

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	New insight into the promotion effect of Cu doped V_2O_5/WO_3 -TiO ₂ for low
2	temperature NH ₃ -SCR performance
3	Meiqing Shen, ^{a,b,c} Chenxu Li, ^a Jianqiang Wang, ^{*a} Lili Xu, ^a Wulin Wang ^a and Jun
4	Wang [*] a
5	
6	^a Key Laboratory for Green Chemical Technology of State Education Ministry,
7	School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072,
8	PR China
9	^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),
10	Tianjin 300072, PR China
11	^c State Key Laboratory of Engines, Tianjin University, Tianjin 300072, PR China
12	* Corresponding author: Jun Wang, Jianqiang Wang
13	Postal address:

- 14 School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road,
- 15 Nankai District, Tianjin 300072, China
- 16 Email: jianqiangwang@tju.edu.cn; wangjun@tju.edu.cn
- 17 Tel. /Fax. : (+86) 22-27407002

18 Abstract

19	The promotion effect of Cu on V/WTi catalyst for the selective catalytic
20	reduction of NO_x by NH_3 was investigated in the temperature range of 150-400 °C.
21	The Cu addition shows a superior NH_3 -SCR performance in comparison with V/WTi
22	sample. The catalysts were characterized by XRD, Raman, EPR, H ₂ -TPR, XPS, and
23	in situ DRIFTS techniques. Obtained results reveal the Cu oxides in close proximity
24	to V oxides on the surface facilitate the formation of double redox couples of $V^{5\scriptscriptstyle +}\!/V^{4\scriptscriptstyle +}$
25	and Cu^{2+}/Cu^{+} , which may play a critical role in the superior NH_3 -SCR performance.
26	The electronic interactions caused by the redox cycle of $Cu^{2+}+V^{4+}\leftrightarrow V^{5+}+Cu^+$ could
27	significantly improve the redox properties of vanadium species, which is beneficial
28	for the activation of NH ₃ species bound to vanadium species. Moreover, the redox
29	cycle of $Cu^{2+}+V^{4+}\leftrightarrow V^{5+}+Cu^+$ induces the formation of high-activity nitrates species
30	adsorbed on Cu species. The kinetic analysis reveals that the Cu doping induces the
31	decrease of activation energy (Ea) of NH ₃ -SCR.

32 **1. Introduction**

Nitrogen oxides (NO_x) , are one of the most dangerous air pollutants that cause 33 acid rain and photochemical smog, as well as directly do harm to human health¹. The 34 35 selective reduction of NO_x by NH_3 is one of the most efficient NO_x emission control technologies². V₂O₅-WO₃/TiO₂ has been a well-known NH₃-SCR catalyst and shows 36 optimum performance in only within a narrow temperature window of 300-400 °C³. 37 Under the condition of low-load operation, the temperature of exhausted gas cannot 38 39 reach to the lowest operation temperature, causing the SCR denitrification system not 40 operation. This phenomenon could account for the lower flue gas temperature leading to NH₄HSO₄ deposited on the catalyst surface 4 , resulting in the blockage of catalyst 41 42 pore channels and catalyst deactivation. These problems need to be settled currently for most coal power plant. Hence, it is urgent to develop a novel NH₃-SCR catalyst 43 with excellent NO_x conversion at low temperature to avoid the problems associated 44 with the existing commercial system, especially for the coal power plant 5^{-7} . 45

In the past decades, many researchers have been dedicated to improve the 46 low-temperature activity of V₂O₅-based NH₃-SCR catalysts. Gao et al.⁸ revealed that 47 Fe_2O_3 additive in V₂O₅-WO₃/Fe₂O₃/TiO₂ improved the NO decomposition due to the 48 oxidation of NO to NO₂ by Fe₂O₃. Liu et al.⁹ pointed out the Mn addition 49 significantly enhanced the activity of V₂O₅/TiO₂ catalyst for NH₃-SCR below 400 °C 50 owing to the synergistic effect of the redox cycle $(Mn^{4+}+V^{4+}\leftrightarrow V^{5+}+Mn^{3+})$. These 51 52 additives can not only serve as "structure" promoter but also play a "chemical" role in 53 promoting the redox properties and influencing other intrinsic chemical states of the

	Manuscript
	Accepted
	Advances
	()

54	active vanadium species, including oxidation state and coordination circumstance,
55	which is consistent with the promotion effect of WO_3 or $MoO_3^{10, 11}$. Recently, highly
56	dispersed amorphous copper oxides ¹² have been attractive due to the excellent
57	performance in NO_x conversion. Aritani et al. ¹³ reported CuO-TiO ₂ showed high
58	activity even at relatively low temperature in the NH_3 -SCR process. Ettireddy et al. ⁷
59	developed the Cu/TiO ₂ catalyst that presented superior de-NO _x performance at the low
60	temperature under industrial relevant condition. The low temperature performance is
61	associated with the remarkable surface Lewis acidic sites and the existence of redox
62	cycle between Cu ²⁺ and Cu ⁺ . However, limited information is available to regard the
63	promotional effect of copper oxides on the V_2O_5 - WO_3 /TiO ₂ catalysts for NH ₃ -SCR
64	active, especially the detail investigations focusing on further understanding the
65	relationship among the "composition-structure-property" remain unreported.
66	It is well received that the redox property of vanadium species is principal factor

governing activity and that this reaction may involve primarily the coordinated 67 ammonia species on Lewis acid sites ^{10, 14, 15}. Therefore, it is possible to improve the 68 69 performance of V/WTi catalyst at low temperature by adding Cu. Meanwhile, it seeks to further understand the structure-performance correlation of copper oxide addition 70 71 on the V/WTi catalyst. The V/WTi was first prepared by traditional incipient wetness 72 impregnation method, and then, Cu was added to gain the V(Cu)/WTi catalyst with the same method. The promoting effect of Cu on the SCR active was evaluated and 73 the structure-performance correlation on NH₃-SCR performance was investigated. 74 Moreover, the mechanism study was conducted by in situ DRIFTS techniques and 75

- ⁷⁶ kinetic analysis to elucidate the cause of Cu influencing the NH₃-SCR performance.
- Finally, a mechanism of NH₃-SCR over V(Cu)/WTi catalyst at low temperature is
- 78 proposed to further understand the promotion effect.
- 79 **2. Experimental**

80 **2.1 Catalysts preparation**

81 The CuO (molar ratio Cu/V=1:1) modified V₂O₅/WO₃-TiO₂ catalyst with 1wt % V_2O_5 was prepared by the traditional incipient wetness impregnation method. 82 83 Commercial support (DT-52), was obtained from Millennium Inorganic Chemicals 84 Inc. The complex of $VO(CO_2)_2$ was prepared by reacting calculated amount of V_2O_5 85 powder with appropriate amount of oxalic acid liquid (1 M) with continuous stirring 86 at 70 °C for 30 min. Subsequently, the desired quantity of WTi powder was added into the mixed solution and stirred at 70 °C for 1 h. This mixture was statically dried 87 overnight at 100 °C. The V(Cu)/WTi and Cu/WTi were prepared by the same method 88 with dissolving a desired amount of $Cu(NO_3)_2$ 5H₂O into the aqueous solutions, and 89 90 then the desired amount of dried V/WTi powder without calcination and WTi added 91 into the mixed solutions and stirred 1h, then dried overnight at 100 °C and calcined at 92 600 °C for 5 h.

