RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This *Accepted Manuscript* will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Table of Contents Entry

Using a dispersion-corrected density functional theory (DFT-D) method, this work shows that $Ni₃(BTC)₂$ can be potentially considered as promising adsorbent for O_2/N_2 separation with easier deoxygenation.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Computational study of oxygen adsorption in metal-organic frameworks with exposed cation sites: Effect of framework metal ions

Yong Wang,*^a* **Jiangfeng Yang,***^a* **Zhengjie Li,***^b* **Zhuoming Zhang,***^a* **Jinping Li,****^a* **Qingyuan Yang,****^b* **and Chongli Zhong***^b*

⁵*Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX* **DOI: 10.1039/b000000x**

The current inefficient separation of $O₂$ from air is an important industrial problem. Metal-organic frameworks containing coordinatively unsaturated metal sites (CUS) have emerged as competitive new adsorbents for such targets. In this study, dispersion-corrected density functional theory calculations were

10 performed to investigate the influence of framework metal ions on the adsorption behavior of O_2 in $M_3(BTC)_2$ -type materials (M = Cr, Mn, Fe, Co, Ni and Cu; BTC = 1,3,5-benzenetricarboxylate acid). The results show that $\text{Ni}_3(\text{BTC})_2$ can be potentially considered as promising oxygen adsorbent with relatively easier deoxygenation than $Cr_3(BTC)_2$. The magnitude of charge transfer from the CUS to O_2 molecule was found to have a significant impact on the interaction energies of O_2 with $M_3(BTC)_2$ except for the Cu

¹⁵version. Furthermore, it was revealed that the origin of the difference in the charge transfer can be attributed to the different electronegativity of the metals.

1. Introduction

Separation of O_2 from air is an indispensable step in industry,¹⁻³ which is currently carried out on a large scale using an energy-

- 20 intensive cryogenic distillation process.⁴ Zeolites have also been used for O_2/N_2 separation, but this process is inherently inefficient because the materials used adsorb N_2 over O_2 with poor selectivity.⁵ In addition, it has been demonstrated that O_2 binding by transition-metal centers with redox-active properties
- ²⁵can be regarded as a potentially efficient approach via the greater propensity of O_2 for accepting negative charge transferred from the metal centers than that of redox-rigid N_2 .⁶ Thus, there is a clear benefit from developing new materials that can selectively adsorb O_2 based on chemical-like interactions and the
- ³⁰deoxygenation can be operated easily near ambient temperatures; this will enable the separation to be carried out with lower energy and capital costs.

Owing to their many fascinating features, metal−organic frameworks (MOFs) have attracted a wide interest in the fields of 35 gas storage and separation.⁷⁻¹² Among various MOFs reported in

- the literature, there are some materials containing coordinatively unsaturated metal sites (CUS). If these exposed cations are redoxliable transition metals, MOFs can be used to selectively adsorb $O₂$ with the aid of the electron transfer-driven mechanism (that is
- ⁴⁰ redox).¹³ Bloch et al.⁶ showed that $Fe₂(DOBDC)$ is an adsorbent suitable for O_2/N_2 separation below 220 K, but the adsorption of O_2 is irreversible at room temperature. $Cu_3(BTC)_2$ (BTC = 1,3,5benzenetricarboxylate acid), also known as HKUST-1 (HKUST: Hong Kong University of Science and Technology), is a 45 representative of CUS-containing MOFs, in which the inorganic
- building unit adopts a paddle-wheel geometry with a square-

planar coordination of the metals.¹⁴ Long and co-workers¹⁵ showed that the Cr-based isostructural material, $Cr_3(BTC)_2$, can exhibit a loading of 14.4 wt% for O_2 adsorption at 298 K and 1 50 bar with an exceptional O_2/N_2 selectivity factor of 22. However, they found that the material cannot achieve a complete release of bound O₂ even heating at 323 K under dynamic vacuum. As CUS metals in MOFs have been experimentally identified as the preferential adsorption sites for O_2 ,¹⁵ the ability to substitute with ⁵⁵different metals implies the potential of regulating the deoxygenation properties of the materials. Actually, both experimental and computational studies have shown that such a strategy is an effective approach to tune adsorption properties of CUS-containing MOFs toward other gases including $CO₂$.^{8,16-17}

