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Abstract 

Functionalization of microcrystalline cellulose (MCC) with EDTA dianhydride 

(EDTAD) was achieved firstly by esterification reaction. N-hydroxysuccinimide 

activated MCC-EDTAD ester (MEN), a novel macromolecule crosslinker based on 

MCC, was synthesized to modify gelatin films. The reaction between gelatin and 

MEN was verified by the residual free amino test, FTIR and XRD spectra. The 

introduction of MEN into gelatin decreased the film degradation ratio and increased 

its thermal stability, flexibility, hydrophobicity, light barrier performance and water 

uptake ability. Additionally, SEM images further proved the successful surface 

grafting reaction and degradation phenomenon. The unique gelatin film material with 

advanced properties broke up the limitation of blending modification method for 

gelatin with macromolecule and broadened its application as novel sustained-release 

material. 

 

Keywords: Gelatin, Microcrystalline cellulose, EDTAD, Crosslinking, 
Sustained-release material 
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1. Introduction 24 
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Gelatin is a peptide molecule polymeric material, obtained from a hydrolytic 

treatment of collagen under acidic or alkaline conditions. The triple helix structure of 

collagen partially separates, ruptures and non-uniform mixture of polypeptides with 

different amino acid are formed [1]. Because of its good biological properties and low 

toxicity, gelatin is widely used as different kinds of materials, such as sponges, films, 

microballoon, scaffolds, nanoparticles and bandages etc [2-6]. However, the relatively 

weak thermal stability, poor mechanical properties and easily-degradable quality limit 

the potential application of gelatin as a practical material [7]. Microcrystalline 

cellulose (MCC), a linear polysaccharide combining of -glucoside keys, is usually 

blended with gelatin to overcome obstacles of the biopolymer matrix [8-10]. Its 

excellent properties, such as renewable origin, biodegradable-ability of their 

components, environmental-friendly and non-toxic character further broaden its 

usages [10-13]. Ethylenediamine tetraacetic dianhydride (EDTAD) is used as 

chelating reagent in common studies [14]. Its biodegradable behavior and special 

molecular structure, which consists of two anhydride groups that can react with 

hydroxyl or amine groups, ensure its function in modification of biomaterials [15-16].      
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Recent years, a great number of researchers worldwide have been devoting to 

modification of gelatin with various crude macromolecules, such as cellulose, 

chitosan, starch, montmorillonite, polyvinyl alcohol, zeolite etc [17-22]. Jridi et al. [23] 

investigated the physical, structural, antioxidant and antimicrobial properties of 

gelatin/chitosan composite films and chose the best proportion of the two components 

to be applied as food package material; Li et al. [24] prepared an active gelatin-based 

films incorporated with five kinds of natural antioxidants and compared the function 

of these extracts on the antioxidant, physical and mechanical properties of the films; 

Alves et al. [25] studied the effect of three components (gelatin, cellulose, starch) on 

the biodegradation, water vapor permeability and mechanical properties of the starch/ 

cellulose/gelatin nanocrystals films by orthogonal experiments; Andrade et al. [26] 

reported a new edible coating materials containing gelatin and cellulose nanofibers, 

and evaluated the wetability of the coating film on banana and eggplant epicarps. 
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Unfortunately, the existing modification way of gelatin-based composite films with 

natural polymers, especially cellulose, are mostly prepared by blending method, in 

which the hydrogen bond or electrostatic interactions is used to explain the 

mechanism of the polymer matrix. Not exact chemical reaction happened between 

gelatin and original cellulose. Therefore, proper chemical modification on cellulose is 

needed to make the crosslinking reaction with gelatin possible. Cheng et al. [27] 

oxidized cellulose by periodate oxidation to obtain 2, 3-dialdehyde cellulose (DARC), 

which then reacted with collagen via the Schiff base reaction between -NH2 in 

collagen and -CHO in DARC backbone to obtain DARC/Col composite films; Li et al. 

[28] employed the same oxidation process to oxidize carboxymethyl cellulose and the 

product with two aldehyde groups reacted with gelatin to prepare edible film material. 
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Lately, a novel crosslinker N-hydroxysuccinimide (NHS) active ester, which is 

synthesized by reaction between carboxylic acid and NHS in the presence of 

carbodiimide [29], attracted extensive attention mainly due to their cytocompatibility, 

biocompatibility and availability [30-31]. Furthermore, Gil’s group [32] concentrated 

on modifying sugarcane bagasse, which was the raw material of cellulose, with 

EDTAD to gain the ester group that used as an absorbent material. In light of these 

researches, the hydroxyl and/or carboxyl function groups in these three biological 

polymers (gelatin, cellulose and EDTAD) further guaranteed the chemical reaction to 

produce materials with new properties [33].    