93 **2.2 Catalysts characterization**

Powder X-ray diffraction (XRD) was performed on Bruker D8 Advance TXS
employing Cu Kα radiation (λ=0.15418 nm). The XRD pattern was collected from

96	20° to 80° with the step size of 0.02° . The mean crystallite sizes of titania are
97	calculated using Scherer equation. The Nitrogen adsorption-desorption isotherms of
98	the samples were determined at -196 °C by V-Sorb 2800TP, and the corresponding
99	pore size distribution curves were calculated from branches by the BJH method. The
100	BET surface area is calculated from the Brunauer-Emmett-Teller (BET) method. The
101	samples were degassed for 5 h at 300 $^\circ C$ in N_2 before measurement.
102	Electron paramagnetic resonance spectroscopy (EPR) was performed with a
103	Bruker Model A320 instrument in a rectangular ER 4102st cavity. Prior to analysis,
104	the samples were pretreated for 5 h at 300 $^{\circ}$ C, and then the EPR spectra was recorded
105	at room temperature and atmospheric pressure.
105 106	at room temperature and atmospheric pressure. Hydrogen temperature-programmed reduction (H ₂ -TPR) was conducted using 0.1
105 106 107	at room temperature and atmospheric pressure. Hydrogen temperature-programmed reduction (H ₂ -TPR) was conducted using 0.1 g catalysts. The samples were pretreated with 5 % O_2/N_2 (30 ml min ⁻¹) at 500 °C for 1
105 106 107 108	at room temperature and atmospheric pressure. Hydrogen temperature-programmed reduction (H ₂ -TPR) was conducted using 0.1 g catalysts. The samples were pretreated with 5 % O_2/N_2 (30 ml min ⁻¹) at 500 °C for 1 h and then cooled down to room temperature in N ₂ . The samples were elevated in 5 %
105 106 107 108 109	at room temperature and atmospheric pressure. Hydrogen temperature-programmed reduction (H ₂ -TPR) was conducted using 0.1 g catalysts. The samples were pretreated with 5 % O_2/N_2 (30 ml min ⁻¹) at 500 °C for 1 h and then cooled down to room temperature in N ₂ . The samples were elevated in 5 % H ₂ /N ₂ (30 ml min ⁻¹) from 50 to 900 °C at a ramping rate of 10 °C min ⁻¹ while the
105 106 107 108 109 110	at room temperature and atmospheric pressure. Hydrogen temperature-programmed reduction (H ₂ -TPR) was conducted using 0.1 g catalysts. The samples were pretreated with 5 % O_2/N_2 (30 ml min ⁻¹) at 500 °C for 1 h and then cooled down to room temperature in N ₂ . The samples were elevated in 5 % H ₂ /N ₂ (30 ml min ⁻¹) from 50 to 900 °C at a ramping rate of 10 °C min ⁻¹ while the consumption of H ₂ was recorded continuously using TCD.
105 106 107 108 109 110 111	at room temperature and atmospheric pressure. Hydrogen temperature-programmed reduction (H ₂ -TPR) was conducted using 0.1 g catalysts. The samples were pretreated with 5 % O ₂ /N ₂ (30 ml min ⁻¹) at 500 °C for 1 h and then cooled down to room temperature in N ₂ . The samples were elevated in 5 % H ₂ /N ₂ (30 ml min ⁻¹) from 50 to 900 °C at a ramping rate of 10 °C min ⁻¹ while the consumption of H ₂ was recorded continuously using TCD. The X-ray photoelectron spectroscopy (XPS) was recorded on a PHI-1600 ESCA
105 106 107 108 109 110 111 112	at room temperature and atmospheric pressure. Hydrogen temperature-programmed reduction (H ₂ -TPR) was conducted using 0.1 g catalysts. The samples were pretreated with 5 % O_2/N_2 (30 ml min ⁻¹) at 500 °C for 1 h and then cooled down to room temperature in N ₂ . The samples were elevated in 5 % H ₂ /N ₂ (30 ml min ⁻¹) from 50 to 900 °C at a ramping rate of 10 °C min ⁻¹ while the consumption of H ₂ was recorded continuously using TCD. The X-ray photoelectron spectroscopy (XPS) was recorded on a PHI-1600 ESCA system. All binding energies were calibrated internally by the carbon deposit C 1s

The temperature-programmed desorption (TPD) of NO+O₂ was performed using a Fourier Transform Infrared spectrometer (MKS-2030). Prior to TPD, 0.2 g samples were pre-treated with 5 % O_2/N_2 (333 ml min⁻¹) at 500 °C for 0.5 h and then cooled down to 50 °C. For NO+O₂-TPD, the samples were saturated with a 500 ppm NO+5%

120 In situ diffuse reflectance Infrared Fourier transform spectra of adsorption species were performed on Nicolet 6700 FTIR equipped with a MCT detector cooled by 121 liquid N₂ at a resolution of 4 cm⁻¹, averaging 10 scans for each spectrum. Diffuse 122 123 reflectance experiments were performed *in situ* in a commercial high temperature 124 chamber (Thermofisher) fitted with a ZnSe window. Prior to reactant gas (NH₃ or NO) chemisorption, the samples were initially treated with 10 % O_2/N_2 (50 ml min⁻¹) at 125 126 500 °C for 30 min, and then the samples were cooled down to the target temperature. The samples were subsequently flushed under N₂ for 1 h to remove any adsorbed 127 impurities for background collection. Then the gas containing 3000 ppm NH_3 or 3000 128 ppm NO+5 % O₂ in N₂ (50 ml min⁻¹) passed through the sample at the target 129 130 temperature for 45 min. In situ DRIFTS spectra were collected after purging the weakly adsorbed gas molecules. In situ DRIFTS spectra for NO, NH₃ and O_2 131 132 co-adsorption were collected at the similar conditions as NO chemisorption, where 3000 ppm NO and 3000 ppm NH₃ in 5% O₂+N₂ were introduced to the system. 133

134 **2.3 Activity measurement**

The catalytic activity measurement for the reduction of NO by NH_3 (NH_3 -SCR) was carried out in a quartz reactor with 0.2 g catalysts (60-80 mesh) with 0.8 g of quartz (60-80 mesh). The temperature was monitored by a type K thermocouple inserted into the center of the catalyst. The concentrations of NO, NO_2 , N_2O , H_2O and

139 NH₃ were measured using a Fourier Transform Infrared spectrometer (MKS-2030) equipped with a 5.11 m gas cell. The gas flow rates in all experiment were controlled 140 at 333 ml min⁻¹ using mass flow controllers. Prior to experiments, the catalysts were 141 pre-treated at 500 °C for 30 min under 5% O₂/N₂. The NO_x conversion was measured 142 from 100 °C to 500 °C at a ramp rate of 10 °C min⁻¹. The reaction gas mixture 143 contained 500 ppm NH₃, 500 ppm NO, 4 % H₂O, 5% O₂, and the balance of N₂ at gas 144 hourly space velocity (GHSV=10,000 h⁻¹). The NO_x conversion was calculated using 145 146 the following equation:

