

Simultaneous electricity generation and tetracycline removal in continuous flow electrosorption driven by microbial fuel cells

Journal:	RSC Advances
Manuscript ID:	RA-ART-03-2015-005545.R1
Article Type:	Paper
Date Submitted by the Author:	19-May-2015
Complete List of Authors:	yang, Weilu; Nankai University, Han, Hexing; Nankai University, zhou, Minghua; Nankai University, Yang, Jie; Nankai University,

SCHOLARONE[™] Manuscripts

1	Simultaneous electricity generation and tetracycline
2	removal in continuous flow electrosorption driven by
3	microbial fuel cells
4	Weilu Yang ^a , Hexing Han ^a , Minghua Zhou ^{a, *} , Jie Yang ^a
5	^a Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin
6	Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of
7	Environmental Science and Engineering, Nankai University, Tianjin 300071, China
8	
9	A novel continuous flow electrosorption driven by microbial fuel cells (MFCs) was
10	developed for the first time to remove tetracycline, the second most commonly used
11	antibiotics, from a synthetic wastewater. The MFC-Sorption was proved to be
12	cost-effective without any external power consumption. Various operating parameters
13	including pH, electrolyte concentration, initial concentration of tetracycline, number
14	of MFCs connected in series and flow rate were investigated, and the adsorption
15	kinetics of tetracycline removal was studied. Three MFCs connected in series in the
16	continuous flow MFC-Sorption system reached an adsorption capacity of 23.12 mg
17	g^{-1} , higher than that with two MFCs (16.76 mg g^{-1}) and that with only one MFC
18	(14.16 mg g ⁻¹). The performance was compared with that in the batch mode, and it
19	was confirmed that the continuous flow was practical for tetracycline removal. This
20	work confirmed that continuous flow electrosorption driven by MFCs was
21	cost-effective and environmentally friendly removal of tetracycline.

 $^{^{\}ast}$ Corresponding author. Tel/Fax: +86 022 66229619. E-mail address: zhoumh@nankai.edu.cn (M. Zhou). Weilu Yang and Hexing Han contributed equally to this work.

22 Introduction

Antibiotics are widely used because of their vital roles on disease prevention, modern agriculture and livestock industries.^{1,2} However, the excessive use of antibiotics has led to some problems such as interfering the photosynthesis of aquatic plants, disturbing the metabolism of native microbial communities.³ What's more, antibiotic resistance in bacteria has become a great challenge for infection control all over the world since even low levels of antibiotics may cause antibiotic resistant bacteria in the aquatic environment.^{4,5}

Tetracycline, the second most commonly used antibiotics in the world, is hard to 30 31 be metabolized or absorbed completely in the human and animal bodies, with most of the unchanged form being released in excreta. Thus, it has been detected in many 32 33 wastewater treatment plants as well as some surface water and groundwater, even in pore water and overlying water.^{6,7} Due to special properties of tetracycline such as 34 wide application, high solubility in water, high residual toxicity and low 35 biodegradability, the abundant use of tetracycline in human and veterinary medicine 36 has a great effect on the quality of surface water and groundwater.⁸ Therefore, there 37 is a growing international concern about the abatement of these compounds to 38 decrease the potential impact on human health and environment.^{9,10} 39

Though significant researches have been carried out to remove tetracycline in domestic, potable water and sludge, sound technologies are still very limited.¹¹ It takes more than 3 months to achieve a 89% removal efficiency for swine wastewater treatment by membrane bioreactor. ¹² As one promising AOPs method for organics

44	mineralization, photocatalysis is not regarded as a cost-effective alternative due to
45	the need of UV light and the formation of more polar intermediates during
46	treatment. ¹³ Though tetracycline could be removed by integration of ozonation and
47	biodegradation, it's found that the toxicity increased with treatment time. ¹⁴ What's
48	more, tetracycline electro-oxidation on boron-doped diamond (BDD) anode has also
49	been investigated, but it is shown to be economically infeasible for practical
50	applications. ¹⁵ Comparably, adsorption is a more practical and environmentally
51	friendly technology, ¹⁶ and the recent studies on tetracycline removal have paid
52	attention to the use of various adsorbents including active sludge, soils, clay minerals,
53	carbonaceous adsorbents and bio-adsorbent. ¹⁷⁻¹⁹