Due to the difficulty in obtaining the detailed microscopic information by experiments, quantum mechanics methods are increasingly used to understand the interactions of various guest species with CUS -containing $MOFs^{8,18-21}$ However, the investigations related to O_2 adsorption are still very scarce up to ⁶⁵date. As far as we know, there are only three studies that have been reported on such a topic on the basis of density functional theory (DFT) calculations. Supronowicz et al.²² and Zhou et al.²³ studied the adsorption of O_2 in $Cu_3(BTC)_2$, while Maximoff et al.¹³ probed the mechanism for the irreversible adsorption of O_2 70 in Fe₂(DOBDC). Thus, more efforts are highly necessary to have a thorough understanding of the interactions between O_2 and MOFs. For this purpose, a dispersion-corrected DFT method was employed in this work to systematically investigate the adsorption of O_2 in a series of HKUST-1 type materials, $_{75}$ M₃(BTC)₂ with the first transition-metal elements (M = Cr, Mn, Fe, Co, Ni and Cu). We tried to find whether there is a possibility to reduce the energy required for deoxygenation by metal

substitution. Such studies can give a direct insight into the nature of the O_2 -metal interactions by eliminating other potential influencing factors.¹⁷ The obtained results could provide a theoretical foundation for guiding the future design of new CUS s containing MOFs with improved O_2 separation performance.

2. Models and methods

2.1. Structures of Cluster Models

The Cu-containing cluster model adopted in our calculation was cut from the unit cell of $Cu₃(BTC)₂$, the crystal structure of which 10 was constructed from the X-ray diffraction (XRD) data, 24 as shown in Fig. 1a. The Cu atoms in this cluster were then substituted by those selected from the first transition-metal elements (Cr, Mn, Fe, Co, and Ni). Each of such-obtained cluster models (M_2BTC_4) contains 82 atoms after saturating the

15 carboxylate groups with H atoms, as shown in Fig. 1b and 1c. Such cluster models have been successfully used to reproduce the binding and spectroscopic properties of different small molecules interacting with them.22-23, 25-26

20 **Fig. 1** (a) Illustration of the structure of $M_3(BTC)$ series (M = Cr, Mn, Fe, Co, Ni and Cu) with the dimetallic tetracarboxylate CUS, and (b, c) M2BTC4 cluster models used in the calculations (side view, b; top view, c) (metal, blue; C, gray; O, red H, white).

2.2. Computational details

- ²⁵It has been well-documented that a significant deficiency in commonly used DFT methods is the lack of a suitable treatment for dispersion interactions.²⁷ Thus, the dispersion-corrected DFT (DFT-D) calculations were used to optimize the structures of the cleaved clusters as well as their complexes with oxygen 30 molecules, using the DMol³ module implemented in Materials
- Studio.28-29 The Perdew-Burke-Ernzerhof (PBE) GGA exchangecorrelation functional³⁰ with the Grimme correction³¹ and the double numerical plus polarization (DNP) basis set were employed in all the calculations.^{32,33} The dispersion parameters
- 35 can be found in the Supplementary Information. DFT semicore pseudopots $(DSPP)^{34}$ was used to set the type of core treatment. This core potential was developed specifically for DMol³ calculations to include some degree of relativistic effects, which is a very useful approximation for the heavier elements in our
- ⁴⁰cluster models. The self-consistent field (SCF) procedure was used with a convergence threshold of 10^{-6} au on the energy and electron density.^{32,35} The direct inversion of the iterative subspace technique developed by Pulay was used with a subspace size 6 to speed up SCF convergence.³⁶ The convergence threshold 45 parameters for the optimization were 10^{-5} Ha (energy), 2×10^{-3}
- Ha/Å (gradient), and 5×10^{-3} Å (displacement), respectively. The

real-space global cutoff radius was set to be 4.8 Å. All the results reported in this work were obtained using the spin-polarized calculations, where the optimal spin configurations were ⁵⁰determined automatically by the self-consistent iterations. Our results show that the spin-state of an isolated O_2 molecule calculated is triplet, which agrees well with the spin-state nature of O_2 . In addition, we tried to manually fix the spin-state of O_2 in some O_2 - $M_3(BTC)_2$ complexes using different values, and found ⁵⁵that the spin-states of the complexes corresponding to the lowest energies are the same as those found by the DFT code. Thus, it is a feasible way to explore the properties of the examined systems using the methodology described above. In addition, frequency calculations were performed to check whether the structural ⁶⁰optimizations reached the global energy minimization. The optimized structures were then used for subsequent energy calculations.