147
$$NO_{x}conversion(\%) = \frac{NO_{xinlet} - NO_{xoulet}}{NO_{xinlet}} \times 100\%$$
(1)

$$NO_x = NO + NO_2 \tag{2}$$

149 **2.4 Kinetic measurement**

150 The kinetic tests were performed in a differential reactor, using 25 mg (80-100 151 mesh) of 75 mg of quartz sands (80-100 mesh). To avoid the diffusion effect, the experiment was carried out under steady-state conditions at high GHSV (300,000 h⁻¹). 152 The samples were pre-treated in 5 % O₂/N₂ at 500 °C for 30 min before the kinetic 153 154 experiments. The kinetic steady-state measurements with a gas composition of 500 155 ppm NH₃, 500 ppm NO and 5% O₂ were performed between 220 and 280 °C. The kinetic parameters for the NO conversion were generally considered to be a first order 156 reaction $^{16-18}$. The rate constant (k) can be calculated as: 157

158
$$k = -\frac{F_0}{[NO]_0 W_{cat}} \ln(1-X)$$
(3)

159

RSC Advances

$$k = Ae^{\left(\frac{-Ea}{RT}\right)} \tag{4}$$

Where k is the reaction rate constant (ml g⁻¹ s⁻¹), F_0 is the molar NO feed rate (mol min⁻¹), [NO]₀ is the molar NO concentration (mol min⁻¹) at the inlet, W_{cat} is the catalyst weight (g), X is the NO conversion (%), A is the pre-exponential factor, Ea is the apparent activation energy (J mol⁻¹), R is the gas constant (8.314 J mol⁻¹ K⁻¹) and the T is the temperature (K).

165 **3. Results**

167

168

169

166 **3.1 NH₃-SCR performance**

temperature. (a) NO_x conversion (b) N_2O generatio

As shown in Fig.1, NH₃-SCR performance of these catalysts follows the order: V(Cu)/WTi>V/WTi>Cu/WTi. Although, the V/WTi sample exists a better NH₃-SCR activity than Cu/WTi as a reference sample in the whole temperature range, NO_x conversion of this sample is still less than 65 % below 250 °C. While V(Cu)/WTi expresses a superior NH₃-SCR performance in comparison with V/WTi and the

176	reaches 84%, much higher than the 65 % of V/WTi and the 46 % of Cu/WTi. The
177	result clear shows that the co-existence of Cu and V could significantly enhance
178	NH ₃ -SCR activity at low temperature. Under the reaction condition without H ₂ O, the
179	NH ₃ -SCR performance showed in Fig.S2 for all catalysts is improved at low
180	temperature, and the similar inhibiting effect of H_2O on activity has been observed by
181	others $^{16}\!\!$, which is attributed to the competitive adsorption of H_2O on the vanadia sites
182	leading to a reduction in the number of sites available for the adsorption of reagent.
183	While the activity of three catalysts follows the same sequence of
184	V(Cu)/WTi>V/WTi>Cu/WTi under the reaction condition with or without H ₂ O.

185 **3.2 Characterization**

186 **3.2.1 Phase composition and surface area**

187 188

175

Fig.2 XRD patterns of various catalysts

	ac	b y z	^с D _{ВЛН} (nm)	TiO ₂	Lattice Parameters		Cell
Samples	S_{BET}	V_{BJH}		crystalline			volume
	(mg)	(cm g)		size(nm)	a=b(Å)	c(Å)	(Å ³)
V/WTi	41	0.291	19.0	20.4	3.784	9.500	136.0
V(Cu)/WTi	37	0.281	20.1	21.1	3.787	9.508	136.4
Cu/WTi	37	0.290	20.0	21.6	3.786	9.513	136.4

Table 1 Textural and structural properties of the catalysts.

^aBET surface area of the samples. ^bBJH desorption cumulative volume of pores. ^cBJH desorption

192 average pore diameter (4V/A).

193

190

194 XRD results are showed in Fig.2, and the crystalline sizes, lattice parameters and 195 cell volume are listed in Table 1. These samples all exhibit the typical anatase phase 196 of TiO₂, but no CuO and V_2O_5 diffractions are observed. It indicates that both CuO and V₂O₅ are well dispersed on the surface of TiO₂ as highly amorphous states or 197 198 formed crystallites are too small to be detected. As showed in Table 1, besides the S_{BET} and V_{BJH}, their crystalline sizes, lattice parameters and cell volume also remain 199 200 the same level, which suggests almost no or little effect on the support crystal 201 structure with the introduction of CuO and V_2O_5 . The theoretical surface density of vanadium on V/WTi and V(Cu)/WTi is 2.7 µmol/m² and 2.9 µmol/m², which is 202 clearly less than the monolayer coverage $(13.2 \text{ }\mu\text{mol/m}^2)^{19}$. So, the vanadium species 203 204 can be well dispersed on the support with the Cu doping. Moreover, it can be well 205 explained by the Raman spectra. As shown in Fig.S2, the Raman vibration mode of

1 aye 12 01 J

anatase TiO_2 can only be observed over V(Cu)/WTi and V/WTi without any signals for other metal, especially no bands ascribed to polymeric metavanadate species observed. Therefore, it has concluded that the V and Cu species can be highly dispersed on the support.

210 **3.2.2 EPR**

211

Fig.3 EPR spectra of V/WTi and copper-containing V/WTi at room temperature after they

were evacuated for 5 h at 300 °C and sealed off.

214

213

215 EPR spectra of the samples are displayed in Fig.3. Tetravalent vanadium exists a 216 quite complex electron resonance spectrum, which is due to the high number of hyperfine lines arising from the interaction of the unpaired electron with the ⁵¹V 217 nucleus and the anisotropy of both g and A tensors²⁰, therefore their parameters may 218 219 not be exactly calculated. The parameters of anisotropic g factors and hyperfine splitting constants for V/WTi are as follow: $g_{1/2}=1.926 \pm 0.002$, $g_{\perp}=1.976 \pm 0.002$, 220 221 $A_{\perp}=184 \pm 2$ G, and $A_{\perp}=57 \pm 2$ G values, which arises from the isolated, axially symmetric VO²⁺ species in square-pyramidal and/or octahedral coordination ^{10, 20-22}. 222

223	The broad isotropic singlet can be observed, which is assigned to the clustered V-O-V
224	clusters 10 . In addition, the type hyperfine structure of the isolated VO^{2+} species
225	exhibiting a broad signal indicates the presence of $V^{4\scriptscriptstyle +}$ in V/WTi, which has been
226	reported by others 14 . The spectrum of V(Cu)/WTi, however, is much smaller, actually
227	almost no hyperfine structure to be discerned, which may be due to the presence of
228	copper suppressing stable isolated V^{4+} formation. Only the EPR signal corresponding
229	to octahedral isolated Cu ²⁺ presets g_{\perp} = 2.070±0.002 appears ²³ . This result can be
230	attributed to an affinity of interaction between surface copper and vanadium oxides.
231	Thus the quasi-free electrons of the V^{4+} species can be captured by the copper
232	component in the vicinity of surface vanadium oxide species, causing the
233	concentration less than the limiting value, which results in the signals of the $V^{4\scriptscriptstyle +}$
234	species too weak to be observed. This conclusion will be further confirmed by the
235	following H ₂ -TPR and XPS analysis.