54 More recently, electrosorption has been developed as a more efficient adsorption 55 process for metal separation, desalination and organics removal due to its particular advantages such as high capacity, no secondary waste and reversibility.²⁰⁻²² Operated 56 with a low voltage (0.5 - 1.5 V), the charged ions or polar molecules migrate to the 57 charged counter charge electrode, forming an electric double layer on the surface of 58 adsorption electrode, which enhances the adsorption capacity.²³ Thus, it can be easily 59 regenerated by removing the voltage or applying an inverse voltage on the 60 electrodes.²⁴⁻²⁶ To further improve the energy efficiency of the process, in our 61 previous work, an electrosorption system driven by microbial fuel cells 62 (MFC-Sorption) was first designed to remove phenol from wastewater in a batch 63 mode.²⁷ MFC is a promising technology for wastewater treatment and electricity 64 production at the same time,^{28, 29} however, it is still far from industrial applications 65

due to low power densities. The design of MFC-Sorption can take full advantage of the small amount of electricity generated by MFCs to achieve the electrosorption of pollutants and energy recovery at the same time. Therefore, it would be of significant environmental interest to explore the feasibility of this MFC-Sorption system for effective removal of tetracycline.

In this work, this MFC-Sorption was studied for the first time to remove 71 tetracycline with continuous flow (Fig. 1), which would be more practical than bath 72 73 flow for real-world applications. Important operating parameters such as pH, electrolyte concentration, initial tetracycline concentration, number of MFCs 74 75 connected in series, flow rate and so on were systematically investigated, which would be predictive for some real wastewaters treatment application. The continuous 76 77 flow performance was also compared with that in batch mode. This research showed that continuous flow MFC-Sorption system was effective and environmentally 78 79 friendly for tetracycline removal in synthetic wastewater.

80

81 **Results and discussion**

82 Tetracycline removal in batch flow MFC-Sorption system

Fig. 2A shows the adsorption capacity of tetracycline by MFC-Sorption and traditional adsorption as well as their removal ratios under similar conditions in batch mode. It was observed that the trend of adsorption capacity was similar in these two systems, both increasing with time, which was consistent with the trend of phenol removal in our previous work.²⁷ In the MFC-Sorption system, the adsorption capacity

of tetracycline was 69.3 mg g⁻¹, which increased by about 20% when compared with that in traditional adsorption (57.6 mg g⁻¹). Such an enhancement was due to the double electric layer on the anode surface.³⁰ The removal ratio of tetracycline in MFC-Sorption system was also higher than that in the traditional sorption (insert Fig. 2A).

It is known that pH plays a significant role on the adsorption capacity since it is 93 related to the pk_a of tetracycline. Fig. 2B shows the effect of pH on adsorption 94 95 capacity and tetracycline removal ratio. It was observed that the adsorption capacity of tetracycline decreased with pH decrease. When the solution pH was 3, the 96 adsorption capacity was 35.1 mg g⁻¹, and decreased slightly at pH 5, 7 and 9, but at 97 pH 11, it decreased noticeably by about 46% (19.0 mg g⁻¹). This phenomenon could 98 99 be explained as follows: when the solution pH was below 3.3, the tetracycline in solution existed in the form of THC^{3+} , which was easy to be combined with the 100 101 negative charge on the surface of activated carbon fibers (ACF) electrode with cation 102 exchange to accomplish adsorption. The percentage of negative charge keeps rising 103 with the increase of solution pH, and there was less chance for cationic group on the 104 tetracycline to be combined with the negative charge on ACF electrode, leading to a 105 lower removal ratio.

