

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Synthesis of biologically important, fluorescence active 5-hydroxy benzo[g] indoles through four-component domino condensations and their fluorescence "Turn-off" sensing of Fe(III) ions

Subhendu Maity, Ashis Kundu and Animesh Pramanik*

Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700 009, India

E-mail:animesh_in2001@yahoo.co.in

Abstract: Several highly substituted 2-pyrrolyl-2-cyanoacetamides were prepared through four-component domino condensation of various easily available 1,3-dicarbonyl compounds, amines, arylglyoxals and malononitrile. Subsequently these cyanoacetamide derivatives were converted to biologically important 5-hydroxy benzo[g]indoles through thermal cyclization under metal free condition. The synthesized 5-hydroxy benzo[g]indoles are fluorescence active

with good quantum yields ($\Phi_F = \sim 0.50$). They also show excellent fluorescence "Turn-off" sensing of Fe³⁺ ions (detection limit = ~1.2 x 10⁻⁶ M). The interaction of 5-hydroxy benzo[g]indoles with Fe³⁺ ions can also be monitored through UV-Vis spectral change and naked-eye colour change in the presence and absence of UV radiation. The ¹H NMR titration unambiguously proves the formation of complex between 5-hydroxy benzo[g]indoles and Fe³⁺ ion through the coordination of –OH group with the metal. The Binding Constant of the complex (metal : ligand = 1:1) has been measured using Benesi-Hildebrand equation and found to be ~7.97 x 10³ M⁻¹.

Introduction

Nitrogen based heteocycles are important structural motifs for many natural products¹ and pharmaceuticals². They are also useful building blocks for various biologically active molecules and functional materials.³ As for example carbazoles, the fused indole based heterocycles, show important applications in materials science as organic light-emitting materials due to their wide band gap and high luminescent activity.⁴ Fused indole based polycyclic frameworks with proper functionality can provide suitable ligand systems for diverse receptors.⁵ This type of ligands with fluorescence activity can act as sensing agent for different metal ion through proper binding.⁶ Form biological point of view sensing of metal ions shows significant demand in current research field.⁷ More specifically detection of iron level have significant impact in biological research as iron regulates different biological processes such as electron transfer reactions, binding and transport of oxygen, and cell growth and differentiation.⁸ To the best of our knowledge suitable benzo[g]indole based molecules with fluorescence sensing property have not been discovered as yet. So the development of new synthetic methodology for

construction of benzo[g]indole scaffolds is important in organic synthesis. Although there are number of methodologies for the synthesis of fused indole derivatives in literature⁹, synthesis of substituted benzo[g]indoles are limited in number.¹⁰ Therefore, a simple, efficient, metal-free, regiocontrolled, and diversified synthesis of substituted benzo[g]indole derivatives is still highly desirable. In continuation of our research interest in synthesis of various pyrrole and indole based heterocycles,¹¹ we wish to report herein an efficient synthetic strategy to access fluorescence active 5-hydroxy benzo[g]indoles from easily available starting materials. Since these compounds possess phenolic –OH group as potential binding site the effect of various metal ions on the fluorescence property has also been explored in solution phase. The selective ion sensitive fluorescence changes lead to the finding of fluorescence "Turn-off" sensor of Fe³⁺ ions.

Results and discussion

During our laboratory efforts on the development of multicomponent reactions for synthesis of biologically important heterocyclic compounds, we discovered that refluxing a mixture of acetylacetone **1** ($R_1 = Me$), aniline **2** ($R_2 = Ph$), phenyl glyoxal (**3**, $R_3 = H$) and malononitrile (**4**) in ethanol for 10 minutes produces a new compound 2-(4-acetyl-5-methyl-1,2-diphenyl-1*H*-3-pyrrolyl)-2-cyanoacetamide **5a** in good yield, ~79% (Scheme 1). The reaction proceeds through a four-component domino condensation among the reactants. Interestingly, under the reaction conditions, one of the two cyano groups of malononitrile is selectively hydrolyzed to an amide group. Subsequently we examine the viability of this reaction in other solvents also such as acetonitrile, dioxane, DMF, THF and DCM for the formation of cyanoacetamide **5a**. However ethanol is found to be the best solvent in producing **5a** in highest yield (~79%) whereas acetonitrile produces **5a** only in moderate yield (~40%). The other

solvents including dioxane, DMF, THF and DCM produce very negligible amount of **5a**. By using the above methodology, a series of 2-pyrrolyl-2-cyanoacetamides **5a-z** were synthesized in ethanol medium by varying the 1,3-dicarbonyl compounds, amines as well as the arylglyoxal monohydrates (Scheme 1, Table 1). The results show that this four-component domino condensation reaction provides an elegant and rapid way to access various 2-pyrrolyl-2-cyanoacetamides in a single synthetic operation from simple building blocks.

Scheme 1 Synthesis of 2-pyrrolyl-2-cyanoacetamides 5 through domino condensation.

Entry	R ₁	R ₂	R ₃	Product	Yield(%) ^a	М. р.
1	Me		Н	5a	79	160-162
2	Me		Н	5b	76	168-170
3	Me	Br	Н	5c	73	146-148
4	Me	Cl	Н	5d	74	180-182
5	Me	F	Н	5e	71	218-220

 Table 1 Synthesis of 2-pyrrolyl-2-cyanoacetamides 5 in ethanol.

Page 5 of 40

RSC Advances

6	Me	0-	Н	5f	82	162-164
7	Me		Н	5g	77	196-198
8	Me		Н	5h	81	166-168
9	Me		Cl	5i	73	118-120
10	Me		Cl	5j	72	198-200
11	Me	and the second	Cl	5k	73	150-152
12	Me		Cl	51	79	184-186
13	Me	Br	Cl	5m	74	240-242
14	Me	Cl	Cl	5n	71	244-246
15	Me	F	Cl	50	72	205-207
16	Me	0-	Cl	5р	76	208-210
17	Me		OMe	5q	81	164-166
18	Me	Cl	OMe	5r	75	198-200
19	Me	and a second	OMe	5 s	78	88-90
20	Me		OMe	5t	81	152-154

^aIsolated Yield. ^bCompounds **5y** and **5z** were not possible to isolate because of closely spaced impurities. The crude masses were used for further reaction.

A proposed mechanism for the formation of compound **5** is shown in Scheme 2.¹² Initially, a Knoevenagel condensation between arylglyoxal monohydrate **3** and malononitrile produces α,β -unsaturated cyano intermediate **6**. Then enamine **7**, derived *in situ* from acetylacetone **1** and amines **2**, undergoes a Michael-type 1,4-addition with the intermediate **6** to produce imminium intermediate **8**, which subsequently tautomerizes to **9**. Then the intermediate **9** most probably produces a fused furano-pyrrole intermediate **10** through a tandem cyclization process. Finally, the 2-pyrrolyl-2-cyanoacetamides **5** are formed through a rearrangement of intermediate **10**. All the compounds **5a-x** were fully characterized by ¹H and ¹³C NMR spectroscopy, and the X-ray crystal structure analysis of 2-[4-acetyl-2-(4-chlorophenyl)-5-methyl-p-tolyl-1*H*-3-pyrrolyl]-2-cyanoacetamide (**5j**) further confirmed the structural assignment (Fig. 1).¹³

Scheme 2 Plausible mechanism for the formation of 5.

Fig. 1 ORTEP diagram of the X-ray crystal structure of compound **5j** with the atom numbering scheme; thermal ellipsoids are shown at the 50% probability.

After successful synthesis of 2-pyrrolyl-2-cyanoacetamides 5 we focussed our attention to explore the chemical property of this substance. Therefore, as a preliminary study, 2-(4'acetyl-5-methyl-1,2-diphenyl-1*H*-3-pyrrolyl)-2-cyanoacetamide **5a** was heated at reflux in diphenyl ether to examine the formation of any cyclic product. Interestingly, a cyclic product 3acetyl-5-hydroxy-1-phenyl-2-methyl-1*H*-benzo[g]indole-4-carbonitrile **11a** was formed in moderate yield (~61%) within 10 minutes through a thermal cyclization (Scheme 3). By employing this thermal method a series of biologically important 5-hydroxy benzo[g]indoles 11 were synthesized (Table 2). This novel thermal cyclization also provides an excellent opportunity to synthesise differently substituted 5-hydroxy benzo[g]indoles. Therefore we synthesized a series of cvanoacetamide derivatives 12 following a different reaction protocol¹² and converted them to the corresponding 5-hydroxy benzo[g]indoles 13 by refluxing in diphenyl ether for 10 minutes (Scheme 4, Table 3). All the compounds 11 and 13 were fully characterized by ¹H and ¹³C NMR data. Further determination of X-ray crystal structure of 3-acetyl-5hydroxy-1-cyclopropyl-2-methyl-1*H*-benzo[g]indole-4-carbonitrile (11h) and 3-carboethoxy-5hydroxy-1-phenyl-2-methyl-1*H*-benzo[g]indole-4-carbonitrile (11u) confirmed the product formation (Fig. 2).¹³

Scheme 3 Synthesis of benzo[g]indole derivatives 11 through thermal cyclization.

Entry	R ₁	R ₂	R ₃	Starting	Product	Yield(%) ^a	М. р.
1	Me		Η	5a	11 a	61	228-230
2	Me		Н	5b	11b	55	238-240
3	Me	Br	Н	5c	11c	52	212-214
4	Me	Cl	Н	5d	11d	53	253-255
5	Me	F	Н	5e	11e	51	247-249
6	Me	O-	Н	5f	11f	59	140-142
7	Me	and the second s	Н	5g	11g	60	202-204
8	Me		Н	5h	11h	62	194-196
9	Me		Cl	5i	11i	53	270-272
10	Me		Cl	5j	11j	51	238-240
11	Me	and the second s	Cl	5k	11k	56	178-180
12	Me		Cl	51	111	54	208-210
13	Me		OMe	5q	11q	52	188-190
14	CO ₂ Et		Н	5u	11u	59	218-220

Table 2 Synthesis of 5-hydroxy benzo[g]jndole derivatives 11.