In this paper, microcrystalline cellulose was modified with EDTAD to get a new 

type of cellulose ester MCC-EDTAD (ME). And then, a novel macromolecule 

crosslinker N-hydroxysuccinimide activated MCC-EDTAD ester (MCC-EDTAD- 

NHS, MEN) was firstly synthesized in the presence of 1-(3-dimethylaminopropyl)-3- 

ethyl-carbodiimide hydrochloride (EDC) to react with gelatin (Scheme 1), and the 

biological polymer film with new qualities was recorded. Testing instruments, such as 

FTIR, XRD, TGA-DSC, mechanical property, contact angles and residual amino 

group test were applied in our present study. Additionally, in vitro degradation studies, 

light barrier properties and water uptake measurement of crosslinked gelatin films 

were investigated. On the basis of these results, the comparison of thermal stability 
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and light barrier properties between MEN modified gelatin films (Gel-MEN) and 

cellulose blending films (Gel/MCC) were explored. 
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Scheme 1 here 

2. Experimental 

2.1 Materials 

Gelatin (type A, obtained from pigskin, with an approximate molecular weight of 

50,000 and isoelectric point at pH=8 determined by fluorescence measurements) was 

obtained from Sinopharm Chemical Reagent Co., Ltd. MCC (extra pure, average 

particle size 90 m), NHS (AR, 98%) and EDC (AR, 99%) were purchased from 

Energy Chemical Technology Co., Ltd (Shanghai). Glycerol (AR, 99%), DMF (AR, 

99.5%), EDTA disodium salt (AR, 99%), acetic anhydride (AR, 98.5%) and other 

agents were obtained from Tianjin Fu Yu Fine Chemical Co., Ltd. All chemicals and 

reagents were used as received without further purification.  

2.2 Preparation of MEN 

2.2.1 Synthesis of EDTA dianhydride (EDTAD) 

The EDTA dianhydride was prepared using the method described by Gil [34] with 

EDTA disodium salt and acetic anhydride as ingredients. 25 g EDTA disodium was 

dissolved in 250 ml distilled water to get the clear solution, and then HCl was added 

dropwise until precipitation of EDTA occurred. The precipitate was vacuum filtered 

and rinsed with 99% EtOH, 99% diethyl ether, subsequently dried in an oven at 70 oC 

and cooled in a desiccator prior to use. 

For the preparation of EDTA dianhydride, 18 g EDTA was suspended in 50 ml 

pyridine and 25 ml acetic anhydride was added. Then the mixture was heated under 

reflux and kept stirring at 65 oC for 24 h. After reaction, the solid obtained was 

vacuum filtered, rinsed in diethyl ether and dried under vacuum at 50 oC. The 

prepared EDTAD was characterized by 1H-NMR spectrum (Bruker Advance 400 

spectrometer) and FTIR spectrum (Nicolet NEXUS 470 FT-IR spectrometer). 

2.2.2 Synthesis of MCC-EDTAD (ME) 

The functionalization of MCC with EDTAD was carried out according to Gil’s 

group [35] with slight modification. 9 g MCC and 3 g EDTAD were suspended in 100 

ml DMF, and then the mixture was shaken and heated under reflux at 75 oC for 24 h. 

The modified materials were elaborated by filtration under reduced pressure, washed 

in a row with DMF, distilled water, saturated NaHCO3 solution (in order to release 
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carboxylate and amine functions), distilled water, and then with ethanol. After dried 

under vacuum at 50 oC, the mass percent gains were calculated by equation (1).  
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2.2.3 Synthesis of NHS active MCC-EDTAD ester (MEN) 

MEN was synthesized by the method of Li [36] with a bit improvement. Mixed 

solution was prepared by dissolving 12.5 mmol ME, 50.0 mmol NHS, 50.0 mmol 

EDC together in 200 ml distilled water and gently stirred at 40 oC for 1 h. After 

reaction, the solid was vacuum filtered, and then washed with distilled water several 

times, dried under vacuum at 50 oC to get purified MEN. The mass percent gains were 

also calculated by equation (1). The ME and MEN obtained were characterized using 

FTIR spectrum (Nicolet NEXUS 470 FT-IR spectrometer), Elemental Analyzer 

(Vario EL Ⅲ, Elementar Analysensysteme, Germany) and TGA-DSC (Q600SDT, 

TA, USA) . 

2.3 Modification process and film formation 

Gelatin solution (3%, w/v) was prepared by dissolving gelatin powder in distilled 

water and then heated at 45 oC for 2 h under continuous stirring. Glycerol was added 

as plasticizer at a certain concentration (15% of dry gelatin weight). The dosage of 

MEN was determined by mass ratio with gelatin, which meaned mMEN/mgelatin=0%, 

5%, 10%, 15%, 20%, 25%, 30%. So the corresponding modified gelatin samples were 

named as Gel, Gel-5%MEN, Gel-10%MEN, Gel-15%MEN, Gel-20%MEN, 

Gel-25%MEN and Gel-30%MEN, respectively. Various weight of MEN powder was 

dissolved in distilled water under stirring for 12 h at room temperature to produce a 

suspension liquid. Then the solution was added dropwise to gelatin liquids, and acetic 

acid (3% of water volume) was dripped into the whole system to promote the start of 

the interfacial reaction. These mixtures were gently stirred for 12 h at 45 oC.  