Fig. 2C shows the effect of electrolyte concentration on the adsorption capacity of tetracycline, which increased with the electrolyte concentration from 44.1 mg g⁻¹ $(0.001 \text{ mol } \text{L}^{-1} \text{ Na}_2\text{SO}_4)$ to 64.6 mg g⁻¹ (0.1 mol L⁻¹ Na₂SO₄). The enhancement of adsorption could be attributed to the increase of current with higher electrolyte

110	concentrations. Moreover, the adsorption capacity and removal efficiency increased
111	with the initial concentration of tetracycline from 50 mg L^{-1} to 200 mg L^{-1} . The
112	adsorption capacity increased from 39.9 mg g^{-1} (50 mg L^{-1}) to 122.2 mg g^{-1} (200 mg
113	L ⁻¹), but the corresponding removal ratio decreased from 99.7% to 76.4% (Fig. 2D).
114	These results agreed well with literature in which the deionization was found
115	increased with the increase of initial NaCl concentration. ³⁰ This fact also indicated
116	that in the case of treatment of highly-concentrated tetracycline (<i>e.g.</i> , $> 200 \text{ mg L}^{-1}$),
117	several single MFC-Sorption systems connected in series would help to reach a better
118	effluent water quality to meet the discharge requirement since one MFC-sorption
119	could not achieve a satisfactory tetracycline removal efficiency.
120	(Fig. 2)
121	
122	MFC-Sorption systems with different numbers of MFCs connected in series were
123	investigated since it would affect the performance of electrosoption due to varied

123 investigated since it would affect the performance of electrosoption due to varied power supplies by the MFCs. As shown in Fig. 3A, the adsorption capacity increased 124 125 slightly with time, and the more MFCs connected in series, the higher adsorption 126 capacity was. For example, the adsorption capacity of tetracycline with 3 MFCs connected in series was 69.3 mg g⁻¹, slightly higher than that for the single-MFC 127 system (62.5 mg g^{-1}), which was due to the higher current output as shown in Fig. 3B. 128 129 It showed that the current for 3 MFCs connected in series dropped from 2.1 mA to 0.4 130 mA, higher than the current which decreased from 1.4 mA to 0.1 mA in case of a 131 single MFC. This non-linear current relations with the numbers of MFCs connected in

RSC Advances

series indicated that cell reversal behavior happened in the present MFC-Sorption

132	series indicated that ten reversal behavior happened in the present wire-sorption
133	system, which was observed in many researches on MFCs connected in series. ^{31,32}
134	Thus it was important to operate under similar conditions and sufficient substrate
135	concentration to improve the power performance since it was reported that the
136	imbalance in these MFCs would often cause cell reversal. ³³ Fig. 3C presents the
137	power density output of the MFCs connected in series, which reached the maximum
138	at 752 mW $m^{\text{-2}}$ (3 MFCs), 573 mW $m^{\text{-2}}$ (2 MFCs), and 394 mW $m^{\text{-2}}$ (1 MFC),
139	respectively.
140	(Fig. 3)
141	
142	Tetracycline removal in continuous flow MFC-Sorption system
143	Similar to batch flow experiments, several tests were designed to explore the
144	adsorption of tetracycline in a continuous flow MFC-Sorption. Fig. 4A compares the
145	adsorption capacity with that in the traditional adsorption system under the same flow
146	rate of 12 mL min ⁻¹ . In both systems, the adsorption capacity increased with time, and
147	after reaching the maximum at 150 min, they gradually decreased with more feed
148	solution flowing into the reactor. It might be explained that ACF electrodes gradually
148 149	solution flowing into the reactor. It might be explained that ACF electrodes gradually reached adsorption saturation with time, and the further increasing feed solution led to
149	reached adsorption saturation with time, and the further increasing feed solution led to
149 150	reached adsorption saturation with time, and the further increasing feed solution led to the decrease of adsorption capacity of tetracycline. The maximum adsorption capacity
149 150 151	reached adsorption saturation with time, and the further increasing feed solution led to the decrease of adsorption capacity of tetracycline. The maximum adsorption capacity of tetracycline in the continuous flow MFC-Sorption system was 16.76 mg g ⁻¹ ,
149 150 151	reached adsorption saturation with time, and the further increasing feed solution led to the decrease of adsorption capacity of tetracycline. The maximum adsorption capacity of tetracycline in the continuous flow MFC-Sorption system was 16.76 mg g ⁻¹ ,