The interaction energy (ΔE_{int}) of an O₂ molecule with each of the molecular cluster models at 0 K was calculated according to ⁶⁵ the following equation

$$
\Delta E_{\text{int}} = E_{\text{MOF-O}_2 \text{ complex}} - E_{\text{MOF}} - E_{\text{O}_2}
$$

where E represents the energy of the system after full geometry relaxation, $E_{\text{MOF}-O_2 \text{ complex}}$ is the total energy of the MOF cluster-O₂ complex, E_{MOF} and E_{O_2} are the energies of the isolated π cluster structure and O_2 molecule, respectively. In such a definition, a larger negative value of ∆*E*int corresponds to a stronger binding strength. The numerical basis sets in the DMol³ code are local basis sets, one advantage of which is the ability to minimize the effect of basis set superposition error (BSSE). Inada 75 and Orita³⁷ have also shown that the magnitude of BSSE for the binding energies calculated using the numerical basis sets like DNP are very small. Therefore, the interaction energies were calculated without the correction of BSSE in this work.

As done by others, 32,38 Mulliken population analysis method ⁸⁰was used to examine the electron distribution and charge transfer mechanism in the systems considered in this work. To calculate the adsorption enthalpy (ΔH) of O₂ at 298 K, the thermal contribution, including *RT*/2 (*R* is the ideal gas constant) for each degree of freedom of the gas molecule and the *PV* term simply as approximately by RT , was taken into account.³⁹ The correction of the zero-point energy (ZPE) was also considered using the harmonic approximation. Such a method has also been used to calculate the adsorption enthalpies of other gases in other adsorbents at elevated temperatures.⁴⁰

⁹⁰**3. Results and discussion**

3.1. Validation of the Method

To study the adsorption of O_2 in MOFs containing CUS, the DFT-D method adopted in this work has to be validated. We firstly compared the optimized structures of the empty and O_2 -95 loaded $Cr_3(BTC)_2$ with the information obtained experimentally.¹⁵ It was found that the calculated Cr−Cr bond length is 2.127 Å in the paddle wheel of the empty structure, which is in line with the experimental value of 2.058 Å. When $O₂$ molecule was adsorbed on each of the two CUS metals, the ¹⁰⁰Cr−Cr bond length in the optimized structure was elongated to 2.751 Å, which also agrees very well with the value of 2.790 Å

obtained from Rietveld analysis of powder neutron diffraction data. Since there are no experimental data or DFT results reported for the adsorption enthalpy of O_2 in $Cr_3(BTC)_2$, a comparison of this property cannot be carried out.

- 5 We further compared the calculated O_2/Cu_2BTC_4 interaction energy with the result obtained on the basis of B3LYP-D3/TZVP level.²² As far as we know, the latter is the only energetic information available in the literature related to O_2 adsorption in $M_3(BTC)_2$. Our calculation shows that the energy is about -8.1 kJ
- 10 mol^{-1} and is dominantly contributed from the dispersive interactions $(-7.5 \text{ kJ mol}^{-1})$. This observation indicates that inclusion of dispersion correction in the DFT method is very important for predicting the energy of the systems with weak interactions. In addition, this result is close to the interaction
- 15 energy (-9.6 kJ mol⁻¹) obtained using DFT with B3LYP-D3/TZVP in which the dispersion contribution (-9.0 kJ mol⁻¹) is also found to play a dominant role.

To check the size effects of the used cluster models, we compared the calculation results on the basis of an O_2 -loaded

- 20 cluster and periodic models by taking $Cr_3(BTC)_2$ as an example. In the periodic calculations, the k-point sampling was performed at the G-point due to the large cell. It was found that the interaction energy of the CUS Cr with O_2 obtained from the periodic calculation is -66.8 kJ mol⁻¹, and the Cr−O distance and
- ²⁵O−O bond length are 1.874 and 1.268 Å, respectively. These values are in good agreement with those calculated using the cluster model (see Table 1), while the calculation time increases significantly using the periodic model. The above comparison demonstrates that the cluster models adopted in this work are

30 acceptable and thus can be adopted for further exploration.