^aIsolated Yield. ^bFor compound **11y** and **11z**, the yields are calculated with respect to starting material **1**

Fig. 2 ORTEP diagrams of the X-ray crystal structures of compounds **11h** and **11u** with the atom numbering scheme; thermal ellipsoids are shown at the 50% probability.

Scheme 4 Synthesis of 2,3-dicarboethoxy-5-hydroxy-1-aryl-1*H*-benzo[*g*]indole-4-carbonitrile **13** through thermal cyclization.

Table 3 Synthesis of 2,3-dicarboethoxy-5-hydroxy-1-aryl-1*H*-benzo[g]indole-4-carbonitrile**13**.

Entry	R	Starting	Product	Yield(%) ^a	М. р.
1		12a	13 a	64	180-182
2		12b	13b	52	168-170
3	F	12c	13c	61	238-240
4	Cl	12d	13d	60	194-196
5	0-	12e	13e	63	180-182
6		12f	13f	55	176-178

^a Isolated yield

After successful synthesis of various substituted 5-hydroxy benzo[g]indoles 11/13 we focussed our attention in exploring the photochemical property of this substance. Steady state absorption and emission spectra of some of the selective compounds 11u-w have been taken in

different solvents with varying polarity such as CH_2Cl_2 , CH_3CN and CH_3OH . The concentration of the compounds **11** was maintained at ~5 x 10⁻⁵ M. UV-Vis absorption spectrum shows structured band with peaks around 369 nm, 356 nm (Fig. 3a, Table 4). The emission spectrum shows a structure less band with maxima around 408 nm (Fig. 3b, Table 4). The shape and band position of the emission spectra are same regardless of excitation wavelength. Noticeably the molecules display significant Stokes shift (Table 4) which indicates that the structure of the emitting species and the ground state species are considerably different. The measured fluorescence quantum yields (Φ_F) of some of the representative compounds are found around ~0.5 which does not change much with the polarity of the solvent (Table 4).

Fig. 3 (a) UV-Vis absorption spectra and (b) fluorescence emission spectra (λ in nm) of representative compound 11u in different solvents ([11u] at ~5 x10⁻⁵ M conc.).

Compounds	Solvents	$\lambda_{abs}(nm)$	$\lambda_{em}(nm)$	ϵ_{max}^{a} (10 ⁴ cm ⁻¹ mol ⁻¹)	$\Phi_{\rm F}{}^{ m o}$	Stokes shift ^c (10^4 cm^{-1})	$\Delta E (eV)^d$
11u	CH_2Cl_2	370	407	0.82	0.57	0.24	3.35
	CH ₃ CN	369	406	0.65	0.50	0.25	3.36
	CH ₃ OH	368	410	0.58	0.49	0.27	3.37
11v	CH_2Cl_2	371	404	0.94	0.51	0.22	3.34
	CH ₃ CN	368	408	0.68	0.49	0.26	3.37
	CH ₃ OH	369	407	0.59	0.48	0.25	3.36
11w	CH_2Cl_2	373	410	0.85	0.54	0.24	3.32
	CH ₃ CN	369	407	0.71	0.51	0.25	3.36
	CH ₃ OH	370	406	0.59	0.50	0.24	3.35

 Table 4 Spectroscopic data of 11 in three solvents

^aε_{max} is the extinction coefficient at λ_{max} of absorption.^bFluorescence quantum yields with reference to β-naphthol in methyl cyclohexane ($\Phi_F 0.53$). ^cStokes shift= ($1/\lambda_{abs}$ - $1/\lambda_{em}$). ^dDetermined from UV-Vis absorption maximum.

The photo-physical properties of the compound **11u** as a ligand have been explored in detail in presence of various metal ions Na⁺, Ba²⁺, Hg²⁺, Cd²⁺, Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺ in acetonitrile. The complexation of ligand **11u** with Fe³⁺ ions in acetonitrile was accompanied by a change of colour of the solution from colourless to yellow which was easily observed by the naked-eye (Fig. 4A). On addition of Cu²⁺ ions a very light green colour was developed. The developing colour was more intense in case Fe³⁺ than in Cu²⁺ under similar conditions. The addition of 5 equiv. of other cations as their perchlorate salts resulted in no appreciable changes in colour under visible light (Fig. 4A). Interestingly, under UV light substantial fluorescence quenching is observed only in presence of Fe³⁺ ions (Fig. 4B). UV-Vis spectra of the ligand **11u**

in acetonitrile show no significant change on addition of metal perchlorate salts of Na^+ , Ba^{2+} , Hg^{2+} , Cd^{2+} , Mn^{2+} , Co^{2+} , Ni^{2+} , Zn^{2+} (ESI, Fig. S5). However in presence of Fe³⁺ and Cu²⁺ the UV-Vis spectrum of **11u** shows appreciable change compared to that of free ligand hence indicating ligand-metal interaction. On gradual addition of Fe³⁺ salt an absorption band develops near 400 nm with simultaneous appearance of two isobestic points at 303 nm and 380 nm (Fig. 5). The emission spectra of ligand 11u in acetonitrile shows no change in fluorescence intensity in presence of metal ions Na⁺, Ba²⁺, Hg²⁺, Cd²⁺, Mn²⁺, Co²⁺, Ni²⁺, Zn²⁺(Fig. 6). On the other hand substantial quenching of ligand emission is observed in presence of Fe³⁺ and less extent of quenching is observed in presence of Cu^{2+} (Fig. 6). The result indicates that the extent of fluorescence quenching in Fe^{3+} is significantly higher compared to that of Cu^{2+} (Fig. 6). Further in fluorometric titration nearly complete fluorescence quenching is observed on addition of ~ 1.2 equivalent of Fe^{3+} ions (Fig. 7). The high selectivity of **11u** for Fe^{3+} may be due to the presence of more charges (3+) on iron ions compared to that of other metal ions (2+ or 1+), which probably causes strongest interaction with the phenolate anion. The detection limit of Fe^{3+} by probe 11u has been estimated from fluorescence titration and found to be $\sim 1.2 \times 10^{-6}$ M (ESI, Fig. S6). From the same titration, the Binding Constant of probe 11u with Fe^{3+} metal ion has been measured as $\sim 7.97 \times 10^3 \text{ M}^{-1}$ using Benesi-Hildebrand equation (see ESI, Fig. S7). The metal (Fe^{3+}) to ligand (11u) binding ratio has also been calculated by jobs plot method using UV titration and found to be in 1:1 ratio (see ESI, Fig. S8).

Subsequently the fluorescence "Turn-off" sensing of probe **11u** for Fe^{3+} ions has been examined in presence of other metal ions. When Fe^{3+} ions were added to various solutions of **11u** containing one of the different metal ions Co^{2+} , Ba^{2+} , Cd^{2+} , Cu^{2+} , Hg^{2+} , Mn^{2+} , Na^+ , Ni^{2+} , Zn^{2+} in acetonitrile the binding of Fe^{3+} ions with **11u** was not significantly affected by the

presence of these other metal ions (Fig. 8). Therefore, the intensity of the fluorescence band of the complex $[11u-Fe^{3+}]$ at 408 nm can be used to monitor the presence of Fe³⁺ ions alone as well as Fe³⁺ ions in presence of other metal ions.

Fig. 4 Change in color of solution of **11u** in acetonitrile in presence of 5 equiv. of each metal ion (A) under visible light and (B) under UV light.

Fig. 5 Absorption spectra of 11u ([11u] = ~5 x 10⁻⁵ M) on increasing concentration of Fe³⁺ ions in acetonitrile.

Fig. 6 Emission spectra of 11u in acetonitrile in presence of various metal ions ([11u] at 5×10^{-5} M conc.).

Fig. 7 Emission spectra of 11u in acetonitrile on gradual addition of Fe $^{3+}$ ions ([11u] at 5 x10⁻⁵ M conc.).

Fig. 8 The selectivity of 11u (5x10⁻⁵ M conc.) in the presence of various metal ions in acetonitrile. The blue bars represent the emission intensity of 11u in the presence of other metal ions (25x10⁻⁵ M conc.). The red bars represent the emission intensity that occurs upon the subsequent addition of Fe³⁺ ions (5 x10⁻⁵ M conc.) to the above solution (λ_{em} =408 nm).

In order to get more insights about the nature of Fe^{3+} ligand interactions ¹H NMR titration was carried out. In this experiment the perchlorate salt of Fe^{3+} ions was gradually added to a DMSO-d₆ solution of **11u**. The results show that the intensity of the proton signal corresponding to 5-hydroxyl group (-OH) of **11u** at 10.86 ppm, which is the most probable binding site for Fe^{3+} ions, decreases significantly relative to that of other protons upon exposure to Fe^{3+} (Fig 9). This effect proves unambiguously the formation of complex between **11u** and Fe^{3+} ion. Additionally, a rapid broadening and finally disappearance of the proton signal at 10.86 ppm was observed

with gradual addition of Fe^{3+} ions which further confirms the fast exchange of hydroxyl (–OH) protons due to complexation with Fe³⁺ ion. Moreover during the NMR titration a light yellow colour was developed initially which gradually intensified with addition of more and more perchlorate salt of Fe^{3+} ions to the DMSO-d₆ solution of **11u** indicating complexation between Fe^{3+} ion and **11u**. The UV-Vis and NMR data clearly suggest that the phenolic hydroxyl groups (-OH) of **11u** are deprotonated due to complexation with Fe^{3+} ions which is probably responsible for strong fluorescence quenching.

Fig. 9 Change in ¹H NMR spectra of **11u** upon addition of Fe³⁺ ions, (a)00 equiv., (b) 0.5 equiv., (c) 1.0 equiv., and (d) 2.0 equiv. in [d₆]-DMSO.