154	The effect of initial tetracycline concentration on electrosorption performance was
155	explored in the continuous flow MFC-Sorption system at the concentration of 20 mg
156	L ⁻¹ , 50 mg L ⁻¹ and 100 mg L ⁻¹ . Fig. 4B presents the adsorption capacity and removal
157	ratio of tetracycline. It confirmed that the adsorption capacity was related to the initial
158	tetracycline concentration, and the higher the initial concentration, the higher
159	adsorption capacity achieved. The adsorption capacity were 11.27 mg g ⁻¹ (20 mg L^{-1}),
160	16.76 mg g ⁻¹ (50 mg L ⁻¹) and 25.44 mg g ⁻¹ (100 mg L ⁻¹), respectively, which indicated
161	that a high initial tetracycline concentration was more favorable for tetracycline
162	adsorption due to a higher driving force of the concentration gradient. ^{29,34} However,
163	the removal efficiency decreased with the initial tetracycline concentration, decreased
164	from 51.1% (20 mg L^{-1}) to 26.4% (100 mg L^{-1}), which were similar to the results in
165	the batch flow system.

166 It has been reported that the adsorption rate has a close relationship with the mass transfer rates,³⁵ because a proper flow rate is important for the electrosorption of 167 tetracycline in continuous flow MFC-Sorption system.³⁶ When the flow rate is too 168 169 small, it limits the wastewater volume to be treated, while a very high flow rate 170 decreases the retention time of tetracycline on electrodes, leading to a low adsorption capacity. Fig. 4C shows the adsorption capacities and removal ratios under three 171 different flow rates (6, 12 and 24 mL min⁻¹). It was observed that the trend of the three 172 173 curves was similar, increasing first with time and then dropped gradually. The 174 adsorption capacity and removal efficiency of tetracycline both decreased with the increase of flow rate. This observation was consistent with literature.^{34,35} For example, 175

RSC Advances

the electrosorption removal efficiency decreased from 94.2% to 65.8% with the

177	increase of flow rate from 1.0 to 4.5 L min ^{-1,35} It was also noticed that the removal
178	efficiency of tetracycline in continuous flow MFC was lower than that in batch mode.
179	This limitation might be overcome by improving the electrosorption reactor design,
180	for example, shortening electrode spacing and increasing electrode area. ³⁷
181	
182	(Fig. 4)
183	
184	The effect of MFCs connected in series (1 MFC, 2 MFCs and 3MFCs) on the
185	adsorption capacity and removal ratios of tetracycline were explored in continuous
186	mode. It showed that the adsorption of tetracycline increased with time and reached
187	the maximum after about 2 h, and then decreased with time (Fig. 5A). With more
188	MFCs connected in series, higher adsorption capacity and removal efficiency of
189	tetracycline were obtained. In the case of 1 MFC, the maximum adsorption capacity
190	was 14.16 mg g ⁻¹ , while with 3 MFCs connected in series as the power supply for the
191	electrosorption, the adsorption capacity was 23.12 mg g ⁻¹ , increasing by 63.31% .
192	Consequently, the removal ratio increased from 31.5% to 51.5% (insert Fig. 5A). The
193	variations of current in the MFC-Sorption system are presented in Fig. 5B. Similar to
194	the current changes of MFCs in batch flow system, the currents also increased initially
195	in the first 1 h and then dropped. The maximum current with 3 MFCs connected in
196	series was about 1.3 mA, increasing by about 85.7% compared with the single one
197	(0.7 mA).

