficients amongst parameters are insignificant and negligible. The correlation 

matrix shows the inter-correlations between parameters of each model (QSPR and LSER). To 

check the multicollinearity of the parameters in each models, the variance inflation factor (VIF) 

was calculated for each variable 
29

 and is shown in the last column of Table 3. 

If R
2

j is the multiple correlation coefficient of one variable’s effect regressed on the remaining 

molecular variables, the VIF of each theoretical descriptors in model 1 and each solvent 

empirical parameter in model 2 can be calculated according to the following equation:  

VIF = 
�

����
�         (5) 

It has been suggested that 5.0 is the cut-off value for VIF and if VIF would be larger than the 

cut-off value, the main information of descriptors can be concealed by correlation of descriptors 

29
. According to Table 3, the VIF values of four parameters of two models were less than 5.0. So, 

the correlation matrix and VIF of parameters show that the statistical significance of the 

proposed models is acceptable and the sign and attribute of the coefficients could be used to 

describe the models. 

3.4.1. Description of model 1 

Standardized regression coefficient can be applied for the assessment of the relative 

importance of the variables included in an MLR model. The order of significance of the variables 

of Eq. (1) is FDI > GATS1e > BEHe8 > RDF010m which is shown in Fig. S1-a (supporting 

information). As it can be seen, the most significant parameter is FDI, while RDF010m is the 

less important variable of the model in the dispersibility of PC/CNT composite. FDI is the 

“folding degree index” which is more applicable for peptides and proteins 
30

, but is used for other 

molecules as a structural descriptor for other small molecules 
31

. A molecule with more folded 

structure (e.g. lower structural volume) has higher FDI value. The negative sign of the MLR 

coefficient related to FDI in the proposed model shows that solvents with more unfolded and 

higher structural volume (lower FID) resulted in higher RED for PC/CNT. It is worth mentioning 

that better solvents for PC/CNT have lower RED. This finding was in accordance with literature 

16
. 

Page 11 of 29 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



11 

 

Two next descriptors in the model GATS1e and BEHe8 “Geary autocorrelation coefficient 

lag1” and “Highest eigenvalue number 8 of Burden matrix” respectively and both of them are 

weighted with atomic Sanderson electronegativity 
31

. Therefore, it can be concluded that the 

electronegativity of solvents and consequently the polar interactions have a significant role in 

solvation or dispersibility of PC/CNT. On the other hand, the positive sign of GATS1e and 

negative sign of BEHe8, imply that polar interactions may have an optimum value (not high, not 

low) to decrease the RED. 

The last parameter of the model was RDF10m which is a Radial Distribution Function/ weighted 

by atomic masses with a positive coefficient 
31

. It shows that the solvents with lower atomic mass possess 

lower RED and could be better solvents for PC/CNT.   

3.4.2. Description of model 2 

According to the standardized regression coefficient of model 2 and as it is illustrated in Fig. 

S1-b (supporting information), the order of importance of the variables of Eq. (2) is Ap > SPP
N 

> 

δ
H
 > Xe

R
.  

Ap is the “acidity parameter” calculated from the data for the Gibbs solvation energy for the 

alkali metal cations and halide ions 
32

. According to the thermodynamic studies of the properties 

of electrolyte solutions, it is well-known that acidity and basicity are important in determining 

solution properties. The positive sign of Ap in Eq. (2) shows the direct relationship of acidity 

parameter of solvents and RED related to PC/CNT. So the good solvents, with lower RED, have 

lower acidity parameter. 

SPP
N 

is a solvent empirical parameters calculated from the UV-Vis spectra of 2-(dimethyl-

amino)-7- nitrofluorene and its homomorph 2-fluoro-7-nitrofluorene 
33

. SPP
N
 is a solvent 

dipolarity-polarizability scale that combines the medium dipolarity and polarizability into a 

single parameter. This scale is potentially useful for assessing the polarity of solution medium 

and so it can be assumed as an indicator of polar interactions. The negative sign of SPP
N
 in the 

proposed model shows that increasing the solvent polarity and polar interaction cause decreasing 

the RED of solvents and increasing solvation of PC/CNT. 

