RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

RSC Advances

Journal Name

RSCPublishing

Page 2 of 5

COMMUNICATION

Synthesis of Novel Benzoxaborinin-4-ones and its **Application in Indolin-2-ones Synthesis Using Suzuki-Miyaura Reaction Protocol**

Received ooth January 2012, Accepted ooth January 2012

Cite this: DOI: 10.1039/x0xx00000x

Kannan Murugan,^{a,b} Murugan Chinnapattu,^{a,b} Fazlur Rahman Nawaz Khan*^b and Pravin S. Iver* "

DOI: 10.1039/x0xx00000x

www.rsc.org/

Abstract: We herein discuss the synthesis of novel benzoxaborinin-4-one from substituted isatins and 2-acetyl phenylboronic acid. One of the diastereoisomers was separated from mixture of diastereoisomers. Furthermore, we have demonstrated the application of these boronic acids to synthesize indolin-2-ones (Z isomer) regioselectively using Suzuki-Miyaura reaction.

Introduction:

The unique structural features of boron has allowed this classes of compounds to have medicinal application in the development of antiviral, antibacterial and anticancer therapy.¹ Recently, boron containing compounds such as Tavaborole and Bortezomib were approved by FDA for diverse indications such as fungal infection and cancer.² In organic synthesis, boronic acids are used as a synthetic intermediates in different metal catalysed cross coupling reactions to construct complex molecules.³

Spiro cyclic compounds are finding increasing application in drug discovery, owing to their conformational restriction and structural novelty.⁴ Specifically, cyclic spiro 2-oxindole derivatives obtained from isatin, occur in many natural products such as spirotryprostatins A, horsfiline, etc.⁵ The synthetic spiro 2-oxindole derivative such as NITD605 is currently in clinical development for malaria (Fig. 1).⁶ In the course of our research, we became interested in the synthesis of a novel spiro boronic acid and its application in the area of medicinal and synthetic organic chemistry.

We used isatin as the key building block due to its presence in many fused bioactive heterocyclic compounds.⁷ Benzoxaborole, an important class of boronic acids was synthesized from 2formylphenylboronic acid.8

Spirotryprostatin A

Fig. 1 Biologically active boron derivative and spiro 2-oxindole derivatives

Fig. 2 Design of spirocyclic boron compounds

NITD 609

The benzoxaborole derivatives were synthesised by reducing the aldehyde group with sodium borohydride and followed by condensation (Fig. 2). We envisioned that spirocyclic boron compounds could be synthesized by the condensation of isatin with acetyl phenyl boronic acid.

^a Department of Medicinal Chemistry, AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore - 560 024, INDIA

Tel: +91 9900081547; E-mail: praviniyer@yahoo.com

^b Chemistry Division, School of Advanced Sciences, VIT University, Vellore-632014, INDIA. E-mail: Nawaz f@yahoo.co.in

[†]Electronic Supplementary Information (ESI) available:. See DOI: 10.1039/b000000x

Results and discussion

COMMUNICATION

We carried out the condensation of equimolar quantities of 2acetyl phenyl boronic acid with 5-chloro-1-methylindoline-2,3dione in ethanol at 90 °C for 16 hr (Table 1). We expected a spirocyclic boron compound, but interestingly the reaction yielded the diastereoisomeric mixture of exclusively benzoxaborinin-4-ones (1a) in 20 % yield. We isolated both diastereoisomers (1aa and 1ab) using column chromatography and confirmed their structure by NMR spectroscopy. In the ¹H NMR spectrum of diastereoisomer 1aa, the proton of C3 in 2oxaindole and the carbon alpha to the ketone group appear at δ = 4.47 and 5.59 ppm. Further, the structure was confirmed by COSY and HSQC spectra which exhibits ring junction protons attached to two adjacent carbon atoms. Encouraged by the discovery of this reaction that affords a novel benzoxaborinin-4-one, we began optimisation of reaction conditions to improve the yield of distereoisomers. We screened an array of solvents, pH and temperature condition. Ethanol was found to be the best solvent, methanol and hexanol provided low yields while other solvents yielded no product (Entry 1-7). We optimized for reaction condition and found that 120 °C in sealed vials provided the best vields (Entry 8-10). Addition of acid or base yielded no product (Entry 11-13). This indicated the essentiality of neutral conditions. Next, we explored the scope of this reaction with other isatin substrates (Table 2). 1-Methylisatin and NH-isatin gave the corresponding product 1b and 1c in 56 % and 42 % yield respectively. Variation of halogen groups at C-5 position of isatin afforded the respective products in the yield order 5-F > 5-Cl > 5-Br (1d, 1a and 1e). Methyl group at the C5 position gave the corresponding product 1f in 45 % yield. Varying the substitution in isatin had no effect on diastereoselectivity of these isomers. We isolated portion of major diastereoisomers (Yield 6-9 %) from the mixture using column chromatography.

