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Dienone-phenol rearrangement of 4,4-disubstituted cyclohexadienones to multiple substituted 

phenols is achieved by employing Re2O7 as catalyst. 
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Dienone-phenol rearrangement of 4,4-disubstituted 

cyclohexadienones catalyzed by Re2O7 was described. 

Multiple substituted phenols could be efficiently obtained in 

good to excellent yields by employing this catalytic protocol.  

 Although various Rhenium complexes have been synthesized and 

even some of them are commercially available,1 their catalytic abilities 

for organic transformations are less explored compared with other 

transition state metal complexes.2 In recent years, increasing interests 

have been dedicated to Rhenium catalysts for their stability to air and 

moisture, unique Lewis acidity for activation unsaturated hydrocarbon 

bonds.3, 4, 5 Especially, the ability of activating C(Sp2)-H and C(Sp3)-H 

bonds by rhenium carbonyl complexes has enabled them to be 

amenable for C-H bond functionalization reactions.2b, 3 Not only those 

low-valent Rhenium complexes, but also Re(V)4 and Re(VII)2b, 5 

complexes are competent catalysts in a variety of organic 

transformations. For example, Toste and co-workers unveiled that 

Re(V)-oxo complexes enable converting propargyl alcohols to 

functionalized intermediates via C-C,4b, 4c C-O,4e C-N4g bonds 

formations. MeReO3, a Re(VII) complex, is well known for its wide 

usage in oxidation catalyst.5d Besides its oxidation ability, Re(VII) also 

exhibit moderate Lewis acidity, which could be utilized for generation 

of carbocation intermediate under mild reaction conditions. For 

example, Re2O7 and PhSiOReO3 are popular in stereospecific 

isomerization of allyl alcohols (Figure 1, eq. 1).5e-5h Those Re(VII) 

complexes are also used for generation of oxonium ions in 

acetalization and Prins reaction (Figure 1, eq. 2).5i-5l It’s should be 

pointed out that the high efficiency of those reactions relies on the 

unique Lewis acid property of Re(VII), which could in turn stabilize the 

cation intermediate. 

 Dienone-phenol rearrangement is a rearomatization reaction of 

4,4-disubstituted cyclohexadienones through bond shift, which 

provides a facile access to multi-substituted phenols.6 The mechanism 

of Dienone-phenol rearrangement has been extensively studied and 

well employed in organic synthesis.7 Typically, the reaction could be 

promoted by acid, strong base or photo irradiation 6 In this context, 

catalytic dienone-phenol rearrangement are also well described.8 For 

example, Kim developed a domino dienone-phenol rearrangement/5-

endo-dig cyclization of quinols catalyzed by PtCl2 to afford 

benzofurans.8c Fujioka also found that transformation of dienones to 

benzenethioethers was efficiently achieved by catalytic TfOH.8d More 

recently, dienone-phenol rearrangement of 

spiro[4.5]cyclohexadienones catalyzed by Sc(OTf)3 was described by 

Hamada and co-workers.8e In this report, we disclose that Re2O7  is a 

robust catalyst for dienone-phenol rearrangement of 4-alkoxy-

substituted cyclohexadienones, which is difficult to be furnished by 

previous catalysts (Figure 1, eq. 3).  

 

Figure 1. Representative Re(VII) catalyzed reactions involving cationic 

intermediate. 
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 As our interest in application of dienone-phenol rearrangement in 

synthesis of phenol 2aa, we found that under the effect of excessive 

amount of BF3•OEt, cyclohexadienone 1aa smoothly converted to 

phenol 2aa in 73% yield (Table 1, entry 1). In meanwhile, only low yield 

was resulted when catalytic amount of BF3•OEt was employed (20%, 

Table 1, entry 2), which prompted us to investigate reaction 

conditions to find out a catalytic protocol for this reaction. As 

summarized in Table 1, most of the evaluated Lewis acids (e.g. 

Zn(OTf)2, Cu(TFA)2, AlCl3, entry 3-9) were ineffective for this reaction 

with starting material being fully recovered after 12h. Previously 

reported catalysts such as Sc(OTf)3
8e and PtCl2

8c, which served as 

efficient catalysts for dienone-phenol rearrangement, were also 

capable of facilitating the rearrangement of 1aa albeit in 45% and 

55% yield respectively (Table 1, entry 10-11). Other type promoters 

(e.g. TMSOTf and TfOH8d) gave unsatisfactory results (Table 1, entry 

13-14). To our delight, Re2O7 worked very well for this rearrangement, 

providing phenol 2aa in 92% yield with accelerating reaction rate and 

other Re(VII) complexes (e.g. Phe3SiOReO3, MeReO3) alleviated this 

reaction (Table 1, entry 14-16). Subsequently, solvent screening 

showed that highest yield was observed in CH2Cl2 than using any 

other solvents (Table 1, entry 17-19). Low or higher temperature was 

detrimental to the reaction (Table 1, entry 20 and 21). Significantly, 

catalyst loading could be reduced to 5 mol% without deleterious 

effects on the reaction (Table 1, entry 22). 