Conclusions

In conclusion, a convenient two steps methodology has been developed for the synthesis of biologically important 5-hydroxy benzo[g]indoles from various easily available 1,3-dicarbonyl compounds, amines, arylglyoxals and malononitrile under metal free conditions. The present synthetic protocol is quite atom economical in nature since only two molecules of water and one molecule of ammonia are released during the course of the reactions. The synthesised 5-hydroxy benzo[g]indoles show fluorescence activity with good quantum yields ($\Phi_F = \sim 0.50$) and ability to act as fluorescence "Turn-off" sensor for Fe³⁺ ions. The interaction of 5-hydroxy benzo[g]indoles with Fe³⁺ ions can also be monitored through UV-Vis spectral change and naked-eye colour change in the presence and absence of UV radiation. Thus, the sensing of 5-hydroxy benzo[g]indoles for iron at the low level (detection limit = $\sim 1.2 \times 10^{-6}$ M) may have potential applications in current biomedical and pathological research works. It is also worth mentioning that phenolics containing iron-binding motifs have also been identified in many bio-active plants such as grapes, tea and traditional Chinese medicine plants.

EXPERIMENTAL SECTION

General: Arylglyoxals **3** were prepared from corresponding acetophenones by oxidation with selenium dioxide in dioxane.¹⁴ Solvents were purchased from commercial suppliers and used after distillation. Melting points were determined in open capillary tubes and are uncorrected. IR spectra were recorded with a Perkin-Elmer 782 spectrophotometer. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded in DMSO-d₆ with a Bruker 300 MHz instrument. Elemental analyses (C, H and N) were performed by using a Perkin-Elmer 240C elemental analyzer. The

X-ray diffraction study of crystallized compounds was performed with Bruker APEX-II CCD system.

2-pyrrolyl-2-cyanoacetamides5a-z; General Procedure: A mixture of 1,3-dicarbonyl compound **1** (1.0 mmol) and amine **2** (1.0 mmol) in ethanol (20 mL) was heated for 2 minutes. Then to the above hot mixture, arylglyoxal **3** (1.0 mmol) and malononitrile **4** (1.3 mmol) were added and the reaction mixture was heated at reflux for 10 minutes. After completion of the reaction (monitored by TLC analysis), the solvent was removed under reduced pressure. The resulting solid residues were purified by column chromatography (EtOAc–hexane) on silica gel to get the light yellow solid products **5**.

2-(4-Acetyl-5-methyl-1,2-diphenyl-1*H***-3-pyrrolyl)-2-cyanoacetamide** (5a). Light yellow solid; yield: 282 mg (79%); m.p.: 160-162 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.40-7.30 (m, 4H), 7.28-7.21 (m, 5H), 7.12-7.07 (m, 3H), 4.73 (s, 1H), 2.47 (s, 3H), 2.33 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ =193.8, 166.6, 137.3, 136.7, 135.3, 131.1, 130.0, 129.5, 129.3, 129.0, 128.6, 128.5, 120.4, 117.9, 111.8, 37.2, 31.1, 14.2 ppm; IR (KBr): 2378, 1705, 1650 cm⁻¹; Anal calcd for C₂₂H₁₉N₃O₂: C, 73.93; H, 5.36; N, 11.76% Found C, 73.85; H, 5.30; N, 11.69%.

2-(4-Acetyl-5-methyl-2-phenyl-1*-p***-tolyl-**1*H***-3-pyrrolyl**)**-2-cyanoacetamide (5b)**. Light yellow solid; yield: 281 mg (76%); m.p.: 168-170 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.37 (s, 1H), 7.31-7.24 (m, 3H), 7.22-7.12 (m, 6H), 7.06 (s, 1H), 4.73 (s, 1H), 2.47 (s, 3H), 2.32 (s, 3H), 2.25 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ =193.8, 166.6, 138.4, 136.8, 135.4, 134.7, 131.1, 130.1, 129.9, 128.9, 128.6, 128.5, 120.3, 117.9, 111.7, 37.2, 31.3, 21.0, 14.3 ppm; IR (KBr): 2376, 1708, 1647 cm⁻¹; Anal calcd for C₂₃H₂₁N₃O₂: C, 74.37; H, 5.70; N, 11.31% Found C, 74.30; H, 5.62; N, 11.23%.

2-[4-Acetyl-5-methyl-1-(4-bromophenyl)-2-phenyl-1*H***-3-pyrrolyl]-2-cyanoacetamide** (5c). Light yellow solid; yield: 317 mg (73%); m.p.: 146-148 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.58 (d, *J* = 5.4 Hz, 2H), 7.38 (s, 1H), 7.27-7.17(m, 5H), 7.13-7.10 (m, 2H), 7.05 (s, 1H), 4.69 (s, 1H), 2.47 (s, 3H), 2.33 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ =193.8, 166.5, 136.7, 135.2, 132.5, 131.4, 131.1, 129.8, 128.8, 128.7, 122.2, 120.6, 117.8, 112.0, 107.8, 37.1, 31.1, 14.2 ppm; IR (KBr): 2370, 1701, 1649 cm⁻¹; Anal calcd for C₂₂H₁₈BrN₃O₂: C, 60.56; H, 4.16; N, 9.63% Found C, 60.48; H, 4.10; N, 9.55%.

2-[4-Acetyl-5-methyl-1-(4-chlorophenyl)-2-phenyl-1*H***-3-pyrrolyl]-2-cyanoacetamide** (5d). Light yellow solid; yield: 289 mg (74%); m.p.: 180-182 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.46-7.40 (m, 4H), 7.28-7.21 (m, 4H), 7.16-7.14(m, 2H), 7.08 (s, 1H), 4.74 (s, 1H), 2.50 (s, 3H), 2.36 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ =193.8, 166.6, 136.7, 136.3, 135.3, 133.7, 131.2, 129.8, 129.5, 128.7, 120.6, 117.9, 112.0, 37.2, 31.2, 14.2 ppm; IR (KBr): 2372, 1704, 1647 cm⁻¹; Anal calcd for C₂₂H₁₈ClN₃O₂: C, 67.43; H, 4.63; N, 10.72% Found C, 67.34; H, 4.55; N, 10.65%.

2-[4-Acetyl-5-methyl-1-(4-fluorophenyl)-2-phenyl-1*H***-3-pyrrolyl]-2-cyanoacetamide** (5e). Light yellow solid; yield: 266 mg (71%); m.p.: 218-220 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.40-7.36 (m, 2H), 7.28-7.20 (m, 6H), 7.15-7.13(m, 2H), 7.07 (s, 1H), 4.73 (s, 1H), 2.49 (s, 3H), 2.35 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ =193.8, 166.6, 163.5, 160.3, 136.9, 135.5, 133.7, 133.6, 131.5, 131.2, 129.9, 128.8, 128.6, 120.4, 117.9, 116.5, 116.2, 111.8, 37.2, 31.1, 14.2 ppm; IR (KBr): 2371, 1701, 1652 cm⁻¹; Anal calcd for C₂₂H₁₈FN₃O₂: C, 70.39; H, 4.83; N, 11.19% Found C, 70.31; H, 4.76; N, 11.12%.

2-[4-Acetyl-5-methyl-1-(4-methoxyphenyl)-2-phenyl-1*H***-3-pyrrolyl]-2-cyanoacetamide (5f)**. Light yellow solid; yield: 317 mg (82%); m.p.: 162-164 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.33 (s, 1H), 7.27-7.21 (m, 4H), 7.15-7.12 (m, 3H), 7.05 (s, 1H), 6.92(d, *J* = 8.7 Hz, 2H), 4.72 (s, 1H), 3.73 (s, 3H), 2.48 (s, 3H), 2.33 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 193.8, 166.6, 159.3, 137.0, 135.5, 131.2, 130.3, 130.2, 128.6, 128.5, 120.2, 118.0, 116.5, 114.6, 114.6, 111.6, 55.7, 37.2, 31.1, 14.2 ppm; IR (KBr): 2370, 1706, 1656 cm⁻¹; Anal calcd for C₂₃H₂₁N₃O₃: C, 71.30; H, 5.46; N, 10.85% Found C, 71.22; H, 5.38; N, 10.77%.

2-(4-Acetyl-5-methyl-1-benzyl-2-phenyl-1*H***-3-pyrrolyl)-2-cyanoacetamide (5g)**. Light yellow solid; yield: 285 mg (77%); m.p.: 196-198 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.32-7.31 (m, 3H), 7.23-7.11 (m, 6H), 6.88-6.84 (m, 3H), 4.97 (s, 2H), 4.70 (s, 1H), 2.35 (s, 3H), 2.33 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 194.0, 166.5, 137.6, 136.1, 135.0, 131.2, 129.8, 129.5, 129.1, 127.7, 126.1, 120.5, 118.1, 111.7, 47.7, 37.0, 31.3, 13.4 ppm; IR (KBr): 2375, 1703, 1646 cm⁻¹; Anal calcd for C₂₃H₂₁N₃O₂: C, 74.37; H, 5.70; N, 11.31% Found C, 74.30; H, 5.64; N, 11.24%.

2-(4-Acetyl-5-methyl-1-cyclopropyl-2-phenyl-1*H***-3-pyrrolyl)-2-cyanoacetamide (5h)**. Light yellow solid; yield: 260 mg (81%); m.p.: 166-168 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.49-7.44 (m, 3H), 7.41-7.35 (m, 2H), 7.25 (s, 1H), 6.84 (s, 1H), 4.68 (s, 1H), 3.26-3.20 (m, 1H), 2.67 (s, 3H), 2.42 (s, 3H), 0.77-0.69 (m, 2H), 0.44-0.43 (m, 2H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 193.5, 166.7, 138.7, 135.6, 130.9, 130.7, 128.8, 128.7, 119.7, 118.0, 110.7, 37.0, 31.2, 27.5, 14.2, 9.6, 9.5 ppm; IR (KBr): 2371, 1701, 1652 cm⁻¹; Anal calcd for C₁₉H₁₉N₃O₂: C, 71.01; H, 5.96; N, 13.08% Found C, 69.92; H, 5.90; N, 13.01%.