198 199 (Fig. 5) 200 201 Comparison of MFC-Sorption in batch and continuous flow 202 In order to compare the adsorption properties in batch and continuous flow systems, 203 relative parameters after 2 h removal of tetracycline were evaluated, as indicated in 204 Figs. 3A and 4A. The adsorption capacities in batch flow system were higher than 205 those in the continuous flow MFC-Sorption system. For example, with 3 MFCs connected in series, the adsorption capacity in batch flow was 69.3 mg g⁻¹, much 206 higher than that in continuous flow (23.1 mg g⁻¹). Similarly, the tetracycline removal 207 208 efficiency in batch flow (93.16%) was larger than that in continuous flow (51.48%) 209 However, it should be noted that the treated volume in the continuous flow system 210 (1440 mL) was more than 3 times that of the batch one (400 mL), indicating that 211 continuous flow mode would be more effective for practical application.

212

218

213 MFC-Sorption adsorption kinetics

The pseudo-first-order kinetic and pseudo-second-order kinetic models were applied to fit the adsorption of tetracycline by MFC-Sorption in batch flow.³⁸ The two model equations are as follows:

217 Pseudo-first-order kinetics:

$$\ln(q_e - q_t) = \ln q_e - k_1 t \tag{1}$$

219 Pseudo-second-order kinetics:

220
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(2)

where q_e and q_t (in mg g⁻¹ACF) are the amount of adsorbed tetracycline at equilibrium 221 and time t (min), respectively. k_1 (min⁻¹) and k_2 (g mg⁻¹ min⁻¹) are the 222 pseudo-first-order and pseudo-second-order adsorption rate constant, respectively. 223 224 Figs. 6A and 6B display the tetracycline MFC-Sorption kinetics with different 225 numbers of MFCs connected in series. The experimental results were fitted by the 226 pseudo-first-order kinetic model (Fig. 6A) and pseudo-second-order kinetic model 227 (Fig. 6B), respectively. Table 1 shows the relevant parameters of the kinetics in the 228 above two systems. The results suggested that the adsorption capacity and the rate 229 constant of tetracycline increased with the MFCs in series from 1 to 3 in both models. 230 It was found that the pseudo-second-order kinetics model could fit the experimental 231 results better than the pseudo-first-order kinetics equation due to the higher value of 232 the correlation coefficients. A better criterion for the assessment of experimental results is a parameter called percent relative deviation modulus, P,³⁹ or normalized 233 percent deviation, 40 as shown in equation (5): 234

235
$$P = \left(\frac{1}{N} \sum_{i=1}^{N} \frac{\left| q_{e(expt)} - q_{e(pred)} \right|}{q_{e(expt)}} \right) \times 100\%$$
(3)

where N is the number of experimental data points, $q_{e(expt)}$ is the experimental q_e , and $q_{e(pred)}$ is the corresponding predicted q_e according to the proposed kinetic equation. It is obvious that the lower the P value, the better is the fit, and it is generally accepted that when the P value is less than 5, the fit is considered excellent.³⁹ Thus it is clear that in the present work the pseudo-second-order kinetics model fitted much better

241	when comparing these two models, which was in agreement with the results using
242	correlation coefficients.
243	(Fig. 6)
244	