Table 1 Screening of reaction conditions for dienone-phenol rearrangement 

of quinol 1a.a 

 

Entry Catalyst 

(equiv) 

T 

(oC) 

solvent Time 

(h) 

Yieldb 

(%) 

1 BF3•Et2O (3.0) rt CH2Cl2 4 73 
2 BF3•Et2O (0.1) rt CH2Cl2 4 20 

3 Cu(TFA)2 (0.1) rt CH2Cl2 12 ND 

4 Zn(OTf)2 (0.1) rt CH2Cl2 12 ND 
5 Cp2TiCl2 (0.1) rt CH2Cl2 12 ND 

6 Yb(OTf)3 (0.1) rt CH2Cl2 12 ND 

7 InCl3 (0.1) rt CH2Cl2 12 ND 
8 AgBF4 (0.1) rt CH2Cl2 12 ND 

9 AlCl3 (0.1) rt CH2Cl2 12 ND 

10 Sc(OTf)3 (0.1) rt CH2Cl2 12 45 
11 PtCl2 (0.1) rt CH2Cl2 4 55 

12 TMSOTf (0.1) rt CH2Cl2 4 60 

13 HOTf (0.1) rt CH2Cl2 4 50 
14 Re2O7 (0.1) rt CH2Cl2 1 92 

15 Ph3SiOReO3 (0.1) rt CH2Cl2 1 83 

16 MTO (0.1) rt CH2Cl2 12 ND 
17 Re2O7 (0.1) rt toluene 12 22 

18 Re2O7 (0.1) rt CHCl3 12 67 

19 Re2O7 (0.1) rt EtOAc 12 16 
20 Re2O7 (0.1) 0 CH2Cl2 12 50 

21 Re2O7 (0.1) 40 CH2Cl2 1 76 

22 Re2O7 (0.05) rt CH2Cl2 1 93 

a Reaction conditions: quinol 1aa (0.1 mmol) in CH2Cl2 (0.5 mL) was added 

dropwise to a solution of catalyst (0.01 mmol) in CH2Cl2 (0.5 mL) at rt. b 

Isolated yields. 

 Upon identification of reaction conditions, the substrate scope of 

the reaction was subsequently examined. Various cyclohexadienones 

were prepared by phenol oxidation and subjected to the standard 

reaction conditions (Scheme 1). Satisfactorily, different alkoxy groups 

were compatible, affording corresponding phenols in good to 

excellent yields (2aa to 2ag). Different protecting groups were also 

surveyed for exploring functional groups compatibility of this reaction. 

Given the fact that Brønsted acids were usually generated from 

hydrolysis of Re2O7,5 acid-labile protecting groups (e.g. TBS, Boc for 

2ba and 2bb) were not well tolerated, leading to low isolated yields 

due to substantial deprotection.9 Moderate yields could be obtained 

when acid-stable protecting groups were presented (e.g. Ac, Bz, Ts for 

2bd-2bf). Next, different migration groups were evaluated for this 

reaction. Cyclohexadienones with primary and secondary alkyl groups 

smoothly transferred to corresponding phenols in very high yields 

(2ca to 2ci). However, cyclohexadienone 1d with 4-methyl was inert 

under reaction conditions, owing to the low migratory aptitude of 

methyl and moderate Lewis acidity of Re2O7. Tertiary butyl was also 

an unsuitable migratory group and 4-methoxypheol was exclusively 

formed from 1e, presumably via extrusion of stable tertiary 

carbocation (see Supporting Information). Disappointingly, only 

sluggish reaction mixture was obtained when cyclohexadienone 1f 

was examined. Furthermore, tetra-substituted phenols could be 

isolated regioselectively from multiple substituted cyclohexadienone 

in good yields, with migratory group being attached to less hindered 

position (2g to 2i). Additionally, the reaction could also be easily 

scaled up without influencing the isolated yields (2g and 2h).  
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Scheme 1 Substrate scope of the Re2O7 catalyzed dienone-phenol 

rearrangement. 

 To demonstrate the efficiency of Re2O7 on dienone-phenol 

rearrangement, a direct comparison with previous protocols was 

made by using cyclohexadienones 1j and 1k as substrates (Scheme 2). 

In Kita’s report,10 spiro-cyclohexadienone 1j could be transferred to 

chroman 2j quantitatively, promoted by excess amount of 

montmorillonite K10 (Scheme 2, eq. 1). Pleasingly, under the effect of 

catalytic Re2O7, chroman 2j could be furnished in comparable yield.  

Furthermore, rearrangement of cyclohexadienone 1k led to three 

regioisomers 2ka, 2kb and 2kc in 1:2.5:1.6 ratios under the effect of 

Ac2O/H2SO4 as a result of competitive [1,2]-shift and [3,3]-

rearrangement of allyl (Scheme 2, eq. 2).11 In sharp contrast, under our 

reaction conditions only [3,3]-shift product 2kb and 2kc11 was 

obtained in 95% combined yield and 3:5 ratio, showing that reaction 

pathways was greatly influenced by using Re2O7 as catalyst.  

 

Scheme 2 Other substrates. 

Conclusions 

 Re2O7 catalyzed dienone-phenol rearrangement reaction is 

developed. Multiple substituted phenols could be conveniently 

prepared in good to excellent yields by using this catalytic procedure. 

In addition, [3,3]-shift product is exclusively formed under the effect of 

Re2O7 when the migratory group is allyl. The highly catalytic efficiency 

of Re2O7 on dienone-phenol rearrangement is attributed to the 

moderate Lewis acidity of Re2O7 and its ability of stabilizing putative 

phenyl cation intermediate of this reaction. 
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