The 3
rd

 parameter in the proposed model was δ
 
 which is the squared root of cohesive energy 

density and is known as total solubility or Hildebrand solubility parameter 
17,34

. According to the 

positive contribution of this parameter in the model (Eq. (2)), decreasing the squared root of 

Page 12 of 29RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



12 

 

cohesive energy leads to decreasing the RED of a solvent. It should be emphasized that the 

values of δ (used for model construction) were adapted from the work of Katritzky et. al. 
18

, in 

which the δ of some solvents have been measured experimentally and some others have been 

calculated computationally (based on experimental results). The well-known routine way to 

calculate the RED values of solvent/polymer systems is using Hansen solubility parameters. The 

basic equation to define Hansen parameters is that the total cohesion energy, E, has three parts
17

: 

E=ED+EP+EH        (6) 

Square of the total (or Hildebrand) solubility could be obtained by dividing this by the molar 

volume gives the parameter as the sum of the squares of the Hansen D, P, and H components 

(Dispersive, Polar and Hydrogen bonding): 

E/V = ED/V + EP/V + EH/V      (7) 

δ
2
 = δ

2
D + δ

2
P + δ

2
H       (8) 

The interpretation of similarity between two materials (indices 1 and 2) is possible by 

calculating their solubility parameters “distance” Ra based on their respective partial solubility 

parameters 
17

: 

��
� = 4(δD1- δD2)

2
 + (δP1- δP2)

2
 + (δH1- δH2)

2
    (9) 

A convenient single parameter to characterize solvent quality in this model is the relative 

energy difference, RED number: 

RED = Ra/Ro        (10) 

Which Ro is the interaction radius and Ra is the solubility parameter distance.  

In this work, we showed that some other parameters could be important in the prediction and 

description of RED values in addition to the dependency of RED of solvent/PC/CNT to cohesive 

energy components. 

The last parameter of the proposed LSER model is Xe
R 

with positive effect on RED. This 

parameter is defined as selectivity parameter: reflects a composite of solvent’s dipolarity-
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dipolarizability, hydrogen bond acidity and hydrogen bond basicity 
35

. According to the 

discussion about SPP
N
, it could be concluded that dipolarity-dipolarizability has a moderate 

effect on RED but hydrogen bonding interactions shows positive effects on RED. The results 

about the moderate effect of polar interaction, was in agreement with model 1. In conclusion, 

better solvents for solvation of PC/CNT might have lower hydrogen bonding interactions. 

3.5. Comparison of the QSPR and LSER models 

All statistical data of QSPR and LSER models are gathered in Table 4. The non-significant 

values of Q
2

cv of permutation test (Q
2

MP) confirm that the models are reasonable and they have 

not obtained by chance. More importantly, although both proposed models resulted in very good 

statistics, LSER provides better statistical data for both calibration and prediction sets. Hence, 

experimental solvent scale supplies remarkable ability to relate the dispersibility of PC/CNT 

composite and solvent type. In the LSER approach, the effects of solvent-solute interactions on 

physiochemical properties and reactivity parameters could be studied. However, a crucially 

important constraint of solvent scale is that they are experimental parameters and it is difficult to 

gather these data for new solvents. As a matter of fact, the application of the model is in need of 

previous experiments to measure the solvent scale. For instance, in our study we could not find 

solvent scales of five solvents. Another great advantage of solvent empirical parameters, in 

comparison with solvent theoretical descriptors, is their lower initial population which decreases 

the risk of obtaining chancy model in the case of limited number of compounds available for 

modeling 
36–38

. While, the descriptors of QSPR model are calculated theoretically with the 

contribution of the available software and this model can be applied for the prediction of the 

dispersibility in new solvents, even for virtual solvents that have not been synthesized or checked 

experimentally yet. 