245 Materials and methods

246 MFC configuration and operation

247 A series of MFCs without membranes were used with a total volume of 14 mL. All of 248 the anode of MFCs were made by carbon cloth (Jilin Shenzhou Carbon Fiber Co., Ltd., China) with a surface area of 7 cm², and the cathode (7 cm²) were made by the 249 same material with a 0.2 mg cm⁻² Pt loading. A 1000 Ω external resistance was fixed 250 251 to connect with the anode and cathode. In the beginning, the MFC was inoculated 252 with anaerobic sludge with about 20%-30% inoculum to reactor liquid volume fraction, 50 mM phosphate buffer solution (PBS) containing KCl 0.13 g L⁻¹, NH₄Cl 253 0.31 g L⁻¹, Na₂HPO₄ · 12H₂O 10.36 g L⁻¹ and NaH₂PO₄ · 2H₂O 3.32 g L⁻¹; 5 mL L⁻¹ 254 vitamins; 12.5 mL L^{-1} trace minerals and 1 g L^{-1} glucose as carbon source. All of the 255 256 MFCs were operated in a 30±0.5°C temperature-controlled biochemical incubator.

257

258 MFC-Sorption system

The continuous flow MFC-Sorption system (Fig. 1a) consisted of four parts: MFCs connected in series as the power supply, electrosorption unit, an external resistance used to measure the current of system and a peristaltic pump to control the flow rate of the feed solution. In the electrosorption unit ($10 \times 4 \times 10$ cm), both the anode and

263	cathode (10×10 cm) were ACFs, a certain concentration of tetracycline with the
264	supporting electrolyte of sodium sulphate were used as the synthetic wastewater.
265	MFCs were connected in series in order to obtain a suitable voltage output for the
266	electrosorption unit. For the batch flow MFC-Sorption system (Fig. 1b), it was very
267	similar with that of the flow system using the same reactor materials and sizes except
268	the absence of the peristaltic pump and the flow of the feed solution.
269	(Fig. 1)
270	
271	Analysis
272	The current of this system was calculated from $I=U_1/R$, where U_1 represents the
273	voltage of the external resistance, and power density could be calculated from $P=IU_2$,
274	where U_2 represents the voltage applied to the adsorption process.
275	The concentration of tetracycline was determined from the experimentally derived
276	standard curves and the absorbance of tetracycline was obtained by a UV-Vis
277	spectrophotometer (VI-1501, Tianjin Gangdong Instrument Analysis Instrument Co.,
278	Ltd) at the wavelength of 357 nm. The adsorption capacity (q) and the removal ratio
279	(R) of tetracycline in the electrosorption unit were calculated from the following two
280	equations, respectively:
281	Adsorption capacity (mg g ⁻¹) $q = \frac{(c_0 - c_t)V}{m}$ (4)
282	Removal ratio $R\% = \frac{c_0 - c_t}{c_0} \times 100\% $ (5)
283	Where c_0 , c_t (mg L ⁻¹) represent the initial concentration and the given time
284	concentration of tetracycline, respectively, V represents the available volume of the

reactor (400 mL), and *m* represents the mass of the ACF electrode in the electrosorption unit (g).

287

288 Conclusions

289 A novel continuous flow MFC-Sorption system was developed for the first time in our 290 study, which achieved a tetracycline removal ratio of 51.48%, and the results showed 291 that high concentration of electrolyte, initial tetracycline concentration and low value 292 of pH could enhance the adsorption capacity of tetracycline in the synthetic 293 wastewater. This work indicated that the adsorption capacity of tetracycline increased 294 with the increased numbers of MFCs connected in series, proving that the higher 295 voltage and current could accelerate the removal efficiency of tetracycline. At pH 3, 296 flow rate of 6 mL/min, and 3 MFCs connected in series, the removal efficiency for 20 297 mg/L tetracycline was the best. The adsorption process of tetracycline fitted the 298 pseudo-second-order kinetics model better than the pseudo-first-order kinetics 299 equation. The continuous flow MFC-Sorption system without an external power 300 supply was proven to be an efficient and energy saving process for the removal of 301 tetracycline in synthetic wastewater.

302

303 Acknowledgments

This work was financially supported by Natural Science Foundation of China (Nos. 21328602, 51178225 and 21273120), GEFC09-12, NCET-08-0296, and the Fundamental Research Funds for the Central Universities.