To cast the films, 30 g gelatin reaction solution was transferred into a teflon dish 

and placed at room temperature for 2 h, then put in oven at 40 oC until films dried. 

The dried films were peeled off and stored in a desiccator with relative humidity 

20%. Besides, one part of gelatin reaction solution was freeze dried at -55 oC, 70 Pa 

with vacuum freeze drier (FD-1A-50, Beijing, China) and the lyophilized powder was 

characterized by FTIR spectrum (Nicolet NEXUS 470 FT-IR spectrometer). 

2.4 XRD analysis 
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XRD analysis of samples were performed on an X-ray diffractometer 

(D8-ADVANCER, Bruker AXE, Germany) with a thin film attachment using Cu-Kα 

radiation (λ=0.1541 nm) at a current of 40 mA and an accelerating voltage of 40 kV. 

The patterns were recorded from 10o to 60o. 
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2.5 Determination of residual amino group in gelatin 

The residual -NH2 groups in modified gelatin solution was determined by the 

improved Van Slyke method at 45 oC [37-38]. Sample solutions were mixed with 

acetic acid, sodium nitrite and stirred for 45 min. The residual primary amine (mol/g) 

was calculated according to the volume of N2. All samples were tested in triplicate.  

2.6 In vitro degradation studies 

The degradation study of gelatin films was carried out in vitro by incubating in 

phosphate buffer (pH 7.40) at 37 oC for different intervals (1, 3, 5, 7, 9, 12 and 24 h), 

which was developed from method of Haroun [39]. The gelatin films were dried at 60 

oC to constant weight prior to use and marked as m0. After different degradation time, 

the samples were washed with distilled water after filtrated under vacuum and dried at 

60 oC to constant weight (mt). The degradable performance was examined by the 

weight remaining from Equation (2).  
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2.7 Scanning electron microscopy (SEM) of gelatin films 

The microstructures of the prepared films were investigated by Quanta 200 

environmental scanning electron microscope (SEM, FEI Company, Holland). Before 

observation, the film surfaces were coated with Au using SEM coating device. More 

than ten micrographs were taken from different zones of each surface film. 

2.8 Thermo gravimetric analysis 

The thermal stability of gelatin film was determined by thermogravimetric and 

differential thermal scanning calorimetry synchronous apparatus (TGA-DSC, 

Q600SDT, TA, USA). The gelatin film samples (approximately 2.5 mg) were 

weighed accurately into aluminium pans and sealed. The endothermal curve of the 

crushed film was recorded from 20 oC to 500 oC at a scanning rate of 10 oC/min under 
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nitrogen atmosphere. Additionally, the thermal stability of Gel/MCC blending films 

was also studied as compared with Gel-MEN films. 
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2.9 Mechanical testing 

Prior to investigating the mechanical properties, films were conditioned for 48 h at 

20 oC and 50±5% RH condition. Tensile strength (Ts), elasticity modulus (Em) and 

elongation at break (Eab) were determined as described by Benjakul [40] with a slight 

modification, using the Microcomputer Controlled Electronic Tensile Testing 

Machine (WDL-005, Jinan, China) equipped with tensile load cell of 300 N. Samples 

with initial grip length of 25 mm were used for testing and the cross-head speed was 

set at 10 mm/min. The thickness of each film was measured by Vernier Caliper (0.02 

mm/150 mm, Shanghai, China). 

2.10 Contact angles measurement 

The water contact angles (CAs) of all films were measured by the Sessile drop 

method using a DSA100 contact angle measuring system from Krüss. The gelatin 

reaction solution was coated on the surface of glass sheet to obtain films with 

thickness about 0.1 mm, and then stored in a desiccator with relative humidity 20%. 

2.11 Light barrier properties and transparency 

The ultraviolet and visible light barrier properties of the films (1 cm2 cm) were 

measured by an ultraviolet-visible spectrophotometer (UV-7504C, Shanghai, China) 

at selected wavelengths from 200 to 800 nm following Fang’s method [41]. The 

transparency value of films was calculated by the Equation (3), where T was 

transmission (%) at each wavelength and x was film thickness (mm). According to the 

equation, high transparency values indicate good light barrier performance. 