2-[4-Acetyl-5-methyl-1-phenyl-2-(4-chlorophenyl)-1*H*-3-pyrrolyl]-2-cyanoacetamide (5i). Light yellow solid; yield: 285 mg (73%); m.p.: 118-120 °C; ¹H NMR (300 MHz, DMSO- d_6): δ = 7.39-7.34 (m, 4H), 7.33-7.31 (m, 4H), 7.16-7.13(m, 3H), 4.90 (s, 1H), 2.49 (s, 3H), 2.35 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): δ = 194.1, 166.5, 137.1, 136.9, 133.9, 133.6, 133.0, 129.6, 129.2, 129.1, 128.6, 120.5, 117.9, 112.2, 36.9, 31.2, 14.2 ppm; IR (KBr): 2372, 1704, 1647 cm⁻¹; Anal calcd for C₂₂H₁₈ClN₃O₂: C, 67.43; H, 4.63; N, 10.72% Found C, 67.35; H, 4.54; N, 10.63%.

2-[4-Acetyl-5-methyl-1*-p*-tolyl-2-(4-chlorophenyl)-1*H*-3-pyrrolyl]-2-cyanoacetamide (5j). Light yellow solid; yield: 292 mg (72%); m.p.: 198-200 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.39 (s, 1H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.22-7.13 (m, 7H), 4.88 (s, 1H), 2.48 (s, 3H), 2.33 (s, 3H), 2.30 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 194.0, 166.5, 138.7, 137.0, 134.5, 133.9, 133.6, 133.0, 130.1, 129.1, 128.9, 128.6, 120.4, 112.1, 107.8, 36.9, 31.2, 21.0, 14.2 ppm; IR (KBr): 2376, 1707, 1649 cm⁻¹; Anal calcd for C₂₃H₂₀ClN₃O₂: C, 68.06; H, 4.97; N, 10.35% Found , 67.98; H, 4.91; N, 10.27%.

2-[4-Acetyl-5-methyl-1-benzyl-2-(4-chlorophenyl)-1*H*-3-pyrrolyl]-2-cyanoacetamide (5k). Light yellow solid; yield: 296 mg (73%); m.p.: 150-152 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.47 (d, J = 8.4 Hz, 2H), 7.31-7.24 (m, 6H), 7.07 (s, 1H), 6.93 (d, J = 7.2 Hz, 2H), 5.06 (s, 2H), 4.97 (s, 1H), 2.46 (s, 3H), 2.43 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 194.2, 166.4, 137.5, 136.3, 134.4, 133.5, 133.1, 129.1, 128.8, 127.7, 126.0, 120.6, 118.0, 112.2, 47.7, 36.6, 31.4, 13.4 ppm; IR (KBr): 2375, 1704, 1653 cm⁻¹; Anal calcd for C₂₃H₂₀ClN₃O₂: C, 68.06; H, 4.97; N, 10.35% Found , 67.95; H, 4.90; N, 10.28%.

2-[4-Acetyl-5-methyl-1-cyclopropyl-2-(4'-chlorophenyl)-1*H*-3-pyrrolyl]-2-cyanoacetamide

(51). Light yellow solid; yield: 281 mg (79%); m.p.: 184-186 °C; ¹H NMR (300 MHz, DMSO-

*d*₆): δ = 7.31 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 7.07 (s 1H), 6.70 (s, 1H), 4.61 (s, 1H), 3.05-3.02 (m, 1H), 2.46 (s, 3H), 2.21 (s, 3H), 0.62-0.58 (m, 2H), 0.25-0.23 (m, 2H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 193.7, 166.6, 139.0, 134.3, 133.5, 132.6, 129.9, 128.8, 119.8, 117.9, 111.2, 36.7, 31.4, 27.5, 14.5, 14.2, 9.6 ppm; IR (KBr): 2370, 1702, 1657 cm⁻¹; Anal calcd for C₁₉H₁₈ClN₃O₂: C, 64.13; H, 5.10; N, 11.81% Found , C, 64.07; H, 5.04; N, 11.74%.

2-[4-Acetyl-5-methyl-1-(4-bromophenyl)-2-(4-chlorophenyl)-1H-3-pyrrolyl]-2-

cyanoacetamide (5m). Light yellow solid; yield: 347 mg (74%); m.p.: 240-242 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.64-7.61 (m, 2H), 7.41 (s, 1H), 7.37-7.35 (m, 2H), 7.30-7.22 (m, 2H), 7.17- 7.11 (m, 3H), 4.87 (s, 1H), 2.49 (s, 3H), 2.35 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 194.0, 166.5, 136.9, 133.8, 133.0, 132.6, 131.4, 128.8, 122.4, 120.7, 117.8, 112.4, 36.9, 31.2, 14.2 ppm; IR (KBr): 2371, 1709, 1643 cm⁻¹; Anal calcd for C₂₂H₁₇BrClN₃O₂: C, 56.13; H, 3.64; N, 8.93% Found C, 56.06; H, 3.58; N, 8.85%.

2-[4-Acetyl-5-methyl-1,2-bis-(4-chlorophenyl)-1*H***-3-pyrrolyl]-2-cyanoacetamide (5n)**. Light yellow solid; yield: 302 mg (71%); m.p.: 244-246 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.47 (d, *J* = 8.7 Hz, 2H), 7.41 (s, 1H), 7.35-7.26 (m, 4H), 7.14-7.10 (m, 3H), 4.84 (s, 1H), 2.47 (s, 3H), 2.33 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 194.0, 166.5, 137.0, 136.0, 133.9, 133.8, 133.0, 131.2, 131.1, 129.7, 128.8, 120.7, 117.8, 112.4, 36.9, 31.2, 14.2 ppm; IR (KBr): 2367, 1702, 1648 cm⁻¹; Anal calcd for C₂₂H₁₇Cl₂N₃O₂: C, 61.98; H, 4.02; N, 9.86% Found C, 61.91; H, 3.95; N, 9.80%.

2-[4-Acetyl-5-methyl-1-(4-fluorophenyl)-2-(4-chlorophenyl)-1H-3-pyrrolyl]-2-

cyanoacetamide (50). Light yellow solid; yield: 295 mg (72%); m.p.: 205-207 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 7.41-7.26$ (m, 7H), 7.17-7.12 (m, 3H), 4.88 (s, 1H), 2.50 (s, 3H), 2.35

(s, 3H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): δ = 194.0, 166.5, 137.1, 134.0, 133.7, 133.4, 133.0, 131.5, 128.9, 128.7, 120.5, 117.8, 116.7, 116.4, 112.2, 36.9, 31.2, 14.2 ppm; IR (KBr): 2371, 1709, 1643 cm⁻¹; Anal calcd for C₂₂H₁₇ClFN₃O₂: C, 64.47; H, 4.18; N, 10.25% Found C, 64.41; H, 4.12; N, 10.18%.

2-[4-Acetyl-5-methyl-1-(4-methoxyphenyl)-2-(4-chlorophenyl)-1H-3-pyrrolyl]-2-

cyanoacetamide (5p). Light yellow solid; yield: 320 mg (76%); m.p.: 208-210 °C; ¹H NMR (300 MHz, DMSO- d_6): δ = 7.39-7.32 (m, 3H), 7.20-7.11 (m, 5H), 6.94 (d, J = 8.1 Hz, 2H), 4.88 (s, 1H), 3.74 (s, 3h), 2.48 (s, 3H), 2.33 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): δ = 194.0, 166.6, 159.4, 137.2, 134.1, 133.6, 133.0, 130.4, 130.3, 129.7, 129.2, 128.6, 120.3, 117.9, 114.7, 112.0, 55.7, 36.9, 31.2, 14.2 ppm; IR (KBr): 2375, 1702, 1640 cm⁻¹; Anal calcd for C₂₃H₂₀ClN₃O₃: C, 65.48; H, 4.78; N, 9.96% Found C, 65.41; H, 4.72; N, 9.89%.

2-[4-Acetyl-5-methyl-1-phenyl-2-(4-methoxyphenyl)-1*H*-**3-pyrrolyl]-2-cyanoacetamide (5q)**. Light yellow solid; yield: 313 mg (81%); m.p.: 164-166 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.38-7.30 (m, 4H), 7.28-7.23 (m, 2H), 7.05-7.02 (m, 3H), 6.79(d, *J* = 8.7 Hz, 2H), 4.71 (s, 1H), 3.66 (s, 3H), 2.47 (s, 3H), 2.31 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 193.8, 166.7, 159.4, 137.4, 136.4, 135.2, 132.5, 129.5, 129.0, 122.0, 120.3, 118.0, 114.0, 111.6, 55.4, 37.2, 31.1, 14.2 ppm; IR (KBr): 2369, 1701, 1655 cm⁻¹; Anal calcd for C₂₃H₂₁N₃O₃: C, 71.30; H, 5.46; N, 10.85% Found C, 71.21; H, 5.36; N, 10.75%.

2-[4-Acetyl-5-methyl-1-(4-chlorophenyl)-2-(4-methoxyphenyl)-1*H*-3-pyrrolyl]-2-

cyanoacetamide (5r). Light yellow solid; yield: 316 mg (75%); m.p.: 198-200 °C; ¹H NMR (300 MHz, DMSO- d_6): δ = 7.48-7.25 (m, 5H), 7.07-6.98 (m, 3H), 6.92-6.82 (m, 2H), 4.70 (s, 1H), 3.69 (s, 3H), 2.47 (s, 3H), 2.33 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): δ = 193.5, 166.4,

159.3, 136.2, 135.0, 133.4, 132.3, 130.9, 129.3, 128.6, 121.5, 120.2, 117.7, 113.9, 111.6, 55.2, 37.0, 30.9, 13.9 ppm; IR (KBr): 2371, 1704, 1643 cm⁻¹; Anal calcd for C₂₃H₂₀ClN₃O₃: C, 65.48; H, 4.78; N, 9.96% Found C, 65.40; H, 4.71; N, 9.87%.