307	
308	Notes and references
309	1 R. E. Alock, A. Sweetman and K. C. Jones, Chemosphere, 1999, 38, 2247-2262.
310	2 A. K. Sarmah, M. T. Meyer and A. B. A. Boxall, Chemosphere, 2006, 65, 725-759.
311	3 H. Y. Sun, X. Shi, J. D. Mao and D. Q. Zhu, Environ. Toxicol. Chem., 2010, 29,
312	1934-1942.
313	4 T. Schwartz, W. Kohnen, B. Jansen and U. Obst, FEMS. Microbiol. Ecol., 2003, 43,
314	325-335.
315	5 D. M. Cheng, X. H. Liu, L. Wang, W. W. Gong, G. N. Liu and W. J. Fu, Sci. Total.
316	Environ., 2014, 476-477 , 266-75.
317	6 X. S. Miao, F. Bishay, M. Chen and C. D. Metcalfe, Environ. Sci. Technol., 2004,
318	38 , 3533-3541.
319	7 K. G. Karthikeyan and M. T. Meyer, Sci. Total. Environ., 2006, 361, 196-207.
320	8 Y. A. Ouaissa, M. Chabani, A. Amrane and A. Bensmaili, J. Environ. Chem. Eng.,
321	2014, 2 , 177-184.
322	9 M. Klavarioti, D. Mantzavinos and D. Kassinos, Environ. Int., 2009, 35, 402-417.
323	10 I. Sirés and E. Brillas, <i>Environ. Int.</i> , 2012, 40 , 212-229.
324	11 X. R. Jing, Y. Y. Wang, W. J. Liu, Y. K. Wang and H. Jiang, Chem. Eng. J., 2014,
325	248 , 168-174.
326	12 N. Prado, J. Ochoa and A. Amrane, Bioresour. Technol., 2009, 100, 3769-3774.
327	13 X. D. Zhu, Y. J. Wang, R. J. Sun and D. M. Zhou, Chemosphere, 2013, 92,
328	925-932.

- 329 14 C. V. Gómez-Pacheco, M. Sánchez-Polo, J. Rivera-Utrilla and J. López-Peñalver,
- 330 *Chem. Eng. J.*, 2011, **178**, 115-121.
- 331 15 C. I. Brinzila, M. J. Pacheco, L. Ciríaco, R. C. Ciobanu and A. Lopes, *Chem. Eng.*
- *J.*, 2012, **209**, 54-61.
- 333 16 X. R. Jing, Y. Y. Wang, W. J. Liu, Y. K. Wang and H. Jiang, *Chem. Eng. J.*, 2014,
- **248**, 168-174.
- 335 17 F. Yu, J. Ma and S. Han, Sci. Rep., 2014, 4, 5326.
- 18 J. G. Yu, X. H. Zhao, H. Yang, X. H. Chen, Q. Q. Yang and L. Y. Yu, Sci. Total.
- *Environ.*, 2014, **482-483**, 41-51.
- 338 19 Y. Zhuang, F. Yu, J. Ma, and J. Chen, RSC. Adv., 2015, 5, 27964.
- 339 20 Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun and L. Pan, RSC. Adv., 2015, 5, 15205.
- 340 21 C. O. Ania and F. Béguin, *Water Res.*, 2007, **41**, 3372-3380.
- 341 22 Z. L. Chen, C. Y. Song, X. W. Sun, H. F. Guo and G. D. Zhu, Desalination, 2011,
- **267**, 239-243.
- 343 23 Y. Kong, W. Li, Z. L. Wang, C. Yao and Y. X. Tao, *Electrochem. Commun.*, 2013,
- **26**, 59-62.
- 345 24 E. Ayranci and B. E. Conway, J. Electroanal. Chem., 2001, 513, 100-110.
- 346 25 L. Li, L. Zou, H. Song and G. Morrisa, *Carbon*, 2009, **47**, 775-781.
- 347 26 E. Bayram and E. Ayranci, Sep. Purif. Technol., 2012, 86, 113-118.
- 348 27 J. Yang, M. H. Zhou, Y. Y. Zhao, C. Zhang and Y. S. Hu, Bioresour. Technol.,
- 349 2013, **150**, 271-277.
- 350 28 H. Wang, J. Park and Z. Ren, *Environ. Sci. Technol.*, 2015, 49, 3267.