-logT/xcy valueTransparen                                            (3) 

2.12 Water uptake measurement 

The water uptake measurement of the films was determined in the light of Kavoosi 

[42] and Tang [43] with a little development. Rectangular specimens sized 15 mm10 

mm with a thickness of 0.1 mm were prepared. The samples were conditioned at 20 
oC in a desiccator containing silica gel (RH 20%±5%) three days to constant weight 

(Wi). Then, the film samples were transferred into desiccators at 100% relative 

humidity (supersaturated salt solution of CuSO4·5H2O) at 20 oC for eleven days to 
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absorb water until the weight reached to equilibrium. The weight of samples at the 

adsorption time of t was noted as Wt. The amount of water adsorbed at different 

intervals and equilibrium were calculated as Equation (4). All tests are the means of at 

least three measurements. 
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3. Results and Discussion  

3.1 Characterization of MEN  

3.1.1 Spectra of EDTAD 

1H NMR (400 MHz, DMSO, Fig. S1): δ 3.691 (s，8H), 2.657 (s，4H), 3.080 (s, 

DMSO), 2.496-2.488 (m, DMSO), which were in accordance with the characteristic 

peaks of H in the ideal product. The FTIR spectrum (Fig. S2) further proved the 

dianhydride structure with two groups of splitting peaks. The peaks in high frequency 

region splitted at 1813, 1759 and 1689 cm-1, gap of 60 cm-1 between adjacent peaks. 

The low frequency groups splitted at 1139, 1074, and 991 cm-1 with the same interval. 

Additionally, the bands at 1245 and 1400 cm-1 related to C-O and C-N stretch 

respectively were also evidence of EDTAD structure. 

3.1.2 Spectra of MCC, ME and MEN 

The FTIR spectra (Fig. S3) fully depicted the functional groups of MCC, ME and 

MEN. Compared with MCC, the appearance of strong bands at 1741 cm-1 in ME can 

be attributed to axial deformation of the ester bond, and bands at 1633, 1406 cm-1 are 

attributed to asymmetric and symmetric axial deformations of carboxylate. These 

bands confirmed the successful functionalization of MCC with EDTAD via formation 

of ester linkages. For MEN, absorption peaks at 1706, 1210 and 811 cm-1 represented 

γ-dicarbonyl stretching vibration, C-N stretching and C-C vibration respectively. 

Specially, the reinforce of ester carbonyl band at 1742 cm-1 and the weakening of 

carboxy carbonyl band at 1600 cm-1 further proved the structure of the active ester.  

3.1.3 Elemental analysis and thermal properties of MCC, ME and MEN 

As can be seen in Table 1, there was a considerable increase in nitrogen content 

with 1.92% after functionalization of MCC with EDTAD. Accompanied by the 
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significant weight gain of 72.50%, the modified material (ME) with EDTAD 

incorporated was obtained. Similarly, the element N increased to 2.48% in MEN, 

0.50% higher than that of ME, which meaned the esterification reaction happened 

between ME and NHS with a five-membered nitrogenous ring linked. Also, the 

weight gain of 30.80% further proved the truth.   
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The initial decomposition temperature at 5% weight loss (Ti), the maximum weight 

loss temperature (Tm), the glass transition temperature (Tg) and the char residue at 500 

oC of MCC, ME and MEN are recorded in table 1 (Fig. S4). Ti of MCC and ME was 

309.10 oC and 271.45 oC, respectively while MEN was 222.54 oC, which suggested a 

reduction in thermal stability. It can be related to the reaction activity of the three 

materials with -NH2 in gelatin, which was in accordance with the results of residual 

amino group below. To summarize, the difference of each item further certified the 

introduction of EDTA and NHS into MCC, which agreed with FTIR and elemental 

analysis.   

Table 1 here 

3.2 Confirmation of MEN crosslinking with gelatin    

3.2.1 FTIR spectra analysis of MEN, gelatin and Gel-MEN film 

FTIR spectra of the pristine gelatin (curve a), pristine MEN (curve b), and 

Gel-25%MEN film (curve c) are compared in Fig. 1. In the case of pristine gelatin, 

the C=O stretching vibration appearing at 1664 cm-1 demonstrated amide I band, 

while the amide band Ⅱ was indicated by N-H bending vibration observed at 1535 

cm-1. Besides, aliphatic C-H bending vibrations were observed at 1450 cm-1 and bands 

at 1331, 1230 cm-1 declared the C-N bond stretching vibrations. Gel-MEN showed all 

the characteristic peaks of gelatin and MEN, such as 1643 and 1546 cm-1. This 

indicited the successful reaction between galatin and crosslinker MEN along with a 

representative peak at 1741 cm-1, which clearly indicated the amidation reaction 

between -NH2 in gelatin and active ester base in MEN.  