2-[4-Acetyl-5-methyl-1-benzyl -2-(4-methoxyphenyl)-1*H***-3-pyrrolyl]-2-cyanoacetamide (5s)**. Light yellow solid; yield: 312 mg (78%); m.p.: 88-90 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.33-7.28 (m, 4H), 7.25-7.17 (m, 2H), 6.97-6.95 (m, 5H), 5.04 (s, 2H), 4.78 (s, 1H), 3.74 (s, 3H), 2.43 (s, 3H), 2.40 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 193.7, 166.4, 159.9, 137.5, 135.6, 134.7, 132.4, 128.9, 127.4, 125.9, 121.5, 120.2, 117.9, 114.3, 111.5, 55.3, 36.8, 31.1, 13.2 ppm; IR (KBr): 2374, 1705, 1657 cm⁻¹; Anal calcd for C₂₄H₂₃N₃O₃: C, 71.80; H, 5.77; N, 10.47% Found , C, 71.72; H, 5.71; N, 10.40%.

2-[4-Acetyl-5-methyl-1-cyclopropyl-2-(4-methoxyphenyl)-1H-3-pyrrolyl]-2-cyano

acetamide (5t). Light yellow solid; yield: 284 mg (81%); m.p.: 152-154 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 7.68$ (d, J = 8.1 Hz, 3H), 7.01 (d, J = 7.8 Hz, 2H), 6.82 (s, 1H), 4.65 (s, 1H), 3.78 (s, 3H), 3.20-3.10 (m, 1H), 2.65 (s, 3H), 2.40 (s, 3H), 0.92-0.90 (m, 2H), 0.46-0.44 (m, 2H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 193.5$, 166.7, 159.5, 138.4, 135.6, 132.1, 123.0, 119.6, 118.1, 114.2, 110.6, 55.5, 37.0, 31.2, 27.4, 14.1, 9.4 ppm; IR (KBr): 2368, 1704, 1652 cm⁻¹; Anal calcd for C₂₀H₂₁N₃O₃: C, 68.36; H, 6.02; N, 11.96% Found , C, 68.28; H, 5.94; N, 11.90%.

2-(4-Carboethoxy-5-methyl-1,2-diphenyl-1*H*-3-pyrrolyl)-2-cyanoacetamide (5u). Light yellow solid; yield: 302 mg (78%); m.p.: 164-166 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.45 (s, 1H), 7.30-7.27 (bs, 4H), 7.18-7.17 (m, 4H), 7.09-7.05 (m, 3H), 4.57 (s, 1H), 4.18-4.11 (m, 2H), 2.41 (s, 3H), 1.25-1.20 (m, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 161.0, 158.7, 132.3, 131.5, 129.3, 125.3, 124.2, 123.7, 123.2, 122.8, 122.5, 112.4, 105.8, 104.3, 53.9, 31.7, 9.2,

7.8 ppm; IR (KBr): 2251, 1701, 1690 cm⁻¹; Anal calcd for C₂₃H₂₁N₃O₃: C, 71.30; H, 5.46; N, 10.85% Found C, 71.22; H, 5.39; N, 10.78%.

2-[4-Carboethoxy-5-methyl-1-(4-fluorophenyl)-2-phenyl-1*H*-3-pyrrolyl]-2-cyanoacetamide

(5v). Light yellow solid; yield: 303 mg (75%); m.p.: 194-196 °C; ¹H NMR (300 MHz, DMSOd₆): δ = 7.55 (s, 1H), 7.46 (s, 1H), 7.35-7.21 (m, 6H), 7.16-7.11 (m, 3H), 4.65 (s, 1H), 4.27-4.20 (m, 2H), 2.32 (s, 3H), 1.39-1.28 (m, 3H) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 166.4, 164.0, 159.9, 138.0, 134.8, 133.3, 130.9, 130.7, 129.5, 128.4, 128.3, 117.8, 116.1, 115.8, 111.2, 109.8, 59.4, 37.1, 14.1, 12.4 ppm; IR (KBr): 2250, 1702, 1688 cm⁻¹; Anal calcd for C₂₃H₂₀FN₃O₃: C, 68.14; H, 4.97; N, 10.36% Found C, 68.07; H, 4.91; N, 10.30%.

2-[4-Carboethoxy-5-methyl-1-(4-methoxyphenyl)-2-phenyl-1H-3-pyrrolyl]-2-

cyanoacetamide (5w). Light yellow solid; yield: 329 mg (79%); m.p.: 216-218 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 7.51$ (s, 1H), 7.28-7.27 (m, 4H), 7.16-7.14 (m, 4H), 6.92-6.90 (m, 2H), 4.62 (s, 1H), 4.26-4.19 (m, 2H), 3.72 (s, 3H), 2.30 (s, 3H), 1.33-1.28 (m, 3H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 166.4$, 164.1, 158.9, 138.1, 134.9, 130.7, 129.8, 129.5, 128.3, 117.8, 114.1, 110.9, 109.5, 59.3, 55.3, 37.1, 14.1, 12.5 ppm; IR (KBr): 2253, 1703, 1693 cm⁻¹; Anal calcd for C₂₄H₂₃N₃O₄: C, 69.05; H, 5.55; N, 10.07% Found C, 68.98; H, 5.49; N, 10.01%.

2-(4-Carboethoxy-5-methyl-1-benzyl-2-phenyl-1*H***-3-pyrrolyl)-2-cyanoacetamide (5x)**. Light yellow solid; yield: 293 mg (73%); m.p.: 78-80 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.51-7.43 (m, 4H), 7.33-7.23 (m, 5H), 7.05 (s, 1H), 7.95 (d, *J* = 7.2 Hz, 2H), 5.04 (s, 2H), 4.64 (s, 1H), 4.23-4.17 (m, 2H), 2.40 (s, 3H), 1.32-1.24 (m, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 166.2, 164.1, 137.1, 134.3, 130.8, 129.5, 129.1, 128.8, 128.7, 127.2, 125.7, 117.9, 111.2, 109.7,

59.2, 47.3, 36.9, 14.0, 11.5 ppm; IR (KBr): 2248, 1701, 1688cm⁻¹; Anal calcd for C₂₄H₂₃N₃O₃: C, 71.80; H, 5.77; N, 10.47% Found C, 71.73; H, 5.72; N, 10.41%.

Benzo[g]jndole 11; General Procedure: The 2-pyrrolyl-2-cyanoacetamide **5** (0.5 mmol) in diphenyl ether (10 mL) was heated at reflux for 10 minutes. Upon completion of the reaction, the crude mass was purified by chromatography on a silica gel column (EtOAc/hexane, 1:1) to get pure compound **11** as brown solid.

3-Acetyl-5-hydroxy-1-phenyl-2-methyl-1*H***-benzo**[*g*]**indole-4-carbonitrile (11a).** Brown solid; yield: 103 mg (61%); m.p.: 228-230 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.91 (s, 1H), 8.35 (d, *J* = 8.4 Hz, 1H), 7.73-7.20 (m, 3H), 7.53 (t, *J* = 3.6 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 6.86 (d, *J* = 8.7Hz, 1H), 2.62 (s, 3H), 2.28 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 195.9, 156.4, 140.5, 138.9, 131.0, 130.5, 129.2, 125.4, 124.8, 124.7, 123.2, 120.5, 119.4, 118.0, 117.1, 88.6, 32.6, 12.9 ppm; IR (KBr): 3330, 2214, 1647 cm⁻¹; Anal calcd for C₂₂H₁₆N₂O₂: C, 77.63; H, 4.74; N, 8.23% Found, C, 77.56; H, 4.67; N, 8.16%.

3-Acetyl-5-hydroxy-1*-p***-tolyl-2-methyl-1***H***-benzo**[*g*]indole-4-carbonitrile (11b). Brown solid; yield: 97 mg (55%); m.p.: 238-240 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.89 (s, 1H), 8.35 (d, *J* = 8.1 Hz, 1H), 7.53-7.50 (m, 1H), 7.46-7.30 (m, 3H), 7.53 (t, *J* = 3.6 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 1H), 2.61 (s, 3H), 2.50 (s, 3H), 2.26 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 195.9, 156.4, 140.7, 140.1, 136.2, 131.4, 129.3, 128.9, 125.5, 124.7, 124.5, 123.2, 120.6, 119.3, 117.9, 117.1, 88.6, 32.6, 21.3, 12.9 ppm; IR (KBr): 3334, 2216, 1648 cm⁻¹; Anal calcd for C₂₃H₁₈N₂O₂: C, 77.95; H, 5.12; N, 7.90 Found , C, 77.88; H, 5.05; N, 7.83.

3-Acetyl-5-hydroxy-1-(4-bromophenyl)-2-methyl-1*H*-benzo[*g*]indole-4-carbonitrile (11c). Brown solid; yield: 109 mg (52%); m.p.: 212-214 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.96$ (s, 1H), 8.36 (d, J = 7.8 Hz, 1H), 7.94-7.90 (m, 2H), 7.56-7.42 (m, 3H), 7.30-7.14 (m, 1H), 6.95 (d, J = 6.9 Hz, 1H), 2.61 (s, 3H), 2.27 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 196.0$, 156.5, 140.5, 138.2, 134.0, 131.5, 130.4, 129.5, 125.3, 124.9, 123.7, 123.2, 120.5, 119.5, 119.0, 118.3, 117.0, 88.5, 32.7, 12.8 ppm; IR (KBr): 3335, 2216, 1645 cm⁻¹; Anal calcd for C₂₂H₁₅BrN₂O₂: C, 63.02; H, 3.61; N, 6.68% Found , C, 62.94; H, 3.53; N, 6.60%.