3.6. Exploratory Data Analysis 

Because of the success of proposed models in prediction the RED of polymer/solvents, 

principal component analysis (PCA) was utilized on the parameters of each model (#1 and #2) 

for an exploratory data analysis of relative resistance change (Rrel) of PC/CNT in different 

discussed solvents. Rrel could be calculated using the time dependent resistance, R (t), of the 
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samples over immersion time in solvent and initial resistance, Ri, according to the following 

equation:  

�	
�% =
�������

��
× 100       (11) 

Information about the sensory composite’s response to the solvent contact (Good: Rrel > 0 or 

Bad: Rrel ~ 0) were adapted from the work of Villmow et al 
16

 and is represented in Table S3 

(supporting information). 

2D-plot of PC1 vs. PC2 of the parameters of model 1 based on the theoretical descriptors and 

model 2 constructed from empirical scales are shown in Fig. 4a and 4b respectively. As it is clear 

from Fig. 4, both set of used parameters shows acceptable discrimination between good and bad 

solvents and can be an indicator of solvent selectivity. 

3.7. Test on another kind of polymer 

To show the generality of the proposed model, the utilized parameters in model 1 and model 2 

was used to check the behavior of another kind of polymer. The original RED data used for 

construction of models in the above was belonging to a polymer composite based on PC Lexan 

141R (SABIC Innovative Plastics) 
16

. We used anther data set based on R polycarbonate polymer 

17
. The RED of this polymer in the same solvents noted for PC Lexan 141R were used as the 

dependent variable for model construction base on the parameters in two proposed model (Eqs. 1 

and 2). The RED values of this polymer in the discussed 59 solvents is represented in Table S4 

(Supporting information). Here again, similar to which was done for original data, RED data of 

R polycarbonate polymer was divided to two parts i.e. training and test sets. It was observed both 

series of parameters used in model 1 and model 2 shows good ability in the prediction of RED of 

the new kind of polymer. This ability was checked using different statistical parameters related 

to training, cross validation and test set which is presented in Table 5. The agreement between 

predicted RED and their experimental values are also shown graphically in Fig. 5. The MLR 

coefficient of the models for this R polycarbonate polymer using the parameters of model 1 and 

model 2 and Williams plots of these two new models are represented in supporting information 

(Tables S5, Table S6 and Fig. S2). The results show the ability of proposed models to predict the 

behavior of other kind of similar polymers. 
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4. Conclusion 

New approaches were proposed based on QSPR and also a kind of LSER to predict RED of 

solvents-PC/CNT and the validity, stability and prediction ability of models were verified using 

different statistical methods. It was shown that the conductive polymer composites/ carbon 

nanotube has better selectivity (lower RED) in solvents with more folded molecular structure 

(lower structural volume) and lower structural mass. According to the both positive and negative 

effects of structural electronegativity on RED, it was concluded that polar interactions have 

moderate effect on the solvation of the desired PC/CNT. 

Some other aspects of solvent-PC/CNT interactions were also emerged using the 4 parametric 

LSER model. The suggested model showed that in addition to the total (or Hildebrand) solubility 

parameter, acidity parameter of solvent and hydrogen bonding interactions have direct 

relationship with RED. But again, polarity-polarizability interactions show two-side (reverse and 

direct) effect on the RED and selectivity. So the role of this kind of interactions in our polymer-

solvent system is more complex. 

The combination of using theoretical descriptors and solvent empirical parameters resulted in 

successful experience in the investigation of solvation of PC/CNT in different organic solvents. 

Extension of this study on conductive polymer composites with different amount of CNT is in 

progress of our future researches.  
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Figures’ captions 

Fig. 1. The plot of model performance vs. number of variables included in model 1 (a) and plot 

of predicted RED number using the model 1 versus experimental values 

Fig. 2. The plot of model performance vs. number of variables included in model 2 (a) and plot 

of predicted RED number using the model 2 versus experimental values (b) 

Fig. 3. Williams plot of the entire set of solvents in model 1 (a) and model 2 (b). Cut off values 

of leverage (h*) and standardized residual (±3 times the standards deviation) are depicted by 

vertical and horizontal dashed lines, respectively. Ethylene glycol is out of the applicable domain 

in model 1; Ethylene glycol and water are out of the applicable domain in model 2. 

Fig. 4. Discrimination of “good” and “bad” solvents for PC/CNT using principal component 

analysis on parameters entered in model 1 (a) and model 2 (b). 