Fig. 1 here 

3.2.2 X-ray diffraction studies of MEN, gelatin and Gel-MEN film 

In order to examine the effect of MEN on crystal structure and crystallinity of 
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gelatin, XRD patterns of freeze-dried gelatin films are investigated. Data on 25% 

MEN formulation are presented as a representative example. As shown in Fig. 2, 

curve (a) was the XRD pattern of MEN, which displayed the typical XRD pattern of 

the native cellulose with the main diffraction signals at around 14.9o, 16.2o, 22.5o and 

34.3o [44]. The curve (b) only showed an extensive broadening peak in the 2θ range of 

15-25°, which was a typical XRD pattern of pure gelatin originated from -helix and 

triplehelical structure [45-46]. The XRD pattern of Gel-25%MEN film is given in Fig. 

4(c), in which the characteristic peaks of MEN (22.6o) and the characteristic broad 

diffraction peak of gelatin were observed respectively. It suggested that the gelatin 

was modified with MEN after crosslinking reaction, which was consistent with the 

FTIR results. 
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Fig. 2 here 

3.2.3 Free -NH2 in Gel-MEN film formation solution 

Fig. 3 indicates the changing curve (a) of residual primary amino in Gel-MEN film 

formation solution and gelatin liquid blending with ME (Gel/ME, curve b) against the 

ratio  (= m(MEN/ME) /m(dry gelatin)). For Gel-MEN, the dosage of crosslinker played an 

important role in the content of free -NH2 while the free -NH2 changed slightly no 

matter how much ME was added. It suggested the stability of ester group in ME 

which was not active enough to react with -NH2 in gelatin. This meaned that amine 

groups in gelatin did not act as nucleophiles to break ester bonds in ME but could 

break ester bonds in MEN. All these results confirmed the reaction process (scheme 1) 

we proposed were correct. Interestingly, after activation by NHS, the active ester 

MEN could consume -NH2 in gelatin and dose dependent. The amount of free -NH2 

decreased sharply with the ratio  increased from 0 to 25%, and then decreased 

slightly when the ratio further increased. Specially, the amount of free -NH2 reduced 

down to a minimum value about 1.7410-4 mol/g when =30%. All these proved that 

the whole system conquered the forbiddance of interfacial reaction. Compared with 

former interface reaction study by Xu [47], in which gelatin was modified by glycidol 

and the maximum -NH2 conversion rate was 42%, the -NH2 conversion rate in this 

work was 28% higher than that reported.        
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Fig. 3 here 298 
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3.3 Performance of Gel-MEN films    

3.3.1 Degradation properties in vitro 

As sustained-release material, the composite films are expected to degrade with a 

proper rate to match special needs and keep activity within service life. The 

degradation behavior of films in a physiological environment plays an important role 

in application as sustained-release material. The in vitro degradation performance of 

Gel and Gel-MEN films in phosphate buffered saline (PBS, pH 7.40) at different 

intervals was investigated. As shown in Fig. 4, the blank gelatin degraded rapidly 

because of the large number of hydrophilic amino and carboxyl groups in gelatin 

backbone. Besides, the physical structure of gelatin which possessed higher porosity 

and leaner pore-wall contributed to the minimum weight remaining of 15% at 24 h. 

The composite polymer Gel-MEN degraded proportionally slow because of the 

incorporation of cellulosic crosslinker MEN. The weight remainings of Gel-25%MEN 

and Gel-30%MEN at 24 h were 57% and 58% respectively, 40% greater than that of 

original gelatin films. The amido bond formed between MEN and gelatin was stable 

enough to resist adverse factor outside. It was reasonable to consider that strong 

hydrogen bond and electrostatic interaction between gelatin polypeptide and 

hydrophilic hydroxyl or carboxylic groups in MEN also depressed PBS medium 

diffusion and protected gelatin polypeptide chains from degradation. Meanwhile, the 

presence of MEN, a macromolecule crosslinker based on cellulose, also served as 

physical crosslinking sites, which enhanced the stability of the network. To conclude, 

MEN improved the anti-degradation performance of gelatin films and this guaranteed 

its potential usage as sustained-released material in many fields, such as food 

packages inside, medical engineering, controlled-release fertilizer in agriculture and 

so on. 

Fig. 4 here 

3.3.2 Morphology evaluation 

SEM photographs of blank films revealed a dense, smooth and compact structure 

without any embossment or hole in Fig. 5 (a). The magnification times of first row (a1, 
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b1, c1) was lower than that of second row (a2, b2, c2). The introduction of cellulosic 

crosslinker MEN destroyed the homogeneous film surface with slice-like or rod-like 

macromolecule grafted on the covering of gelatin (Fig. 5 (b)). The inset of Fig. 5 (b2) 

clearly displayed the feature of MEN.  
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Besides, the SEM images provided very good evidence in favor of the in vitro 

degradation of test sample (Gel-25%MEN). It can be seen from Fig. 5 (b) and (c) that 

the film surface was almost plane and even, though combined with some sags and 

crests before the degradation started. One hour after degradation, the porous structure 

with irregularities and apertures can be observed on the surface of the composite film, 

which confirmed that the internal structure of Gel-MEN polymeric film was started to 

degrade in the liquid medium. It can be assumed that the degradation of films was 

gradually penetrating deeper from the surface [48]. 