3-Acetyl-5-hydroxy-1-(4-chlorophenyl)-2-methyl-1*H***-benzo**[*g*]**indole-4-carbonitrile** (11d). Brown solid; yield: 100 mg (53%); m.p.: 253-255 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.89 (s, 1H), 8.26 (d, *J* = 8.1 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.40-7.17 (m, 2H), 6.85 (d, *J* = 8.1 Hz, 1H), 2.41 (s, 3H), 2.18 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 196.0, 156.5, 140.5, 137.8, 135.1, 131.2, 131.0, 129.5, 125.3, 124.8, 124.7, 124.3, 123.2, 120.4, 117.0, 88.6, 32.6, 12.8 ppm; IR (KBr): 3330, 2219, 1653 cm⁻¹; Anal calcd for C₂₂H₁₅ClN₂O₂: C, 70.50; H, 4.03; N, 7.47% Found , C, 70.44; H, 3.96; N, 7.41%.

3-Acetyl-5-hydroxy-1-(4-fluorophenyl)-2-methyl-1*H***-benzo**[*g*]**indole-4-carbonitrile** (11e). Brown solid; yield: 91 mg (51%); m.p.: 247-249 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.82 (s, 1H), 8.25 (d, *J* = 8.1 Hz, 1H), 7.56-7.43 (m, 4H), 7.38-7.26 (m, 2H), 6.81 (d, *J* = 8.4 Hz, 1H), 2.51 (s, 3H), 2.17 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 196.0, 156.5, 140.7, 135.1, 131.6, 131.5, 129.5, 124.8, 124.7, 124.4, 123.2, 120.4, 119.4, 118.1, 117.8, 117.0, 88.5, 32.6, 12.8 ppm; IR (KBr): 3326, 2224, 1648 cm⁻¹; Anal calcd for C₂₂H₁₅FN₂O₂: C, 73.73; H, 4.22; N, 7.82% Found , C, 73.65; H, 4.16; N, 7.74%.

3-Acetyl-5-hydroxy-1-(4-methoxyphenyl)-2-methyl-1*H***-benzo**[*g*]**indole-4-carbonitrile** (11f). Brown solid; yield: 109 mg (59%); m.p.: 140-142 °C;¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.87 (s, 1H), 8.33 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.45-7.33 (m, 4H), 7.23 (d, J = 8.4 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H),

1H), 3.90 (s, 3H), 2.60 (s, 3H), 2.26 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): δ = 195.6, 160.2, 156.1, 140.8, 131.0, 130.1, 129.1, 125.4, 124.5, 124.4, 124.3, 122.9, 120.4, 119.0, 117.6, 116.9, 115.8, 88.4, 55.8, 32.4, 12.7 ppm; IR (KBr): 3330, 2223, 1649 cm⁻¹; Anal calcd for C₂₃H₁₈N₂O₃: C, 74.58; H, 4.90; N, 7.56% Found , C, 74.51; H, 4.84; N, 7.51%.

3-Acetyl-5-hydroxy-1-benzyl-2-methyl-1*H***-benzo**[*g*]**indole-4-carbonitrile (11g).** Brown solid; yield: 106 mg (60%); m.p.: 202-204 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.94 (s, 1H), 8.37 (bs, 1H), 8.14-8.13 (m, 1H), 7.68-7.51(m, 2H), 7.33-7.27 (m, 3H), 7.05 (bs, 2H), 5.88 (s, 2H), 2.62 (s, 3H), 2.52 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 196.7, 156.1, 140.1, 137.1, 129.8, 129.5, 127.8, 125.9, 124.8, 124.5, 123.2, 121.4, 119.5, 118.0, 117.2, 88.4, 49.4, 33.0, 11.9 ppm; IR (KBr): 3336, 2216, 1647 cm⁻¹; Anal calcd for C₂₃H₁₈N₂O₂: C, 77.95; H, 5.12; N, 7.90 Found , C, 77.87; H, 5.04; N, 7.84.

3-Acetyl-5-hydroxy-1-cyclopropyl-2-methyl-1*H***-benzo**[*g*]**indole-4-carbonitrile (11h).** Brown solid; yield: 94 mg (62%); m.p.: 194-196 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.79 (s, 1H), 8.89 (d, *J* = 8.7 Hz, 1H), 8.37 (d, *J* = 8.1 Hz, 1H), 7.73 (t, *J* = 7.5 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 3.79 (m, 1H), 2.65 (s, 3H), 2.53 (s, 3H), 1.43-1.42 (m, 2H), 0.87 (bs , 2H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 195.7, 156.0, 142.5, 128.9, 126.0, 124.8, 124.4, 124.3, 123.5, 123.0, 118.8, 117.5, 117.2, 88.5, 32.6, 29.1, 14.4, 12.4 ppm; IR (KBr): 3331, 2218, 1653 cm⁻¹; Anal calcd for C₁₉H₁₆N₂O₂: C, 74.98; H, 5.30; N, 9.20 Found , C, 74.92; H, 5.23; N, 9.14.

3-Acetyl-7-chloro-5-hydroxy-1-phenyl-2-methyl-1*H***-benzo**[*g*]**indole-4-carbonitrile** (11**i**). Brown solid; yield: 99 mg (53%); m.p.: 270-272 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 11.09 (s, 1H), 8.31 (d, *J* = 2.1 Hz, 1H), 7.72-7.71 (m, 3H), 7.53-7.52 (m, 2H), 7.37-7.33 (dd, *J*₁= 9.0 Hz, *J*₂= 2.1Hz, 1H), 6.81 (d, *J* = 9.0 Hz, 1H), 2.59 (s, 3H), 2.26 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): *δ* = 195.8, 155.4, 141.2, 138.5, 131.1, 130.7, 129.5, 129.4, 129.1, 125.2, 124.2, 123.7, 122.7, 122.6, 118.0, 116.6, 88.9, 32.6, 12.9 ppm; IR (KBr): 3327, 2223, 1648 cm⁻¹; Anal calcd for C₂₂H₁₅ClN₂O₂: C, 70.50; H, 4.03; N, 7.47% Found , C, 70.43; H, 3.97; N, 7.40%.

3-Acetyl-7-chloro-5-hydroxy-1-*p*-tolyl-2-methyl-1*H*-benzo[*g*]indole-4-carbonitrile (11j). Brown solid; yield: 98 mg (51%); m.p.: 238-240 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 8.31 (bs, 1H), 7.50 (d, *J* = 7.5 Hz, 2H), 7.39 (d, *J* = 7.8 Hz, 3H), 6.90 (d, *J* = 9.0 Hz, 1H), 2.58 (s, 3H), 2.48 (s, 3H), 2.24 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 195.8, 155.3, 141.4, 140.4, 135.9, 131.6, 129.5, 129.4, 128.8, 125.3, 124.2, 123.6, 122.7, 117.9, 116.6, 90.0, 32.5, 21.3, 12.9 ppm; IR (KBr): 3329, 2218, 1651 cm⁻¹; Anal calcd for C₂₃H₁₇ClN₂O₂: C, 71.04; H, 4.41; N, 7.20% Found , C, 70.97; H, 4.34; N, 7.14%.

3-Acetyl-7-chloro-5-hydroxy-1-benzyl-2-methyl-1*H*-benzo[g]indole-4-carbonitrile (11k). Brown solid; yield: 108 mg (56%); m.p.: 178-180 °C; ¹H NMR (300 MHz, DMSO- d_6): δ =11.18 (bs, 1H), 8.34 (d, J = 2.1 Hz, 1H), 8.13 (d, J = 9.0 Hz, 1H), 7.56-7.52 (J_1 = 9.0 Hz, J_2 = 2.1Hz, 1H), 7.36-7.25 (m, 4H), 7.02 (d, J = 7.2 Hz, 1H), 5.87 (s, 2H), 2.61 (s, 3H), 2.53 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): δ = 196.6, 155.1, 140.6, 136.8, 129.6, 129.5, 129.3, 127.9, 125.9, 124.4, 124.2, 123.8, 123.7, 122.7, 120.0, 118.0, 116.8, 89.7, 49.3, 33.0, 12.0 ppm; IR (KBr): 3329, 2218, 1651 cm⁻¹; Anal calcd for C₂₃H₁₇ClN₂O₂: C, 71.04; H, 4.41; N, 7.20% Found , C, 70.96; H, 4.32; N, 7.13%.

3-Acetyl-7-chloro-5-hydroxy-1-cyclopropyl-2-methyl-1*H*-benzo[g]indole-4-carbonitrile

(111). Brown solid; yield: 91 mg (54%); m.p.: 208-210 °C; ¹H NMR (300 MHz, DMSO- d_6): δ =10.94 (s, 1H), 8.90 (d, J = 9.3 Hz, 1H), 8.34 (bs, 1H), 7.73-7.70 (J_1 = 9.0 Hz, J_2 = 2.1Hz, 1H), 3.79 (m, 1H), 2.65 (s, 3H), 2.52 (s, 3H), 1.43-1.41 (m, 2H), 0.88 (bs, 2H) ppm; ¹³C NMR (75)

MHz, DMSO-*d*₆): *δ* =195.4, 154.7, 142.9, 129.0, 128.6, 125.6, 123.8, 123.0, 122.9, 119.0, 117.3, 116.5, 89.6, 32.3, 28.8, 14.2, 12.1 ppm; IR (KBr): 3338, 2221, 1653 cm⁻¹; Anal calcd for C₁₉H₁₅ClN₂O₂: C, 67.36; H, 4.46; N, 8.27% Found , C, 67.29; H, 4.40; N, 8.21%.