Fig 5. Plot of predicted RED number using the parameters in model 1(a) and in model 2 (b) 

versus experimental values  
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Fig. 1.  
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Fig. 2.  
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Fig. 3.  
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Fig. 4.  
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Fig. 5. 
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Table 1 Experimental and predicted RED number of PC/CNT composite in various solvents 

No. Solvent 
RED 

(Exp) 

RED 

(Pred1)
a
 

RED 

(Pred2)
b
 

No. Solvent 
RED 

(Exp) 

RED 

(Pred1)
a
 

RED 

(Pred2)
b
 

1 Acetophenon 0.18 0.32 0.33 31 n-Butyl acetate 0.81 0.69 0.68 

2
c
 Cyclohexanone 0.26 0.42 0.44 32 Morpholin 0.81 0.95 0.95 

3
d
 n-Metyl-2-pyrrolidone 0.31 0.42 0.39 33 Aniline 0.83 1.21 0.72 

4
c
 Ethylene dichloride 0.32 0.36 0.51 34 Furan 0.85 0.84 1.06 

5 Isophorone 0.37 0.60 - 35
c
 Nitromethane 0.86 0.93 0.76 

6
c
 2-Nitropropane 0.40 0.46 0.55 36 Toluene 0.86 0.72 0.87 

7 o-Dichlorobenzene 0.44 0.38 0.44 37
c
 

Diethylene glycol 

monomethyl ether 
0.89 0.83 - 

8 Methyl ethyl ketone 0.47 0.63 0.50 38 

Ethylene glycol 

monoethyl ether 

acetate 

0.91 0.69 - 

9 Methylene dichloride 0.48 0.57 0.54 39 Isoamyl acetate 0.92 0.70 0.72 

10 Mesityl oxide 0.49 0.67 - 40 1,4-dioxane 0.93 0.81 0.92 

11
d
 Diethyl ketone 0.55 0.72 0.57 41

c
 m-Cresol 0.93 0.75 1.01 

12
d
 Butyronitrile 0.57 0.62 0.64 42 Ethyl benzene 0.95 0.89 0.88 

13
d
 Acetone 0.58 0.84 0.55 43 Mesitylene 0.97 0.87 0.98 

14 Nitroethane 0.59 0.67 0.69 44
d
 Benzene 0.98 0.80 0.89 

15 Chlorobenzene 0.62 0.41 0.61 45 Diethyl ether 0.99 0.93 1.01 

16
 c

 Anisole 0.64 0.56 0.62 46
c
 Dipropyl amine 1.00 1.14 1.00 

17
d
 Tetrahydrofuran 0.64 0.62 0.67 47 Cyclohexanol 1.04 1.06 1.31 

18 Methyl acetate 0.68 0.72 0.69 48
c
 Cyclohexane 1.06 1.07 1.12 

19 Propylene carbonate 0.69 0.54 0.63 49
d
 

Ethylene glycol 

monomethyl ether 
1.08 1.09 1.17 

20 Acetic anhydride 0.69 0.58 0.58 50 n-Hexane 1.20 1.50 1.12 

21 Methyl butyl ketone 0.69 0.67 0.47 51 1-Butanol 1.21 1.11 1.30 

22 
Methyl isobutyl 

ketone 
0.69 0.76 0.50 52 Diethylene glycol 1.36 1.17 1.40 

23 Trichloroethylene 0.70 0.70 0.59 53
d
 Ethanol 1.44 1.52 1.48 

24
d
 Dimethyl formamide 0.71 0.73 0.61 54

c,d
 Propylene glycol 1.55 1.29 1.57 

25
d
 Chloroform 0.71 0.80 0.70 55 Ethanolamine 1.57 1.70 1.47 

26
c
 Diethyl carbonate 0.71 0.98 0.72 56

d
 Methanol 1.74 1.82 1.63 

27 Dimethyl sulfoxide 0.73 0.50 0.60 57
c
 Formamide 1.90 1.80 1.93 

28
c
 Ethyl acetate 0.73 0.66 0.70 58 Ethylene glycol 1.95 1.53 2.10 

29 
Di-(2-methoxyethyl) 

ether 
0.77 0.83 0.64 59 Water 3.45 3.34 3.26 

30 
Diethylene glycol 

monobutyl ether 
0.79 0.74 -      

a
 The predicted values using model 1, Eq. (1) 

b
 The predicted values using model 2, Eq. (2) 

c
 Compounds in the test set using model 1 

d
 Compounds in the test set using model 2 
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Table 2 The brief definitions of variables of the proposed models. 