Fig. 5 here 

3.3.3 Thermal stability 

The thermal gravimetric analysis (TGA) and differential thermogravimetrie curves 

(DTG) of composite films are performed in Fig. 6 to investigate the thermal stability. 

Curve a (Gel) and curve b (Gel/glycerol) were almost similar with two representative 

peaks at 190.00-220.00 oC and 321.44 oC, which corresponded to the initial 

decomposition temperature at 5% weight loss (Ti) and maximum weight loss 

temperature (Tm) of gelatin. The special peak at 250.07 oC in curve b was due to the 

blending of glycerol as plasticizer in blank gelatin film. The DTG patterns of 

Gel-MEN presented three steps for weight loss at the temperatures around 100 oC, 

250.07 oC and 320~350 oC, involving one strong and two weak endothermic peaks. 

The first weight loss at the temperature around 100 oC and the second weight loss at 

about 250.07 oC were similar to that of curve b. The third weight loss with a strong 

endothermic peak at 320~350 oC was due to the incorporation of active ester MEN 

into gelatin, and exhibited positive correlation with the dosage of crosslinker. This 

demonstrated that the crosslinking effect of the cellulose-based crosslinker improved 

thermal stability of the material to some degree as found in the literature. On the one 

hand, the crosslinking reaction between gelatin and MEN with amido bonds formed 

 12

Page 12 of 35RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

made the macromolecule structure more stable and impregnable. On the other hand, 

the hydrogen bond and electrostatic interaction of special groups in gelatin and MEN 

further strengthened the structure. All these provided effective reinforcement layer to 

endure thermal degradation. As Fig. 6-1 and 6-2 shows, Tm reached maximum of 

349 .26oC when  (= m(MEN) /m(dry gelatin)) was 25%. 
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The thermal properties of Gel-25%MEN and Gel/25%MCC in the presence of 

glycerol were compared in Fig. 6-1 and 6-2, in which curve b consisted of four 

decomposition stages. The four peaks at 104.42, 192.23, 250.72 and 359.12 oC were 

resolved into four different components of water, gelatin, glycerol and MCC, 

respectively. The obvious peak at 193.23 oC that almost disappeared in curve a 

indicated the severe phase separation in Gel/MCC system. However, compared with 

the typical Tm (309.10 oC) of MCC [49], the rising decomposition temperature of 

359.12 oC in curve b may caused by the hydrogen bond formed between gelatin and 

MCC, which increased the thermal stability of Gel/MCC films. 

Fig. 6 here 

3.3.4 Mechanical properties 

Mechanical properties, especially elasticity modulus (Em) and elongation at break 

(Eab) are particularly crucial for sustained-materials used in many fields. Table 2 

shows the thickness, tensile strength (Ts), Em and Eab of the Gel-MEN composite films. 

The decreased Ts indicated that the modified films yielded lower stress than pure 

gelatin film. The tensile strength increased with the crosslinker adding from 

Gel-5%MEN to Gel-20%MEN, but decreased in Gel-25%MEN and Gel-30%MEN.  

And thse results were in accordance with the form work reported by Azeredo [50]. 

This may caused by the fact that when the amount of the macromolecule crosslinker 

was high, adding them to film may induce the development of a heterogeneous 

structure with the presence of discontinuous areas, which produced lower tensile 

strength. Similarly, Martucci [51] reported that the addition of dialdehyde starch in 

gelatin resulted in lower Ts values than control film and explained this apparently 

anomalous behavior. The fact that polymeric nature of dialdehyde starch did not 

introduce severe restrictions within gelatin matrix as usually occured with short chain 
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dialdehyde such as formaldehyde or glutaraldehyde, and some degree of phase 

separation in gelatin- dialdehyde starch films could reduce the Ts, too. Fortunately, Em 

and Eab tended to predict better elasticity and flexibility that indicating the new 

material was not fragile any more. The Eab of Gel-25%MEN was 31.96%, thirty times 

of blank gelatin film while the Em of Gel-25%MEN was 448.72 MPa, a quarter of 

blank one, which was 1736.11 MPa. The reason was that the active ester group in 

MEN could form covalent bonds with amino in gelatin polypeptide, and the 

hydrophilic groups could form hydrogen bonds. And all the newly formed bonds 

weakened the protein-protein interactions which was effective to stabilize the gelatin 

network. Besides, MCC, the base of the crosslinker MEN, demonstrated to be an 

effective nano-reinforcement for biopolymer films that can drastically influence the 

mechanical properties of biomaterials [50]. All these contributed to better flexibility 

of the new biologic polymer matrix. 
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Table 2 here 