3-Acetyl-7-methoxy-5-hydroxy-1-phenyl-2-methyl-1*H*-benzo[*g*]indole-4-carbonitrile (11q). Brown solid; yield: 96 mg (52%); m.p.: 188-190 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.79 (s, 1H), 7.72 (bs, 4H), 7.52 (bs, 2H), 6.99 (d, *J* = 8.1 Hz, 1H), 6.77 (d, *J* = 9.3 Hz, 1H), 3.83 (s, 3H), 2.68 (s, 3H), 2.25 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 195.8, 156.4, 155.4, 139.8, 138.9, 131.0, 130.5, 129.2, 124.5, 122.3, 120.2, 119.3, 117.7, 104.6, 89.0, 55.7, 32.6, 12.9 ppm; IR (KBr): 3330, 2223, 1649 cm⁻¹; Anal calcd for C₂₃H₁₈N₂O₃: C, 74.58; H, 4.90; N, 7.56% Found , C, 74.50; H, 4.83; N, 7.51%.

3-Carboethoxy-5-hydroxy-1-phenyl-2-methyl-1*H*-benzo[g]indole-4-carbonitrile (11u). White solid; yield: 110 mg (59%); m.p.: 218-220 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.86 (s, 1H), 8.36 (d, *J* = 8.1 Hz, 1H), 7.73-7.71 (m, 3H), 7.56-7.53 (m, 2H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 6.86 (d, *J* = 8.7 Hz, 1H), 4.41- 4.34 (m, 2H), 2.32 (s, 3H), 1.39 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 159.0, 150.7, 137.3, 133.0, 125.2, 124.7, 123.4, 123.3, 119.6, 118.9, 118.5, 117.3, 114.7, 113.6, 111.4, 101.2, 83.1, 54.1, 8.8, 6.7 ppm; IR (KBr): 3305, 2214, 1712 cm⁻¹; Anal calcd for C₂₃H₁₈N₂O₃: C, 74.58; H, 4.90; N, 7.56 Found , C, 74.51; H, 4.83; N, 7.50.

3-Carboethoxy-5-hydroxy-1-(4-fluorophenyl)-2-methyl-1*H*-benzo[g]indole-4-carbonitrile

(11v). White solid; yield: 108 mg (56%); m.p.: 246-248 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta =$ 10.90 (s, 1H), 8.36 (d, J = 7.8 Hz, 1H), 7.67-7.53 (m, 4H), 7.48-7.36 (m, 2H), 6.91 (d, J = 8.1 Hz, 1H), 4.41- 4.34 (m, 2H), 2.33 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz,

DMSO- d_6): $\delta = 164.4$, 164.2, 160.9, 156.2, 142.9, 134.7, 131.1, 129.0, 125.1, 124.4, 123.9, 122.8, 120.0, 119.1, 117.4, 116.5, 106.8, 88.5, 59.5, 14.2, 12.1 ppm; IR (KBr): 3302, 2216, 1715 cm⁻¹; Anal calcd for C₂₃H₁₇FN₂O₃: C, 71.13; H, 4.41; N, 7.21 Found , C, 71.06; H, 4.34; N, 7.14.

3-Carboethoxy-5-hydroxy-1-(4-methoxyphenyl)-2-methyl-1*H*-benzo[g]indole-4-carbonitrile

(11w). White solid; yield: 122 mg (61%); m.p.: 256-258 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.84 (s, 1H), 8.34 (d, *J* = 8.1 Hz, 1H), 7.47-7.36 (m, 4H), 7.24-7.20 (m, 2H), 7.00-6.97 (m, 1H), 4.40- 4.33 (m, 2H), 3.91 (s, 3H), 2.32 (s, 3H), 1.41-1.35 (m, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 164.4, 160.0, 156.1, 143.2, 130.8, 129.8, 128.9, 125.2, 124.3, 124.1, 122.7, 120.1, 118.9, 116.6, 115.6, 106.4, 88.5, 59.4, 55.6, 14.2, 12.1 ppm; IR (KBr): 3301, 2213, 1711 cm⁻¹; Anal calcd for C₂₄H₂₀N₂O₄: C, 71.99; H, 5.03; N, 7.00 Found , C, 71.92; H, 4.97; N, 6.93.

3-Carboethoxy-5-hydroxy-1-benzyl-2-methyl-1*H***-benzo**[*g*]**indole-4-carbonitrile (11x).** White solid; yield: 105 mg (55%); m.p.: 192-194 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.85 (s, 1H), 8.37 (d, *J* = 7.8 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.55-7.45 (m, 2H), 7.35-7.22 (m, 3H), 7.02 (d, *J* = 7.2 Hz, 2H), 5.87 (s, 2H), 4.41- 4.34 (m, 2H), 2.61 (s, 3H), 1.39 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 164.6, 155.9, 142.5, 136.8, 129.3, 129.1, 127.4, 125.5, 124.3, 124.2, 123.9, 122.7, 121.0, 119.4, 116.6, 106.5, 88.6, 59.6, 49.1, 14.2, 11.2 ppm; IR (KBr): 3302, 2217, 1710 cm⁻¹; Anal calcd for C₂₄H₂₀N₂O₃: C, 74.98; H, 5.24; N, 7.29 Found , C, 74.91; H, 5.18; N, 7.22.

3-Benzoyl-5-hydroxy-1-phenyl-2-methyl-1*H***-benzo**[*g*]**indole-4-carbonitrile** (11y). Brown solid; yield: 82 mg (41%); m.p.: 256-258 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.78 (s, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 7.2 Hz, 2H), 7.73-7.43 (m, 8H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.25 (t, *J* = 6.9 Hz, 1H), 6.86 (d, *J* = 8.7 Hz, 1H), 1.91 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-

 d_6): $\delta = 191.9$, 155.8, 140.3, 139.9, 138.9, 133.4, 130.9, 130.4, 129.9, 129.1, 125.4, 124.8, 124.6, 124.5, 123.2, 120.4, 116.2, 115.1, 88.2, 12.8 ppm; IR (KBr): 3335, 2210, 1649 cm⁻¹; Anal calcd for C₂₇H₁₈N₂O₂: C, 80.58; H, 4.51; N, 6.96% Found, C, 80.51; H, 4.44; N, 6.90%.

3-Benzoyl-5-hydroxy-1-(4-methoxyphenyl)-2-methyl-1H-benzo[g]indole-4-carbonitrile

(11z). Brown solid; yield: 93 mg (43%); m.p.: 248-250 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.83 (s, 1H), 8.34 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.1 Hz, 2H) 7.67-7.35 (m, 7H), 7.23 (d, *J* = 8.7 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 1H), 3.90 (s, 3H), 1.98 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 191.8, 160.3, 155.8, 140.7, 139.9, 133.4, 131.3, 130.2, 129.9, 125.5, 124.7, 124.5, 123.2, 120.5, 120.2, 116.3, 115.9, 114.9, 8.2, 55.9, 12.8 ppm; IR (KBr): 3336, 2225, 1647 cm⁻¹; Anal calcd for C₂₈H₂₀N₂O₃: C, 77.76; H, 4.66; N, 6.48% Found , C, 77.70; H, 4.59; N, 6.41%.

2,3-Dicarboethoxy-5-hydroxy-1-aryl-1*H*-benzo[g]indole-4-carbonitril 13; General Procedure: Dicarboethoxy substituted-2-cyanoacetamide 12 (0.5 mmol) in diphenyl ether (10 mL) was heated at reflux for 10 minutes. Upon completion of the reaction, the crude mass was purified by chromatography on a silica gel column (EtOAc/hexane, 1:1) to get pure compound 13 as white solid.

2,3-Dicarboethoxy-5-hydroxy-1-phenyl-1*H***-benzo**[*g*]**indole-4-carbonitrile (13a).** White solid; yield: 137 mg (64%); m.p.: 180-182 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 11.32 (s, 1H), 8.31 (d, *J* = 8.4 Hz, 1H), 7.61-7.47 (m, 6H), 7.29 (t, *J* = 8.4 Hz, 1H), 6.77 (d, *J* = 8.4 Hz, 1H), 4.33-4.26 (m, 2H), 4.02- 3.95 (m, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 0.94 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 158.6, 153.8, 151.5, 133.5, 124.7, 124.5, 124.1, 123.3, 122.8, 121.6, 120.8, 119.7, 119.5, 115.7, 111.7, 110.0, 109.7, 80.8, 55.7, 8.6, 8.1 ppm; IR (KBr): 3270,

2227, 1739, 1714 cm⁻¹; Anal calcd for C₂₅H₂₀N₂O₅: C, 70.08; H, 4.71; N, 6.54 Found , C, 70.01; H, 4.65; N, 6.45.

2,3-Dicarboethoxy-5-hydroxy-1*-p***-tolyl-1***H***-benzo[g]indole-4-carbonitrile (13b).** White solid; yield: 115 mg (52%); m.p.: 168-170 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 11.38 (s, 1H), 8.40 (d, *J* = 8.1 Hz, 1H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.44-7.39 (m, 5H), 6.98 (d, *J* = 8.4 Hz, 1H), 4.41-4.34 (m, 2H), 4.11-4.04 (m, 2H), 2.49 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.06 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 158.6, 153.8, 151.4, 134.2, 130.8, 124.9, 124.1, 123.0, 121.6, 120.8, 119.6, 119.4, 119.1, 115.7, 111.7, 110.0, 109.5, 80.9, 55.7, 55.6, 15.6, 8.6, 8.2 ppm; IR (KBr): 3272, 2225, 1735, 1716 cm⁻¹; Anal calcd for C₂₆H₂₂N₂O₅: C, 70.58; H, 5.01; N, 6.33 Found, C, 70.51; H, 4.94; N, 6.26.