Table 1 Optimization of reaction condition^a

Entry	Solvent	Reagent	Temp (⁰ C)	Time(Hrs)	Yield (%) ^(b)
1	EtOH	-	90	16	20
2	EtOH	-	90	24	35
3	MeOH	-	90	24	15
4	Hexanol	-	120	16	10
5	THF	-	70	16	0
6	DMF	-	120	16	0
7	Toluene	-	110	16	0
8	EtOH	-	r.t	16	0
9	EtOH	-	100	16	56
10	EtOH	-	120	16	63
11	EtOH	TEA	120	16	0
12	EtOH	AcOH	120	16	0
13	EtOH	PTSA	120	16	0

 (a) 5-chloro-1-methylindoline-2,3-dione (1 mmol), 2-acetylphenylboronic acid (1.1 mmol) and solvent (4 ml) in supelco vial. (b) Isolated yield after column chromatography

Table 2 Synthesis of benzoxaborinin-4-one derivatives

Entry	R1	R2	Product	Yield(%) ^a	Ratio of Diastereoisomers ^b
1	Cl	Me	la	63	49:51
2	Н	Me	1b	56	38:62
3	Н	Н	1c	42	42:58
4	F	Me	1d	70	47:53
5	Br	Me	1e	52	44:56
6	Me	Me	lf	45	39:61

^a Isolated yield of mixture ^b Ratio of diasteroisomers based on H NMR

Fig. 3 Proposed mechanism for synthesis of benzoxaborinin-4-one derivatives

Mechanistically, we believe that the reaction begins with the nucleophilic attack of 2-acetyl boronic acid on isatin resulting in the formation of tertiary alcohol intermediate (IV) which upon dehydration affords the intermediate (V). Cyclisation of the boronic acid onto the activated double bond yielded a diastereoisomeric mixture of products (VI). 3-Acetyl boronic acid yielded no product under these conditions, suggesting that boron group at 2 position promotes enolization of the acetyl group.

To explore the applicability of the synthesized boronic acids, we attempted a cross coupling reaction under Suzuki-Miyaura conditions. Initially, we examined the Suzuki coupling reaction of compound 1d with 4-iodochlorobenzene in presence of 2% Pd(PPh₃)₄, NaHCO₃ and DME/Water solvent mixture (5:1) at 90 °C (Table 3, Entry 1). Gratifyingly, the reaction afforded the indolin-2-one product 2a in 20 % yield. The structure of the coupled product was established by spectroscopic analysis and single crystal XRD

study. The structure and conformation (Z isomer) of product **2a** were unambiguously determined by single crystal X-ray analysis (Fig. **4**). Indolin-2-one compounds have demonstrated useful biological activity as tyrosine kinase inhibitor,⁹ selective plasmodial CDK inhibitors,¹⁰ human transglutaminase-2 inhibitors¹¹ and antifouling/antibacterial agent.¹² Interestingly on omission of water, the reaction did not yield any product (Entry **2**). The best yield was observed using 10% Pd catalysts at 90 °C in DME/water for 5 min (Entry **3**). DME/water proved to be the best solvent (Entry **3-6**) and optimum base was NaHCO₃ (Entry **3**, 7 and **8**).

Table 3 Optimisation of Suzuki-Miyaura reaction^a

Entry	Catalyst	Base	Solvent	Temp (⁰ C)/ Time (mins)	Yield (%) ^b
1	5% Pd(PPh ₃) ₄	NaHCO ₃	DME:H ₂ O	90/15	45
2	5% Pd(PPh ₃) ₄	NaHCO ₃	DME	90/120	0
3	10% Pd(PPh ₃) ₄	NaHCO ₃	DME:H ₂ O	90/5	65
4	10% Pd(PPh ₃) ₄	NaHCO ₃	Ethanol:H ₂ O	90/5	27
5	10% Pd(PPh ₃) ₄	NaHCO ₃	THF:H ₂ O	65/5	10
6	10% Pd(PPh ₃) ₄	NaHCO ₃	Dioxane:H ₂ O	100/5	50
7	10% Pd(PPh ₃) ₄	Na ₂ CO ₃	DME:H ₂ O	90/5	55
8	10% Pd(PPh ₃) ₄	K ₂ CO ₃	DME:H ₂ O	90/5	48

^a All reaction were performed with **1d** (1 mmol), 4-iodochlorobenzene (1.3 mmol) and base (1.5 mmol) and solvents (5:1). ^b Yield of isolated product.