236 **3.2.3 H₂-TPR**

Fig.4 The H₂-TPR result of the catalysts

237

RSC Advances Accepted Manuscript

	Reduction peaks temperature (°C)					
_	Cu		V		SO4 ²⁻	Support (W
samples						and Ti)
_	T ₁	T ₂	T ₁	T ₂	T_1	T_1
WTi	-	-	-	-	550	675
V/WTi	-	-	343	450	528	625
V(Cu)/WTi	210	235	310	436	525	620
Cu/WTi	202	226	-	-	580	690

240

Table 2 H₂-temperature programmed reduction.

241

242

Table 3 H₂ consumption of the obtained samples.

samples	Cu^{2+}/Cu^{+}	V^{5+}/V^{4+}	Total H_2 consumption of V and Cu	
samples	Cu /Cu	• / •	(mmol/g)	
V/WTi	-	0.66	1.42	
V (Cu) /WTi	1.32	1.00	1.90	
Cu/WTi	2.30	-	1.46	

243

Temperature-programmed reduction (H₂-TPR) experiments were conducted to further investigate the effect of copper modification on the reduction behavior and the results are presented in Fig.4. The support exhibits two major reduction peaks at 550 $^{\circ}$ C and 675 °C, which can be assigned to the reduction of some sulfate species existing

248	on the surface of support 24,25 and the well dispersed tungsten species oxide and TiO_2
249	support 26 . The V/WTi catalyst shows two new reduction peaks at 343 °C and 450 °C
250	ascribed to the stepwise reduction of V^{5+} and $V^{4+\ 25,\ 27,\ 28}$, and the peak of support TiO_2
251	and tungsten oxide is clear shifted to lower temperature, which can be an indication of
252	the strong interaction between V and support. The reduction temperature of vanadium
253	species is obviously lower that is accounted for the V-O-Ti interaction ²⁷ , which is
254	accorded with the lower reduction temperature of the support. The shoulder peak at
255	528 °C is remarkably smaller than that of the support, corresponding to the
256	decomposition of the sulfate species during the calcination process ¹⁰ , which can be
257	observed over other two catalysts. In presence of Cu, the new overlapped peaks
258	deconvoluted two sub-peaks at 210 °C and 235 °C are attributed to the reduction of
259	Cu^{2+} and $Cu^{+29,30}$, which shifts to higher temperature, compared to the peaks at 202
260	°C and 226 °C for Cu/WTi. Meanwhile, the reduction temperature of vanadium
261	species clear shifts to lower temperature (310 °C and 436 °C). It suggests the
262	reducibility of vanadium species is significantly improved by Cu oxide. The last
263	broaden peak due to the support is just like the V/WTi, which means that the
264	interaction between the Cu and the W or Ti can be very weak. The signals have been
265	fitted with Gaussian lines to assess the H ₂ consumptions for the individual species,
266	and the results of quantitative analysis are displayed in Table 3. The amount of H_{2}
267	consumption due to V reduction on V/WTi is 1.42 mmol/g and Cu on Cu/WTi is 1.46
268	mmol/g, while the total H_2 consumption due to both Cu and V on V(Cu)/WTi is 1.90
269	mmol/g that is lesser than the sum of V/WTi and Cu/WTi samples. Meanwhile, the H_2

consumption ratio of V^{5+}/V^{4+} increases with the ratio of Cu^{2+}/Cu^{+} decreasing shown 270 in Table 3, which suggests larger amounts of easily reduced V^{5+} species formation on 271 272 the Cu modified V/WTi sample, which is highly consistent with the EPR. The results strongly indicates that the synergistic interaction between V and Cu exists in 273 V(Cu)/WTi catalyst, which greatly enhances the reduction potential of vanadium 274 species. The synergistic interaction will be expounded in detail with the following 275 276 discussion.

3.2.4 XPS 277

Fig.5 XPS spectra of the obtained samples: V 2p, Cu 2p and O 1s.

283

284

Table 4 The surface compositions of the obtained samples.

	Surface Atomic concentration			tion	Surface Atomic ratio	
Samples	Ti	W	Cu	Ο	Cu ²⁺ /(Cu ²⁺ +Cu ⁺)	$O_{\alpha}/O_{\alpha}+O_{\beta}$
	(at.%)	(at.%)	(at.%)	(at.%)	(%)	(%)
V/WTi	21.15	5.02	-	73.84	-	30.83
V(Cu)/WTi	19.47	4.65	0.88	75.00	15.83	42.85
Cu/WTi	22.96	5.00	0.93	71.11	24.18	27.09

285

286 XPS analysis for the samples are illustrated in Fig.5 and Table 4. As shown in Fig.5 (V 2p), the vanadium oxide species in different chemical state can be identified 287 by the position of the V $2p_{3/2}$ level. The V $2p_{3/2}$ peak within the range reported for V⁵⁺ 288 (517.0-517.8 eV) and V⁴⁺(515.6-516.1 eV) is very weak and impeded by the near O 289 1s satellite peak (520.3 eV). The results indicate the vanadium species are highly 290 dispersed and located on the support in accord with the XRD and Raman analysis, and 291 292 the V surface concentration is too low to quantitatively analyze. However the weak shoulder peaks exhibiting at 515.9 eV and 517.7 eV ascribed to V^{4+} and V^{5+} can be 293 detected $^{31-33}$, suggesting that the redox couple V^{5+}/V^{4+} exists on the catalysts which is 294 295 in good agreement with our H₂-TPR and EPR.

The result of Cu 2p is shown in Fig.5 (Cu 2p). The binding energies of Cu $2p_{3/2}$ and Cu $2p_{1/2}$ peaks are located at 932.6 eV and 952.4 eV. The catalysts with low

298	copper oxide loading exhibit a main center at 932.2 eV and a weak peak at 933.6 eV,
299	which are the characteristics of Cu^+ and Cu^{2+} species, respectively ³⁴ . For Cu/WTi and
300	V(Cu)/WTi samples, the shake-up peak is very weak, indicating that the main copper
301	specie is the Cu^+ . The relative percentage of Cu^{2+} can be determined by the area ratio
302	of the corresponding characteristic peaks, and listed in Table 4. In comparison with
303	the Cu/WTi, the percent of Cu^{2+} on the V(Cu)/WTi sample is much lower, which is
304	mainly owing to the redox cycle of $Cu^{2+}+V^{4+}\leftrightarrow V^{5+}+Cu^{+}$ shifting to the right, that is to
305	say the electrons can conduct from $V^{4\scriptscriptstyle +}$ to $Cu^{2\scriptscriptstyle +}$ resulting in the higher amount of $Cu^{\scriptscriptstyle +}$
306	and $V^{5+}\ensuremath{\text{formed}}\xspace$ which is well agreed with the $H_2\mbox{-}TPR$ and EPR results. In addition,
307	the redox couple of Cu^{2+}/Cu^+ can reduce the surrounding electron clouds density of
308	the vanadium species ³⁵ , promoting the electron transformation between the vanadium
309	species and reagent, thus facilitating the reducibility of vanadium species as shown in
310	H ₂ -TPR profile.
244	The O la ionization of the VDC meetrum features is numerically fitted with two