3.2. Interaction Energies and Geometries

During our calculations, we have tried to put O_2 molecule on the different sites in the structure of cluster models. By comparing the calculated interaction energies, it was observed that the CUS 35 metals are the preferential sites for $O₂$ adsorption. Actually, such observations have already been found for the adsorption of many different guest species in CUS-containing MOFs. Thus, the following comparisons were made only using the interaction energies calculated for the systems with an O_2 molecule adsorbed ⁴⁰on the CUS. The results are shown in Fig. 2 and summarized in Table 1. It can be found that the dispersion energies are comparable among the structures with CUS metals of Cr, Mn, Fe, and Co. Although the dispersion energies are similar between the Ni- and Cu-containing systems, the contribution to the total ⁴⁵interaction energy in the former is much smaller than that in the latter.

Fig. 2 The O_2 interaction energies (gray bar), the charge transferred from the $M_3(BTC)_2$ to O_2 (blue line against the y-axis on the right) and long-50 range dispersion correction to interaction energies (green dash line).

3.2.1. Adsorption of O_2 in $Cr_3(BTC)_2$. Among the $M_3(BTC)_2$ series considered in this work, $Cr_3(BTC)_2$ is the only material that 55 have been experimentally proved to exhibit a high $O₂$ loading and exceptional O_2/N_2 selectivity.¹⁵ Thus, we begun with examining the adsorption mechanism of O_2 in this material.

As shown in Fig. 3, O_2 molecule is angularly adsorbed on the Cr center through one oxygen end and the adsorption does not ⁶⁰induce significant change of the MOF structure. One can observe from Table 1 that the interaction energy between O_2 and $Cr_3(BTC)_2$ is -63.5 kJ mol⁻¹. The CUS metal acts as a Lewis-base site due to the higher electronegativity of oxygen, and thus there is a charge of $0.19e$ transferred from $Cr_3(BTC)_2$ to O_2 . To explore

⁶⁵the influence of charge transfer on the adsorption behavior, we artificially tuned the charge state of the CUS site (Cr) by adding an extra electron to or removing an electron from the cluster

model. Previous studies²³ have shown that the electron will diffuse throughout the entire framework when an electron is τ_0 added to or removed from the Cr₃(BTC)₂ cluster. In this work, after structural optimization for the neutral, negatively and positively charged $Cr_3(BTC)_2$, it was found that the Mulliken atomic charges of the Cr ions are +0.53*e*, +0.43*e* and +0.58*e*, respectively. When $Cr_3(BTC)_2$ gains an extra electron, the ⁷⁵structure is compressed with the Cr-Cr distance in the paddle wheel shortened to 1.890 Å from 2.127 Å. In contrast, for $Cr₃(BTC)₂$ losing an electron, the structure is expanded with the Cr-Cr distance elongated to 2.215 Å. These changes can be attributed to the fact that the interaction between Cr ions is ⁸⁰enhanced when gaining extra electrons and decreased while losing electrons.

In addition, when adding one electron to $Cr_3(BTC)_2$, O_2

molecule was found to interact strongly with the CUS Cr with an interaction energy of -102.7 kJ mol−1. Mulliken charge population analysis shows that there is 0.36*e* charge transfer from the $Cr₃(BTC)₂$ to $O₂$ molecule. In contrast, after removing one s electron from $Cr_3(BTC)_2$, the energy is decreased to -59.9 kJ mol⁻¹, slightly smaller than -63.5 kJ mol⁻¹ of the neutral $Cr₃(BTC)₂$. The charge transferred is $0.07e$ which is also less than the value of 0.19*e* calculated for the neutral one. These observations demonstrate that the interaction energy of O_2 can

- 10 correlate well with the magnitude of the charge transferred from $Cr_3(BTC)_2$ to O_2 . As a result, reducing the energy required for deoxygenation can be realized through controlling the magnitude of charge transfer. For this purpose, one feasible approach is to weaken the donor strength of bridging organic ligands by adding
- 15 electron-donating/withdrawing substituents.¹⁵ In current study, we put the emphasis on exploring the influence of metal substitution.