351	29 M. H. Zhou, M. L. Chi, H. Y. Wang and T. Jin, Biochem. Eng. J., 2012, 60,
352	151-155.
353	30 C. J. Feng, C. H. Hou, S. H. Chen and C. P. Yu, Chemosphere, 2013, 91, 623-628.
354	31 S. E. Oh and B. E. Logan, J. Power Sources, 2007, 167, 11–17.
355	32 I. Ieropoulos, J. Greenman and C. Melhuish, <i>Bioelectrochemistry</i> , 2010, 78, 44-50.
356	33 H. C. Boghani, G. Papaharalabos, I. Michie, K. R. Fradler, R. M. Dinsdale, A. J.
357	Guwy, I. Ieropoulos, J. Greenman and G. C. Premier, J. Power Sources, 2014, 269,
358	363-369.
359	34 Y. Zhao, X. M. Hu, B. H. Jiang and L. Li, Desalination, 2014, 336, 64-71.
360	35 M. Mossad and L. Zou, J. Hazard. Mater., 2012, 213-214, 491-497.
361	36 X. Z. Wang, L. K. Pan, M. G. Li, Y. W. Chen, R. M. Cheng and S. M. Huang, Surf.
362	<i>Rev. Lett.</i> , 2007, 14 , 135-139.
363	37 S. Y. Wang, X. N. Li, Y. B. Zhang, X. Quan, S. Chen, H. T. Yu and H. M. Zhao,
364	Chin. Sci. Bull., 2014, 59 , 2890-2897.
365	38 M. Mossad and L. Zou, Chem. Eng. J., 2013, 223, 704-713.
366	39 C. J. Lomauro, A. S. Bakshi and T. P. Labuza, Lebensm-Wiss. Technol., 1985, 18,
367	111-117.
368	40 RS. Juang, RL. Tseng, FC. Wu and SH. Lee, Sep. Sci. Technol., 1996, 31,
369	1915-1931.
370	

Figure captions
Fig. 1. The schematic diagram of a continuous (a) and batch (b) flow MFC-Sorption
apparatus.
Fig. 2. Operating parameters (power supply, pH, electrolyte concentration and initial
concentration of tetracycline) in batch flow MFC-Sorption system.
Fig. 3. Effect of MFCs connected in series on the adsorption of tetracycline (A),
current (B) and power density (C) in batch flow MFC-Sorption system.
Fig. 4. Operating parameters (power supply, initial concentration of tetracycline and
flow rate) in continuous flow MFC-Sorption system.
Fig. 5. Effect of MFCs connected in series on the adsorption of tetracycline (A),
current (B) in continuous flow MFC-Sorption system.
Fig. 6. The kinetics of batch flow MFC-Sorption system with different MFCs
connected in series.

508							
509							
510	Table 1						
511	MFC-Sorption kinetic	parameters	of	tetracycline	removal	under	different
512	experimental conditions.						
513	-						

	Pseudo-first-order model					Pseudo-second-order model				
	$q_{ m e}$	k_1	R^2	Р	$q_{ m e}$	k_2	R^2	Р		
		$(10^{-3} \text{ min}^{-1})$				$(10^{-5} \mathrm{g \ mg^{-1} \ min^{-1}})$				
3 MFCs	84.12	1.56	0.960	21.4	98.52	3.4	0.999	1.16		
2 MFCs	81.55	1.49	0.950	26.3	94.70	3.27	0.995	2.13		
1 MFC	98.09	1.17	0.969	21.1	106.84	1.90	0.994	2.84		