311 The O 1s ionization of the XPS spectrum features is numerically fitted with two components: the first peak at 529.7 eV is attributed to the lattice oxygen (denoted as 312 O_{β}) and the one at 531.2 eV is ascribed to the surface adsorbed oxygen (denoted as O_{α}) 313 such as O_2^{2-} or O^- assigned to the defect oxide or surface hydroxyl and adsorbed water 314 29,36 , which is shown in Fig.5 and Table 4. It is clear evident that the ratio of O_{α} over 315 V(Cu)/WTi sample is much higher than that over other two samples, and the order is 316 317 V(Cu)/WTi>V/WTi>Cu/WTi. The result obviously indicates the chemisorbed surface oxygen (O_{α}) content is significantly improved by Cu doping into V/WTi. The high 318 319 ratio of Cu^+ over V(Cu)/WTi sample can create the charge imbalance, oxygen vacancy, and unsaturated chemical bonds on the surface of the catalyst, contributing to more surface chemisorbed oxygen formed, which is well in accordance with the less total H₂ consumption of copper species. The surface oxygen (O_{α}) is more reactive in the oxidation reaction due to its higher mobility than lattice oxygen $(O_{\beta})^{2, 32}$. Herein, the relative higher concentration surface oxygen may be attributed to the superior NH₃-SCR activity at low temperature.

326 3.2.5 Surface acidity

RSC Advances Accepted Manuscript

332	

333

334

335

Table 5 Assignments of DRIFTS bands observed during the NH₃ adsorption.

Assignments	References	
asymmetric and symmetric vibrations of N-H		
bonds in $\mathrm{NH_4}^+$ coordinately linked to		
Brønsted acid sites		
asymmetric and symmetric vibrations of the		
coordinated NH3 linked to Lewis acid sites	11	
NH ₂ species coordinated to Lewis acid sites	13	
	Assignments asymmetric and symmetric vibrations of N-H bonds in NH4 ⁺ coordinately linked to Brønsted acid sites asymmetric and symmetric vibrations of the coordinated NH3 linked to Lewis acid sites NH2 species coordinated to Lewis acid sites	

336

338

Table 6 the integral of NH₃ peak area adsorbed on the Brønsted acid 1452 (cm⁻¹) and Lewis acid

	1223 (cm	⁻¹) at 50 °C.	
samples	Brønsted acid	Lewis acid	L/B
	(a.u.)	(a.u.)	(a.u.)
V/WTi	9.3	1.5	0.16
V (Cu) /WTi	8.4	2.1	0.25
Cu/WTi	2.9	6.0	2.01

In order to thoroughly distinguish the Lewis acid site and Brønsted acid site and their quantities, *in situ* DRIFTS are conducted between 50 and 400 °C, and the results

342	are exhibited in Fig.6. After NH_3 adsorption on the V/W II sample at 50 C, several
343	bands are detected in the range of 1000-1800 cm ⁻¹ . The bands at 1450 and 1672 cm ⁻¹
344	are assigned to asymmetric and symmetric vibrations of N-H bonds in $\mathrm{NH_4^+}$
345	coordinately linked to Brønsted acid sites. The bands at 1602 cm ⁻¹ and a broaden peak
346	between 1210 cm ⁻¹ and 1273 cm ⁻¹ are attributed to asymmetric and symmetric
347	vibrations of the NH ₃ coordinately bound to Lewis acid sites ^{12, 37} . In addition, amide
348	(NH_2) species coordinated to Lewis acid sites also can be observed at 1550 cm ⁻¹ ,
349	which can be an important activated surface intermedia in ammonia activation for
350	NH ₃ -SCR ¹³ .

351 As compared with V/WTi, the results of V(Cu)/WTi and Cu/WTi are shown in Fig.6 b and c. All the similar NH₃ species adsorbed on the catalyst surface can be 352 353 observed. The assignments of *in situ* DRIFTS bands are listed in Table 5. However, 354 the intensity and proportion of these two kinds of acid sites is significant difference. 355 In Table 6, it is clear suggesting that the V/WTi catalyst possesses the main Brønsted acid sites and the Cu/WTi catalyst contains the dominating Lewis acid sites. The 356 357 proportion of Lewis acid sites on V(Cu)/WTi catalyst is slightly higher than that of the V/WTi sample, which is in accordance with the superior catalyst activity at low 358 359 temperature, while the ratio of Brønsted acid sites remarkably decreases. This 360 strongly indicates the Lewis acid sites, especially the activity of NH₃ species bonded to, play a more important role than the Brønsted acid sites in low-temperature 361 362 NH₃-SCR performance.

363

With an increase of temperature, the intensity of the band at 1450 cm⁻¹ decreases

RSC Advances Accepted Manuscript

364	more noticeably than that of 1210 cm ⁻ , which still remains and shifts to higher wave
365	number. This indicates that the Lewis acid sites are more stable than Brønsted acid
366	sites on the catalyst surface. Meanwhile, the band at 1270 cm ⁻¹ weakens and shifts
367	significantly download to around 1230 cm ⁻¹ , which shows the weaker acid strength. It
368	is worth noting that the peak at 1268 cm^{-1} of the V(Cu)/WTi is obviously higher than
369	the others, which may be attributed to the large amount of lower-valent copper species
370	due to the electron conduction between the V and Cu species decreasing the intensity
371	of Lewis acidity ³⁸ , which is in good accordance with the EPR and TPR results. Thus
372	the NH ₃ species are mainly adsorbed on the Lewis acid site contributed from
373	vanadium species. With the temperature increasing to 300 $^\circ \text{C},$ all the adsorbed NH_3
374	species on Brønsted acid sites eventually disappear, which further indicates that the
375	superior NH3-SCR performance is well associated with NH3 species bound to
376	vanadium species in this work.

377 **3.2.6 NO_x adsorption**

378

379

Fig.7 NO+O₂-temperature programmed desorption profiles of the obtained samples.

382			(S _s) at 200-350 °C.		
		Weak site (S _w)	Strong site (S _s)	S_w / S_s	Total NO ₂ amounts
	samples	(a.u.)	(a.u.)		$(\times 10^{-3} \text{ mmol/g})$
	V/WTi	85	2,146	0.04	7.76
	V (Cu) /WTi	1,024	1,715	0.60	9.12

3,349

0.11

12.36

Table 6 The quantitative analysis of NO_2 desorbed on weak site (S_w) at 50-125 °C and strong site

383

Cu/WTi

384	The NO+O ₂ -TPD profiles of the catalysts are illustrated in Fig.7, and the
385	quantitative results are summed in Table 6. All the catalysts show only the desorption
386	peak of NO ₂ between 50 $^\circ\text{C}$ and 350 $^\circ\text{C}$ without any desorption peak of NO, which
387	may be due to NO oxidation by chemisorbed surface oxygen on the catalysts. Only
388	one distinct desorption peak at 275 $^\circ \text{C}$ is observed on the V/WTi sample, whereas the
389	Cu/WTi exhibits not only a stronger peak centered at 300 °C but also a small peak at
390	78 °C, respectively. The low temperature peak (labeled as Sw) can be related to the
391	weakly adsorbed nitrate on the catalytic surface ³⁹ and the high temperature peak
392	(labeled as Ss) is attributed to the stably adsorbed nitrate species ⁸ , which can be
393	described in detail by NO+O ₂ - <i>in situ</i> DRIFTS results. This confirms that the existence
394	of both kinds of adsorption sites over the Cu/WTi. Moreover, the amounts of the two
395	sites are much higher than those of V/WTi. For V(Cu)/WTi samples, the first peak at
396	85 °C exhibits an obvious increase and the second peak at 285 °C shows a clear
397	decrease. The ratio of Sw/Ss for V(Cu)/WTi is 0.60 much larger than the 0.11 of