Fig. 4 Crystal structure of compound 2a

All cyclic boronic acid derivatives were successfully transformed into the respective products in moderate yields. We found that only the Z isomer was formed in the reaction indicating high regioselectivity. Mechanistically, we believe that the reaction first undergoes Suzuki-Miyaura reaction resulting in a boronic acid intermediate that further undergoes E2 elimination reaction leading to indolin-2-one product (Fig. **5**). The regioselectivity can be

Fig. 5 Plausible conformation for the elimination reaction in Suzuki Miyaura condition

Table 4 Example of Suzuki-Miyaura products^a

Conclusions

COMMUNICATION

In summary, we have synthesized novel cyclic boronic acids from substituted isatins and 2-acetyl boronic acid in good yields. Further, we have demonstrated the application of these boronic acids to regioselectively synthesize (Z) indolin-2-one derivatives in moderate yields.

Acknowledgements

We are grateful to Dr. Shridhar Narayanan for his support. We also thank the management of AstraZeneca India Pvt. Ltd for providing laboratory facilities and chemicals for this research work, and also the SAS, Chemistry Division, VIT University, Vellore. We deeply acknowledge Prof. T. N. Guru Row and Amar Hosamani (Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore) for crystal structure data. We deeply acknowledge the analytical support provided by Suresh Rudrapatna and Lavakumar Nahiri.

Notes and references

- W. Yang, X. Gao and B. Wang, Medicinal *Research Reviews*, 2003, 23, 346; R. Smoum, A. Rubinstein, V. M. Dembitsky and M. Srebnik, *Chem. Rev*, 2012, 112, 4156.
- 2 P. G. Richardson, C. Mitsiades, T. Hideshima and K. C. Anderson, *Annual Review of Medicine*, 2006, **57**, 33; C. T. Liu, J. W. Tomsho and S. J. Benkovic, 2014, **22**, 4462; A. Markham, *Drugs*, 2014, **74**, 1555.
- N. Miyaura and A. Suzuki, *Chem Rev*, 1995, 95, 2457; A. Suzuki, *Angew. Chem. Int. Ed*, 2011, 50, 6722; F. Han, *Chem. Soc. Rev*, 2013, 42, 5270.
- 4 Y. Zheng, C. M. Tice and S. B. Singh, *Bioorg. Med. Chem. Lett*, 2014, 24, 3673.
- A. Jossang, P. Jossang, A. H. Hamid, T. Sevenet and B. Bodo, J. Org. Chem, 1991, 56, 6527; C. B. Cui, H. Kakeya and H. Osada, J. Antibiot, 1996, 49, 832; C. B. Cui, H. Kakeya and H. Osada, Tetrahedron, 1996, 52, 12651.
- 6 M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. E. González-Páez, S. B. Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H. P. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler and T. T. Diagana, *Science*, 2010, **329**, 1175.
- 7 G. S. Singh and Z. Y. Desta, *Chem Rev*, 2012, **112**, 6104.
- 8 D. Ding, Q. Meng, G. Gao, Y. Zhao, Q. Wang, B. Nare, R. Jacobs, F. Rock, M. R. K. Alley, J. J. Plattner, G. Chen, D. Li and H. Zhou, *J. Med. Chem*, 2011, **54**, 1276.
- 9 C. L. Tourneau, E. E. Raymond and S. Faivre, *Ther. Clin. Risk. Manage*, 2007, **3**, 341.
- C. L. Woodard, Z. Li, A. K. Kathcart, J. Terrell, L. Gerena, M. L. Sanchez, D. E. Kyle, A. K. Bhattacharjee, D. A. Nichole, W. Ellis, S. T. Prigge, J. A. Geyer and N. C. Waters, *J. Med. Chem*, 2003, 46, 3877.

- C. Klöck, X. Jin, K. Choi, C. Khosla, P. B. Madrid, A. Spencer, B. C. Raimundo, P. Boardman, G. Lanza and J. H. Griffin, *Bioorg. Med. Chem. Lett*, 2011, **21**, 2692.
- 12 M. S. Majik, C. Rodrigues, S. Mascarenhas and L. D'Souza, *Bioorganic chemistry*, 2014, 54, 89.