2,3-Dicarboethoxy-5-hydroxy-1-(4-fluorophenyl)-1*H*-benzo[*g*]indole-4-carbonitrile (13c). White solid; yield: 136 mg (61%); m.p.: 238-240 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 11.43 (s, 1H), 8.42 (d, *J* = 7.8 Hz, 1H), 7.69-7.47 (m, 6H), 6.94 (d, *J* = 8.1 Hz, 1H), 4.42- 4.36 (m, 2H), 4.13- 4.01 (m, 2H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.08 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 158.7, 153.7, 151.5, 129.8, 125.7, 125.6, 124.3, 122.4, 121.8, 120.9, 119.8, 119.5, 119.1, 115.6, 111.7, 111.2, 110.3, 110.0, 80.7, 55.7, 8.6, 8.2 ppm; IR (KBr): 3271, 2226, 1738, 1714 cm⁻¹; Anal calcd for C₂₅H₁₉FN₂O₅: C, 67.26; H, 4.29; N, 6.28 Found , C, 67.20; H, 4.22; N, 6.21.

2,3-Dicarboethoxy-5-hydroxy-1-(4-chlorophenyl)-1*H*-benzo[*g*]indole-4-carbonitrile (13d). White solid; yield: 138 mg (60%); m.p.: 194-196 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 11.45 (s, 1H), 8.42 (d, *J* = 8.1 Hz, 1H), 7.73-7.57 (m, 5H), 7.48 (t, *J* = 7.2 Hz, 1H), 6.98 (d, *J* = 8.1 Hz, 1H), 4.43- 4.36 (m, 2H), 4.14- 4.07 (m, 2H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.08 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 158.7, 153.6, 151.5, 132.5, 129.2, 125.3, 124.5, 122.1,

121.7, 120.9, 119.8, 119.5, 119.0, 115.6, 111.8, 110.6, 110.0, 80.7, 55.8, 8.6, 8.2 ppm; IR (KBr): 3274, 2221, 1739, 1716 cm⁻¹; Anal calcd for C₂₅H₁₉ClN₂O₅: C, 64.87; H, 4.14; N, 6.05 Found , C, 64.81; H, 4.06; N, 5.96.

2,3-Dicarboethoxy-5-hydroxy-1-(4-methoxyphenyl)-1*H*-benzo[*g*]indole-4-carbonitrile (13e). White solid; yield: 144 mg (63%); m.p.: 180-182 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 11.41 (s, 1H), 8.41 (d, *J* = 8.1 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H) 7.48-7.42 (m, 3H), 7.17 (d, *J* = 9.0 Hz, 2H), 7.02 (d, *J* = 8.1 Hz, 1H), 4.41- 4.34 (m, 2H), 4.12- 4.08 (m, 2H), 3.90 (s, 3H), 1.36 (t, *J* = 6.9 Hz, 3H), 1.07 (t, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 164.3, 160.4, 159.5, 157.2, 131.5, 130.1, 129.8, 126.4, 125.1, 124.9, 121.4, 115.8, 115.2, 115.0, 86.8, 61.4, 61.3, 55.9, 14.3, 13.9 ppm; IR (KBr): 3276, 2223, 1735, 1719 cm⁻¹; Anal calcd for C₂₆H₂₂N₂O₆: C, 68.11; H, 4.84; N, 6.11 Found , C, 68.05; H, 4.76; N, 6.04.

2,3-Dicarboethoxy-5-hydroxy-1-(2,4 dimethyl phenyl)-1*H*-benzo[*g*]indole-4-carbonitrile (13f). White solid; yield: 125 mg (55%); m.p.: 176-178 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 11.42 (s, 1H), 8.42 (d, *J* = 7.8 Hz, 1H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.35-7.23 (m, 3H), 6.94 (d, *J* = 8.4 Hz, 1H), 4.42- 4.34 (m, 2H), 4.12- 4.04 (m, 2H), 2.45 (s, 3H), 1.98 (s, 3H) 1.37 (t, *J* = 7.2 Hz, 3H), 1.07 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 158.6, 153.8, 151.5, 134.4, 130.6, 130.0, 126.3, 124.5, 122.9, 122.6, 120.9, 119.6, 119.2, 114.8, 111.8, 110.1, 109.5, 81.0, 55.8, 55.7, 15.5, 11.4, 8.6, 8.1 ppm; IR (KBr): 3273, 2224, 1737, 1714 cm⁻¹; Anal calcd for C₂₇H₂₄N₂O₅: C, 71.04; H, 5.30; N, 6.14 Found , C, 70.97; H, 5.23; N, 6.07.

ASSOCIATED CONTENT

Supporting Information

Supplementary data (¹H, ¹³C data of compounds **5**, **11** and **13** and crystallographic data for **5**j, **11h**, **11u**) is available free of charge *via* the Internet at-----

ACKNOWLEDGEMENTS

S.M. and A. K. thank CSIR and UGC, New Delhi, India respectively for offering SRF. The financial assistance of CSIR, New Delhi is gratefully acknowledged [Major Research Project, No. 02(0007)/11/EMR-II]. Crystallo-graphy was performed at the DST-FIST, India-funded Single Crystal Diffractometer Facility at the Department of Chemistry, University of Calcutta.

REFFERENCES

- (a) M. Ishikura and K. Yamada, *Nat. Prod. Rep.*, 2009, 26, 803–852; (b) K. Higuchi and T. Kawasaki, *Nat. Prod. Rep.*, 2007, 24, 843–868; (c) T. Kawasaki and K. Higuchi, *Nat. Prod. Rep.*, 2005, 22, 761–793
- (a) C. Gil, S. Brase, J. Comb. Chem., 2009, 11, 175–197; (b) C. R. Donald, C. L. Richard, Tetrahedron Lett., 2009, 50, 4003-4008; (c) G. W. Gribble, J. Chem. Soc., Perkin Trans. 1 2000, 1045-1075.
- (a) M. Ishikura, T. Abe, T. Choshi, S. Hibino *Nat. Prod. Rep.*, 2013, **30**, 694–752; (b) P.
 Ruiz-Sanchis, S. A. Savina, F. Albericio, M. Alvarez, *Chem. Eur. J.*, 2011, 17, 1388 1408
- (a) K. Brunner, A. V. Dijken, H. Börner, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, J. Am. Chem. Soc., 2004, 126, 6035–6042; (b) T. Tsuchimoto, H. Matsubayashi, M. Kaneko, Y. Nagase, T. Miyamura, E. Shirakawa, J. Am. Chem. Soc. 2008, 130, 15823–15835; (c) Y. Xing, B. Hu, Q. Yao, P. Lu, Y. Wang, Chem. Eur. J., 2013, 19, 12788–12793.
- B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPardo, R. M. Freidinger, W. L. Whitter,
 G. F. Lundell, D. F. Verber, P. S. Anderson, R. S. L. Chang, V. J. Lotti, D. H. Cerino, T.

B. Chen, P. J. Kling, K. A. Kunkel, J. P. Springer and J. Hirshfield, *J. Med. Chem.*, 1988, 31, 2235–2246.

- (a) M. E. Jun, B. Roy, K. H. Ahn, *Chem. Commun.*, 2011, 47, 7583–7601; (b) E. Sanna,
 L. Martínez, C. Rotger, S. Blasco, J. González, E. García-España, A. Costa, *Org. Lett.*,
 2010, 12, 3840-3843; (c) S. K. Sahoo, D. Sharma, R. K. Bera, G. Crisponic, J. F. Callan,
 Chem. Soc. Rev., 2012, 41, 7195–7227
- 7. J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan, W. Liu Org. Lett., 2007, 9, 4567-4570.
- (a) B. F.Matzanke, G. Muller-Matzanke, K. N. Raymond, *Iron Carriers and Iron Proteins*; VCH Publishers: New York, 1989; Vol. 5.; (b) X. Liu, E. C.Theil, *Acc. Chem. Res.* 2005, **38**, 167.
- (a) S. Cacchi, G. Fabrizi, *Chem. Rev.* 2005, **105**, 2873-2920; (b) G. R. Humphrey, J. T. Kuethe, *Chem. Rev.* 2006, **106**, 2875-2911; (c) D. F.Taber, P. K. Tirunahari, *Tetrahedron*, 2011, **67**, 7195-7210.
- (a) M. Borthakur, S. Gogoi, J. Gogoi, R. C. Boruah, *Tetrahedron Lett.* 2010, **51**, 5160-5163; (b) N. Kise, S. Isemoto, T. Sakurai, *Org. Lett.* 2009, **11**, 4902-4905; (c). M. G. Ferlin, G. Chiarelotto, G. Malesini, *J. Heterocyclic. Chem.*, 1989, **26**, 245-249; (d) G. A. Pinna, M. A. Pirisi, G. E. Grella, L. Gherardini, J. M. Mussinu, G. Paglietti, A. M. Ferrari, G. Rastell, *Arch. Pharm. Pharm. Med. Chem.* 2001, **334**, 337-344; (e) P. A. Suryavanshi, V. Sridharan, J. C. Men'endez, *Org. Biomol. Chem.*, 2010, **8**, 3426–3436
- 11. (a) S. Maity, S. Pathak, A. Pramamik, *Eur. J. Org. Chem.*, 2013, 2479-2485; (b) S.Maity,
 A. Pramamik, *Synthesis*, 2013, 45, 2853-2860; (c) S. Maity, S. Pathak, A. Pramamik, *Eur. J. Org. Chem.*, 2014, 4651-4662; (d) S. Pathak, D. Das, A. Kundu, S. Maity, N. Guchhait,
 A. Pramanik, *RSC Adv.*, 2015, 5, 17308-17318.

- 12. X. Feng, Q. Wang, W. Lin, G. -L. Dou, Z. B. Huang, D. -Q. Shi, Org. Lett., 2013, 15, 2542-2545.
- 13. CCDC 1025342 (for 5j), CCDC 1025253 (for 11h), CCDC 1042549 (11u) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- M. Antoine, M. Gerlach, E. Günther, T. Schuster, M. Czech, I. Seipelt, P. Marchand, Synthesis 2012,44, 69-82.