Solvent scale Definition Property of scale 

FDI Folding degree index Molecular Size and Volume 

GATS1e 
Geary autocorrelation coefficient lag1/ weighted by 

atomic Sanderson electronegativities 

Topology and 

electronegativity/polarity 

BEHe8 
Highest eigenvalue n. 8 of Burden matrix / 

weighted by atomic Sanderson electronegativities 

Topology and 

electronegativity/polarity 

RDF010m 
Radial Distribution Function-1.0/ weighted by 

atomic masses 
Topology and structural mass 

Ap 

Acidity parameter calculated from the data for the 

Gibbs solvation energy for the alkali metal cations 

and halide ions.  

Acidity 

SPP
N

 

Calculated from the UV-Vis spectra of 2-(dimethyl-

amino)-7- nitrofluorene and its homomorph 2-

fluoro-7-nitrofluorene  
Dipolarity and dipolarizability 

δ
H

 Square root of cohesive energy density  Total Cohesive energy density 

Xe
R
 

Selectivity parameter: reflects a composite of 

solvent dipolarity-dipolarizability , hydrogen 

bond acidity and hydrogen bond basicity  

dipolarity-dipolarizability and 

hydrogen bonding 
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Table 3 Correlation coefficient between parameters of QSPR and LSER models and their VIF values 

 FDI GATS1e BEHe8 RDF010m Ap SPP
N

 δ
H

 Xe
R
 VIF 

a
 

FDI 1.000        1.202 

GATS1e 0.094 1.000       1.358 

BEHe8 0.065 0.000 1.000      1.830 

RDF010m 0.002 0.141 0.348 1.000     1.995 

Ap     1.000    3.654 

SPP
N

     0.006 1.000   1.245 

δ
H

     0.492 0.137 1.000  2.773 

Xe
R
     0.386 0.001 0.197 1.000 2.000 

a
 Variation inflation factor 
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Table 4 Various statistics parameter of the developed model 

 nv
a
 Ntrain

b 
Ntest

c 
R

2
train

d
 RMSEtrain

e
 R

2
LOO cv

f
 R

2
L2O cv

f
 RMSEcv

g
 R

2
test

h
 RMSEtest

i
 Q

2
MP

j
 

Model 1 

(QSPR) 
4 46 13 0.91 0.30 0.87 0.86 0.36 0.91 0.31 0.32 

Model 2 

(LSER) 
4 42 12 0.95 0.22 0.93 0.93 0.27 0.98 0.15 0.29 

a
 Number of descriptors applied for the model development 

b
 Number of molecules in training set 
c
 Number of molecules in test set 
d
 Training correlation coefficient 
e
 Training root mean square error 
f 
Leave-one-out and leave-two-out cross-validation correlation coefficient 
g
 Leave-one-out cross-validation root-mean-square errors 
h
 Correlation coefficient of the test set 
i
 Test root-mean-square errors 
j 
Maximum cross-validation correlation coefficient for Y-randomization test 

 

 

Table 5 Various statistics parameter of the developed model for RED of R polycarbonate polymer  to 

show the applicability of proposed model for other kind of polymers. 

 nv
a
 Ntrain

b 
Ntest

c 
R

2
train

d
 RMSEtrain

e
 R

2
LOO cv

f
 R

2
L2O cv

f
 RMSEcv

g
 R

2
test

h
 RMSEtest

i
 Q

2
MP

j
 

Model 1 

(QSPR) 
4 46 13 0.91 0.30 0.88 0.87 0.35 0.94 0.25 0.35 

Model 2 

(LSER) 
4 42 12 0.94 0.25 0.90 0.91 0.32 0.97 0.18 0.33 
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