RSC Advances Accepted Manuscript

398 Cu/WTi and 0.04 of V/WTi. From the results, it clear indicates that the addition of Cu to the V/WTi not only provides new adsorption sites but also reduces the number of 399 400 strong adsorption sites, which can be explained by the synergistic interaction of 401 electron conduction between Cu and V contributing to stably nitrate species adsorbed on Cu species transforming into weakly adsorbed ones. The large amounts of the 402 403 weakly adsorbed nitrate can decompose as NO₂ with the temperature rise, which can 404 be generally considered as an important intermediate species for NH₃-SCR in the low temperature ^{12, 40}. 405

408

Table 7 Assignments of DRIFTS bands observed during the NO+O₂ adsorption.

Wavenumber (cm ⁻¹)	Assignments	References
1627	bridging bidentate nitrates	39
1603	bridging monodentate nitrates	40,41
1572	bidentate nitrates	40
1508, 1290	monodentate nitrate	41,42

chelating bidentate nitrates

410

1245

NO+O₂ adsorption *in situ* DRIFTS at different temperatures are shown in Fig.8. 411 For V/WTi sample, variation bands can be observed in the range of 1000-2000 cm⁻¹ at 412 50 °C, the bands at 1627 cm⁻¹ and 1245 cm⁻¹ can be assigned to the N=O stretching 413 vibration of bridging bidentate nitrates and chelating bidentate nitrates ⁴¹. The band at 414 1603 cm⁻¹ and a shoulder at 1572 cm⁻¹ are attributed to the bridging monodentate 415 nitrates and bidentate nitrates ^{42, 43}. Furthermore, the monodentate nitrates also present 416 a band at 1290 cm⁻¹⁴⁴. With the addition of Cu, a new band at 1508 cm⁻¹ attributed to 417 the monodentate nitrates appears ⁴¹. Moreover, the intensities of all the adsorbed 418 419 nitrate species are much stronger, which reveals that the presence of Cu can provide 420 new adsorption sites, inducing more adsorbed nitrates species on the surface. As a 421 reference sample, all the bands of absorbed nitrates species exist on the Cu/WTi, excepting for a new band at 1546 cm⁻¹ attributed to the overlap of the monodentate 422 nitrate (1508 cm⁻¹) and bidentate nitrate species (1572 cm⁻¹) 24 . The assignments of *in* 423 situ DRIFTS bands are presented in Table 7. 424

With increasing temperature to $100 \,^{\circ}$ C, the intensities of the bands at $1572 \,\mathrm{cm}^{-1}$, 1290 cm⁻¹and 1245 cm⁻¹ remarkably decrease and the band at 1508 cm⁻¹ almost vanishes for V(Cu)/WTi catalyst, while those bands decrease slowly on the other catalysts. This result may be due to the adsorbed nitrate species desorbing, decomposing or converting into NO₂ during the heating process, which is correspondence with the NO+O₂-TPD. With the further elevation of temperature to

 $300 \,^{\circ}$ C, only the bands at 1627 cm⁻¹ and 1602 cm⁻¹ still exist for the three samples, which suggests the bridging bidentate and bridging monodentate nitrates are more stable. Interestingly, the intensities of the both nitrates on V(Cu)/WTi catalyst are obviously weaker than those of the other catalysts. It clear suggests the existence of

435 Cu can significantly activate the adsorbed nitrates which are conductive to release 436 much more NO₂ facilitating to improve the NO₂/NO_x, which is beneficial for 437 NH₃-SCR 45 .

438 3.2.7 Reaction between NO+O₂ and adsorbed NH₃ species

439

431

432

433

434

440 **Fig.9** Integral conversion of the bands in NH₃ adsorption *in situ* DRIFTS assigned to Lewis acid

441 site (1220 cm^{-1}) over the catalysts as a function of time at 200 °C.

In order to further explore the different activity of NH₃ species linked to Lewis and Brønsted acid sites on the surface of these catalysts during the NH₃-SCR process, *in situ* DRIFTS spectra of the reaction between NO+O₂ and pre-adsorbed NH₃ species on catalysts are recorded at 200 °C, and the corresponding results are shown in Fig.S2. The consumption rate of the NH₃ adsorption species linked to the Lewis sites is observably difference among the catalysts. The integral conversion of NH₃ species

448	adsorbed to Lewis acid site (1220 cm ⁻¹) over the catalysts as a function of time at 200
449	°C is illustrated in Fig.9. It can be observed that only after 4 min the conversion of
450	NH ₃ species linked to Lewis acid sites is almost completely over V(Cu)/WTi sample,
451	while it takes 6 min and 15 min for V/WTi and Cu/WTi to reach the same level,
452	respectively. This demonstrates that more active NH ₃ species assigned to Lewis acid
453	site mainly attributed to surface vanadium species are formed on V(Cu)/WTi catalyst,
454	which may be responsible for the enhancement in NH ₃ -SCR performance at low
455	temperature.

3.3 Kinetics for NH₃-SCR reaction 456

462	The rates of NO conversion over samples with various temperature have been
463	plotted as an Arrhenius plot in Fig.10, and the apparent activation energies determined
464	by the Eq. (3) are shown in Table 8. It is clear that the apparent activation energy for
465	Cu/WTi is higher than that of V/WTi, but the V(Cu)/WTi sample shows the lowest Ea
466	(42.14 kJ mol ⁻¹). According to the kinetic results, the activation energies calculated
467	for NH ₃ -SCR are in accordance with other literatures ^{46, 47} . Meanwhile, the same trend
468	can be observed in normalization reaction rate constant by S_{BET} following the order as:
469	V(Cu)/WTi> V/WTi> Cu/WTi. This result significantly indicates the decrease of Ea
470	clear improve the rate constant well correlating with the enhancement of the redox
471	property, which is consistent with the superior SCR activity at low temperature.