3.3.5 Hydrophobicity analysis by contact angles  

Gelatin was a kind of hydrophilia material because of the functional groups: amino, 

carboxyl, hydroxyl and so on. The water-sensitve property limited its application in 

many fields and the hydrophobization was needed. Ninan [21] reported a new material 

of gelatin/zeolite porous scaffold and the contact angle was found to increase from 

88.6 oC to 108.0 oC with the increasing concentration of zeolites in gelatin. The 

hydrophobic effect of the crosslinker MEN on gelatin was confirmed by the results of 

water contact angle measurements (Fig. S5). The pure gelatin film (Fig. S5, a) with a 

typical contact angle of 77.8o was because of the hydrophilic groups exposed in 

gelatin chains. After crosslinked by MEN, the Gel-MEN films (Fig. S5, b and c) 

presented a sharp increase to 125.1o and 135.5o, respectively. This was due to the 

replacement of some surface amino groups in gelatin polypeptide with active ester 

groups in MEN. Besides, the hydrogen bonds formed between hydrophilic groups of 

gelatin backbone and MCC-based crosslinker also contributed to good hydrophobicity 

of modified gelatin films. The modified films with perfect hydrophobicity overcame 

the permanent weakness of water-sensitive in the application of gelatin. And the 
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advanced properties broadened its usage as more kinds of material.  418 
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3.3.6 Water uptake studies  

The hydrophilic property of gelatin can be controlled in two ways. One was 

hydrophobization referred above, and the other was expected to absorb water 

molecules. This happened because of two beneficial structure features of gelatin. One 

advantage of gelatin materials was its highly hygroscopic nature due to which it 

swelled and transformed to any shape easily in humid environment. The other was the 

porosity in the network that allowed more water to enter inside, because which the 

porous gelatin films showed higher swelling capacity. Water uptake (%) of pure 

gelatin films and Gel-MEN composites tested during 11 days are shown in Fig. 7. The 

water uptake (%) can be controlled by incorporating different dosages of MEN in the 

polymer matrix. In the case of Gel-15%MEN, the water uptake (%) reached the 

maximum among all MEN crosslinked gelatin films. This was attributed to the 

increase in pore size of gelatin film with the presence of MEN. Additionally, the 

Gel-MEN composites showed an increase in the swelling capacity till the 11th day, 

which indicated a better ability of water absorbing. By comparison, the original 

gelatin film acquired maximum swelling capacity on the 10th day and thereafter 

percentage of water uptake was found to be invariant even decline. This event 

suggested that introduction of MEN into gelatin provided effective channel for water 

molecules to diffuse into the polymer matrix, thereby swelling ability increased. 

Uncontrolled swelling properties can badly affect the mechanical property, so it was 

advantageous to tune the swelling capacity [52]. 

Fig. 7 here 

3.3.7 Light resistance performance 

Many researches indicated that ultraviolet radiation was one of the main reason 

causing skin hurting, light aging and skin cancer. Hence the low light transmission 

also made the active gelatin film possess some health function [24]. Light 

transmission at the selected wavelengths from 200 to 800 nm in UV and visible 

ranges and transparency values of gelatin films are shown in Table 3 (& Fig. S6). 

Comparison of the results with control films revealed that lower light transmittance (T) 
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was found in Gel-MEN composite films. And the films with 30%MEN displayed the 

lowest values among them. This revealed that the addition of MEN improved the UV 

barrier properties of gelatin films, resulting from the amido bonds by Schiff base 

formation between the active ester groups in MEN and the amino groups of lysine or 

hydroxylysine side groups in gelatin. Based on transparency values (Tv, Table 3), the 

more crosslinker led to the greater Tv, which represented the opacity of resulted films. 

The opacity was highly influenced by the crystalline content of a sample: more 

compact polymer chains made it more difficult for light passing through and then the 

opacity of films was increased [53]. All these indicated that protein-based films were 

considered to exhibit high UV barrier properties, owing to their high content of 

aromatic amino acids which absorbed UV light. 
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Table 3 also displays the light barrier properties of Gel/15%MCC and 

Gel/25%MCC blending films, as compared with the corresponding mass ratio of 

Gel-MEN films. The Gel/MCC blending films exhibited better transparency while 

worse light resistance performance. This fact may be an indication that MCC 

nanoparticles were homogeneously distributed in the matrix because they are white, 

and light incident on the film surface was reflected in larger quantity due to the white 

particles [25]. The light barrier properties of films were relatively important while 

used as sustained-materials for food packaging or food coating. The polymer matrix in 

this work just matched these needs. 

Table 3 here 

4. Conclusion      

In summary, the structure and conformation of gelatin were modified by the 

macromolecule crosslinker MEN. The FTIR spectra, elemental analysis and TGA 

values verified the structure of MEN. Reaction between -NH2 in gelatin and active 

ester in MEN was confirmed by residual primary amino test, FTIR and XRD spectra, 

which broke the limitation of blending modification method for gelatin with 

macromolecule. Dose-dependent effect of crosslinker was investigated through 

degradation in vitro, in which the weight remaining decreased with the increase of 

MEN dosage. The SEM images further proved the successful surface grafting reaction 

and the degradation phenomenon in PBS medium. The decomposition temperature 
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obtained from TGA curves increased to 350 oC compared with the native film of 320 

oC. Besides, TGA patterns of Gel-MCC composites exhibited serious phase separation. 