472 **4. Discussion**

473 4.1 The chemical modification of V/WTi by doping copper species

Our results reveal that the NH₃-SCR performance can be remarkably enhanced by 474 Cu adding at low temperature. The XRD and Raman show that the copper and 475 476 vanadium species are highly dispersed on the catalyst surface with the existence of redox couples of both V^{5+}/V^{4+} and Cu^{2+}/Cu^{+} that is proved by EPR, H₂-TPR and XPS 477 results. Less total H₂ consumption suggests that the higher amount of Cu⁺ causes a 478 479 charge imbalance on the catalyst surface, and thereby induces to generate more surface oxygen species (O_{α}) , which benefits the enhancement of NO oxidation and the 480 activity of weakly adsorbed nitrates on Cu species ^{14, 18}. It is well know that the redox 481 482 properties of active sites of vanadium species play a key role in controlling the

performance of NH₃-SCR reaction, especially at low temperature ^{15, 23, 48}. The H₂-TPR 483 results reveal the copper species promote reducibility of vanadium species via the 484 u^{+}/Cu^{2+} 48 e redox 48 and this 48 48

transformation of
$$V^{5+}/V^{4+}$$
, which can be illustrated that the redox couple Cu
induces electrons transfer from the reactant to V^{5+} . Besides, the existence of the
cycle of $Cu^{2+}+V^{4+}\leftrightarrow V^{5+}+Cu^{+}$ over the catalyst is also proved by XPS results a
process can be described as follows 9,29,48,49 :

489
$$Cu^{2+} - O^{2-} - V^{5+} + e \leftrightarrow Cu^{2+} - O^{2-} - V^{4+} \leftrightarrow Cu^{+} - O^{2-} - V^{5+} \leftrightarrow Cu^{2+} - O^{2-} - V^{5+} + e^{-1} +$$

The redox cycle can decrease the necessary energy for electrons transfer between Cu 490 and V species. The affinity of both Cu and V species promotes this process resulting 491 in the disappearance of hyperfine structure of the VO^{2+} species (Fig.3). The process 492 can significantly enhance the activity of NH_3 and NO, and therefore improve the 493 494 NH₃-SCR performance.

495 4.2 The improvement of adsorption ability by doping copper species

It is well known that the SCR activity is positively related to surface acid sites ⁵⁰, 496 especially Lewis acid sites may be more important than Brønsted acid sites for low 497 -temperature SCR catalysts ⁶. The amount of Lewis acid sites is slightly enhanced by 498 499 Cu additives that is one of the reasons for the enhancement of low-temperature 500 activity for our catalysts. More important, it is the NH₃ species bound to Lewis acidity 501 sties (mainly vanadium species) on V(Cu)/WTi that exhibit remarkable activity among the catalyst system, which may owe to electron conduction via the redox cycle 502 of $Cu^{2+}+V^{4+}\leftrightarrow V^{5+}+Cu^+$. The redox cycle of $Cu^{2+}+V^{4+}\leftrightarrow V^{5+}+Cu^+$ shifting to right 503

504 reduces the surrounding electron clouds density of vanadium species that induces 505 vanadium species to capture electrons from NH_3 species adsorbed on them, which 506 contributes to the process of activing NH₃ species to form higher active -NH₂ species. 507 Then, the reduced state of vanadium species can transfer electron to affinitive Cu species via the redox cycle. This process can significantly decrease the reactive 508 509 energy barrier conducing to the lowest Ea for NH₃-SCR. On the other hand, the 510 NO+O₂-TPD and in situ DRIFTS suggest that the addition of Cu increases NO_x 511 species adsorption sites and therefor the amount of nitrates. Meanwhile, the presence 512 of Cu^+ species via the redox cycle induces a charge imbalance so that more surface oxygen species (O_{α}) are formed around the Cu species, which significantly improves 513 the activity of nitrates adsorbed on surface Cu species and thereby results in more 514 515 NO₂ release. Therefore, the higher active NH₃ species mainly bonded to V species and 516 active surface nitrates adsorbed on Cu species are responsible for the excellent 517 NH₃-SCR performance.

518 4.3 Possible mechanism of the improvement of NH₃-SCR over V(Cu)/WTi 519 catalyst

520 Our results indicate that the reaction process of NH_3 -SCR on all the catalysts 521 follows the same Eley-Rideal mechanism (Fig.S5). But redox properties may be a 522 main factor that is closely related to the reactivity of NH_3 -SCR at low temperature in 523 our present work, which can be well explained by results of kinetics. The lowest 524 activation energy achieved during the NH_3 -SCR process over the V(Cu)/WTi catalyst 525 supports our hypothesis.

526 Based on above discussions, the possible promotion process of NH₃-SCR reaction is then exhibited in Scheme.1. The interaction between surface vanadium and copper 527 oxide sites by electrons transfer $(Cu^{2+}+V^{4+}\leftrightarrow V^{5+}+Cu^{+})$ may promote the adsorption 528 and activity of NH₃ species linked to vanadium species (Fig.9 and Fig.S2). Besides, 529 the existence of numerous Cu^+ species induces more surface oxygen species (O_a) 530 531 formation, which facilitates the activity of weak adsorption nitrates on Cu species. 532 More NO_2 is released from these high active nitrates and promotes the fast NH_3 -SCR ¹². Therefore, it is the redox cycle of Cu and V species $(Cu^{2+}+V^{4+}\leftrightarrow V^{5+}+Cu^{+})$ that 533 improves the NH₃-SCR on V(Cu)/WTi at low temperature. 534

536 Scheme.1 Possible mechanism of the improvement of NH₃-SCR over V(Cu)/WTi catalyst.

537 5. Conclusions

In this work, the promoting effect of Cu for NH₃-SCR was intensively investigated. The presence of Cu enhances the redox property of Vanadium via the redox cycle of $Cu^{2+}+V^{4+}\leftrightarrow V^{5+}+Cu^{+}$, which remarkably increases the activity of NH₃ species adsorbed on vanadium species. Meanwhile, the redox cycle can not only provide more adsorbed nitrate sites but conduce to form higher activity nitrates

RSC Advances Accepted Manuscript

rage 52 0

species on copper species of the catalyst. The higher level of surface oxygen species (O_{α}) is beneficial to form NO₂, which also contributes to the excellent NH₃-SCR performance at low temperature. Consequently, the electron conduction via redox cycle of Cu²⁺+V⁴⁺ \leftrightarrow V⁵⁺+Cu⁺ significantly decreases the Ea for NH₃-SCR at low temperature, facilitating the low-temperature activity.

548 Acknowledgements

The authors acknowledge the China Huadian Science and Technology Institute (CHDI.KJ-20) for financial support. This work is supported by the program of the National High Technology Research and Development Program if China (863 Program, 2011AA03A405).

553 Notes and references

- 554 1 P. Forzatti, I. Nova and E. Tronconi, *Angew. Chem. Int. Ed. Engl*, 2009, 48,
 555 8366-8368.
- 556 2. M. S. Maqbool, A. K. Pullur and H. P. Ha, *Appl. Catal.*, *B*, 2014, **152**, 28-37.
- 557 3. Y. Li, H. Cheng, D. Li, Y. Qin, Y. Xie and S. Wang, *Chem Commun (Camb)*,
 558 2008, 1470-1472.
- 4. R. Jin, Y. Liu, Y. Wang, W. Cen, Z. Wu, H. Wang and X. Weng, *Appl. Catal.*, *B*, 2014, 148-149, 582-588.
- 561 5. B. Thirupathi and P. G. Smirniotis, J. Catal., 2012, 288, 74-83.
- 562 6. P. G. Smirniotis, D. A. Peña and B. S. Uphade, Angew. Chem. Int. Ed., 2001,

-70, 277, 7-2702.

- 7. P. R. Ettireddy, A. Kotrba, T. Spinks, T. Boningari and P. Smirniotis, *Development of Low Temperature Selective Catalytic Reduction (SCR)*
- 566 *Catalysts for Future Emissions Regulations*, SAE Technical Paper, 2014.
- 8. R. Gao, D. Zhang, X. Liu, L. Shi, P. Maitarad, H. Li, J. Zhang and W. Cao, *Catal. Sci. Technol.*, 2013, 3, 191-199.
- 569 9. Z. Liu, Y. Li, T. Zhu, H. Su and J. Zhu, *Ind. Eng. Chem. Res.*, 2014, 53, 12964-12970.
- 571 10. P. G. W. A. Kompio, A. Brückner, F. Hipler, G. Auer, E. Löffler and W.
 572 Grünert, *J. Catal.*, 2012, 286, 237-247.
- 573 11. H.-L. Koh and H.-K. Park, J. Ind. Eng. Chem., 2013, 19, 73-79.
- 574 12. L. Chen, Z. Si, X. Wu and D. Weng, ACS Appl Mater Interfaces, 2014, 6,
 575 8134-8145.
- 576 13. G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur and R. J. Willey, *J. Catal.*,
 577 1995, 157, 523-535.
- 578 14. L. J. Alemany, L. Lietti, N. Ferlazzo, P. Forzatti, G. Busca, E. Giamello and F.
 579 Bregani, *J. Catal.*, 1995, **155**, 117-130.
- I. E. Wachs, G. Deo, B. M. Weckhuysen, A. Andreini, M. A. Vuurman, M. d.
 Boer and M. D. Amiridis, *J. Catal.*, 1996, 161, 211-221.
- 582 16. M. D. Amiridis, I. E. Wachs, G. Deo, J.-M. Jehng and D. S. Kim, *J. Catal.*,
 583 1996, 161, 247-253.
- 584 17. J. A. Dumesic, N. Y. Topsøe, H. Topsøe, Y. Chen and T. Slabiak, J. Catal.,

- 585 1996, **163**, 409-417.
- 586 18. L. Lietti, I. Nova, S. Camurri, E. Tronconi and P. Forzatti, *AlChE J.*, 1997, 43,
 587 2559-2570.
- 588 19. I. E. Wachs, G. Deo, B. M. Weckhuysen, A. Andreini, M. A. Vuurman, M. d.
- Boer and M. D. Amiridis, *J. Catal.*, 1996, **161**, 211-221.
- 590 20. M. C. Paganini, L. Dall'Acqua, E. Giamello, L. Lietti, P. Forzatti and G. Busca,
 591 *J. Catal.*, 1997, 166, 195-205.
- 592 21. A. Brückner, U. Bentrup and J.-B. Stelzer, Z. Anorg. Allg. Chem., 2005, 631,
 593 60-66.
- 594 22. S. T. Martin, C. L. Morrison and M. R. Hoffmann, *The Journal of Physical* 595 *Chemistry*, 1994, **98**, 13695-13704.
- 596 23. J. Xue, X. Wang, G. Qi, J. Wang, M. Shen and W. Li, J. Catal., 2013, 297,
 597 56-64.
- 598 24. X. Wang, A. Shi, Y. Duan, J. Wang and M. Shen, *Catal. Sci. Technol.*, 2012, 2,
 599 1386-1395.
- 600 25. S. M. Jung and P. Grange, *Appl. Catal.*, *B*, 2001, **32**, 123-131.
- 601 26. L. Chen, J. Li and M. Ge, The Journal of Physical Chemistry C, 2009, 113,
- 60221177-21184.
- 603 27. S. M. Lee and S. C. Hong, *Appl. Catal.*, *B*, 2015, **163**, 30-39.
- 604 28. S. Besselmann, C. Freitag, O. Hinrichsen and M. Muhler, *PCCP*, 2001, 3,
 605 4633-4638.
- 606 29. X. Yao, L. Zhang, L. Li, L. Liu, Y. Cao, X. Dong, F. Gao, Y. Deng, C. Tang, Z.

Page 35 of 36

	script
	ed Manu
	Accepte
	Advances
	RSC /

607		Chen, L. Dong and Y. Chen, Appl. Catal., B, 2014, 150–151, 315-329.
608	30.	H. Zhu, L. Dong and Y. Chen, J. Colloid Interface Sci., 2011, 357, 497-503.
609	31.	J. Mendialdua, R. Casanova and Y. Barbaux, J. Electron. Spectrosc. Relat.
610		Phenom., 1995, 71, 249-261.
611	32.	J. Y. Lee, S. H. Hong, S. P. Cho and S. C. Hong, Curr. Appl Phys., 2006, 6,
612		996-1001.
613	33.	X. Guo, C. Bartholomew, W. Hecker and L. L. Baxter, Appl. Catal., B, 2009,
614		92 , 30-40.
615	34.	H. Zhu, M. Shen, Y. Kong, J. Hong, Y. Hu, T. Liu, L. Dong, Y. Chen, C. Jian
616		and Z. Liu, J. Mol. Catal. A: Chem., 2004, 219, 155-164.
617	35.	B. Liu, J. Du, X. Lv, Y. Qiu and C. Tao, Catal. Sci. Technol., 2014.
618	36.	M. Kang, E. D. Park, J. M. Kim and J. E. Yie, Appl. Catal., A, 2007, 327,
619		261-269.
620	37.	N. Y. Topsoe, H. Topsoe and J. A. Dumesic, J. Catal., 1995, 151, 226-240.
621	38.	Z. Si, D. Weng, X. Wu, J. Li and G. Li, J. Catal., 2010, 271, 43-51.
622	39.	R. Jin, Y. Liu, Z. Wu, H. Wang and T. Gu, Catal. Today, 2010, 153, 84-89.
623	40.	M. Koebel, G. Madia, F. Raimondi and A. Wokaun, J. Catal., 2002, 209,
624		159-165.
625	41.	K. I. Hadjiivanov, Catal. Rev., 2000, 42, 71-144.
626	42.	X. Yao, Q. Yu, Z. Ji, Y. Lv, Y. Cao, C. Tang, F. Gao, L. Dong and Y. Chen,
627		<i>Appl. Catal., B</i> , 2013, 130–131 , 293-304.
628	43.	A. Trovarelli, Catal. Rev., 1996, 38, 439-520.

- 44. T. Gu, R. Jin, Y. Liu, H. Liu, X. Weng and Z. Wu, *Appl. Catal.*, *B*, 2013, 129, 30-38.
- 631 45. W. Zhao, Q. Zhong, T. Zhang and Y. Pan, *RSC Adv.*, 2012, **2**, 7906.
- 632 46. A. Shi, X. Wang, T. Yu and M. Shen, *Appl. Catal.*, *B*, 2011, **106**, 359-369.
- 633 47. M. Iwasaki, in Urea-SCR Technology for deNOx After Treatment of Diesel
- 634 *Exhausts*, Springer, 2014, pp. 221-246.
- 635 48. Z. Liu, Y. Yi, J. Li, S. I. Woo, B. Wang, X. Cao and Z. Li, Chem. Commun.,
- 636 2013, **49**, 7726-7728.
- 637 49. Z. Liu, S. Zhang, J. Li, J. Zhu and L. Ma, Appl. Catal., B, 2014, 158–159,
- **638** 11-19.
- 639 50. C.-H. Lin and H. Bai, *Appl. Catal.*, *B*, 2003, **42**, 279-287.
- 640
- 641