The mechanical properties changed to some degree with higher Eab and lower Em, 

which suggested better flexible and shatter-proof. The contact angles with high value 

of 135.5o indicated good hydrophobic properties. The swelling ability after absorbing 

water could be regulated by adding different weight of crosslinker. The light barrier 

performance was improved since the introduction of MEN compared with both pure 

gelatin film and Gel/MCC composites. Giving the application status of gelatin, our 

study is the extension of existing NHS crosslinking technique and will broaden the 

application of gelatin films as sustained-released material in food industry, medicine, 

agriculture and so on . 
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Scheme 1 The formation process of crosslinked gelatin with MEN. 

 (1). The synthetic route of EDTA anhydride (EDTAD); 

 (2). The preparation path of gelatin modified with MEN. 
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Figure and Table captions: 665 
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Fig. 1 The FTIR spectra of MEN, gelatin and Gel-MEN 

Fig. 2 The XRD pattens of MEN, gelatin and Gel-MEN 

Fig. 3 Residual amino group content of gelatin solution modified by MEN (a) and ME (b) with 

different dosages 

Fig. 4 Effect of macromolecule crosslinker on in vitro degradation of the Gel-MEN composite 

films 

Fig. 5 Film Surface morphology of Gel (a1, a2), Gel-25%MEN (b1, b2) and Gel-25%MEN after 1 h 

degradation (c1, c2)  

Fig. 6 TGA and DTG curves of modified gelatin films with different dosage of crosslinker (6-1, 

6-2) and comparison curves between Gel-25%MEN and Gel/25%MCC blending films (6-3, 6-4) 

Fig. 7 Water uptake properties of gelatin films incorporated with different dosage of MEN 

 

Table 1 Elemental analysis and thermal property values of MCC, ME and MEN 

Table 2 Mechanical performance of different Gel-MEN films 

Table 3 Light transmission and transparency values of different Gel-MEN films 
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Table 1 702 

Materials C  

(%) 

H 

(%) 

N 

 (%)

Weight 

gain (%)

Ti  

(oC) 

Tm  

(oC) 

Tg  

(oC) 

Residue 

(%) 

MCC 42.21 6.40 0.11 - 309.10 364.08 340.68 15.28 

ME 42.29 6.45 1.92 72.50 271.45 331.50 342.70 33.01 

MEN 42.97 6.65 2.48 30.80 222.54 377.31 364.09 10.45 
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Table 2 703 

Films Thickness 

(mm) 

Tense Strength 

(MPa) 

Elongation at Break 

(%) 

Elasticity Modulus 

(MPa) 

Gel 0.10 24.17 1.84 1736.11 

Gel-5%MEN 0.18 15.28 7.64 435.73 

Gel-10%MEN 0.20 16.17 11.52 468.75 

Gel-15%MEN 0.20 18.25 12.44 595.24 

Gel-20%MEN 0.28 18.10 28.64 525.21 

Gel-25%MEN 0.26 13.97 31.96 448.72 

Gel-30%MEN 0.20 14.08 83.08 476.19 
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Table 3 

 

Wavelength (nm) Transparency 

Value 

Films 

200 280 350 400 450 500 550 600 700 800 280 600

Gel 2.2 1.5 43.2 55.0 59.7 62.6 64.4 66.5 67.6 68.5 10.13 0.98

Gel-MEN5% 1.5 5.8 29.8 34.4 35.4 36.4 37.0 37.8 38.4 39.0 7.73 2.64

Gel-MEN10% 0.6 2.6 12.4 14.4 15.1 15.5 15.8 16.2 16.4 16.4 11.32 5.65

Gel-MEN15% 0.2 0.2 4.4 5.8 6.3 6.6 6.7 7.1 7.1 7.2 13.49 5.74

Gel-MEN20% 0.1 0.2 2.2 3.0 3.5 3.6 3.7 3.7 3.7 3.7 13.49 7.16

Gel-MEN25% 0 0 0.6 1.0 1.3 1.4 1.5 1.6 1.6 1.6 --- 8.98

Gel-MEN30% 0 0 0.4 0.6 0.9 1.0 1.1 1.1 1.1 1.1 --- 9.79

Gel/MCC15% 1.9 9.3 34.6 39.6 40.9 42.3 43.3 45.1 46.5 47.7 10.32 3.46

Gel/MCC25% 1.4 5.3 26.6 31.7 33.0 34.4 35.5 36.9 38.0 39.3 12.78 4.32
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