Fig. 3 The optimized structure of O_2 -loaded $Cr_3(BTC)_2$ (Cr, blue; C, gray; ²⁰O, red; H, white) (distances in Å).

3.2.2. Adsorption of O_2 in other $M_3(BTC)_2$. The charge transferred between other $M_3(BTC)_2$ and the adsorbed O_2 molecule are listed in Table 1. It can be found that the transfer magnitude varies from 0.01*e* to 0.23*e*, depending on the nature of 25 the metal ions. Compared to the bond length (1.225 Å) of a free O2 molecule, the O-O bond length increases from 1.235 Å in $Cu₃(BTC)₂$ to 1.285 Å in Mn₃(BTC)₂. As a result, the magnitude of charge transfer can also be reflected from the bond length change of the adsorbed O_2 molecule.

Fig. 4 The electron density differences for: (a) empty $Cr_3(BTC)_2$, (b) O_2 -

 $Cr₃(BTC)₂$ complex, (c) empty $Cu₃(BTC)₂$, and (d) $O₂-Cu₃(BTC)₂$ complex.

We further analyzed the electron density differences calculated 35 for the empty and O₂-loaded structures of $M_3(BTC)_2$. Such electron density differences are the deformation density, which can be calculated as the total electron density of the system with the corresponding density of the isolated atoms subtracted. The results for the $Cr_3(BTC)_2$ and $Cu_3(BTC)_2$ systems are given in 40 Fig. 4 as an example. For the empty $Cr_3(BTC)_2$, Fig. 4a and 4b indicates that the exposed Cr ions can serve as an electron donor. After O_2 adsorption, the electron depletion of Cr site is enhanced (Fig. 4b) with a remarkable electron transfer from Cr ion to O_2 . In contrast, for the case of $Cu₃(BTC)₂$ loaded with $O₂$, there is ⁴⁵almost no charge redistribution on the CUS Cu (Fig. 4d) compared to the empty one (Fig. 4c). The charge transferred from $Cu₃(BTC)₂$ to $O₂$ is 0.01*e* and thus is nearly negligible. The origin of the different charge transfer between the various $M_3(BTC)_2$ and O_2 can be attributable to the different electronegativity of the ⁵⁰metals, as demonstrated in Fig. 5. Obviously, the magnitudes of charge transfer correlate well with the electronegativities of the CUS metals. The larger the electronegativity, the more difficulty for O_2 accepting negative charge transferred from the metal center, resulting in a decrease in the magnitude of charge 55 transferred.

From Fig. 2 it can be found that the overall increasing trend of the charge transfer from $M_3(BTC)_2$ to O_2 is in line with the changing trend of the calculated interaction energies. This could be expected because the weak bond between the metal and $O₂$ ⁶⁰molecule resulted from partial transfer of electrons is a significant contribution to the O_2 - $M_3(BTC)_2$ interactions. With regard to $Cu₃(BTC)₂$, the calculated interaction energy without dispersion contribution is only -0.6 kJ mol⁻¹, which is the weakest among the $M_3(BTC)_2$ series due to a negligible charge transfer from 65 $Cu₃(BTC)₂$ to $O₂$.

Fig. 5 Correlation between the charges transferred from $M_3(BTC)_2$ to O_2 and the Pauling electronegativities of the metals.

3.3. Adsorption Thermodynamics

- ⁷⁰The previous comparisons are based on the interaction energies under the conditions of 0 K. For practical applications, it is more useful to compare the interaction strengths at room temperature. Thus, we performed further calculations to obtain the adsorption enthalpies of O_2 at 298 K and the results are tabulated in Table 1.
- 75 The calculated adsorption enthalpy for O_2 with $Cr_3(BTC)_2$ is -

30

65.4 kJ mol−1, and such a high adsorption affinity can be used to account for the incomplete deoxygenation problem mentioned previously. Owing to a higher adsorption enthalpy toward O_2 (-85.5 kJ mol⁻¹), it can deduced that $Mn_3(BTC)_2$ would also have

- s the difficulty in deoxygenation. Wang et al.⁴⁴ experimentally reported that the adsorption of O_2 in $Cu_3(BTC)_2$ is nearly negligible. In this work, the adsorption enthalpy in $Cu₃(BTC)₂$ is found to be only -5.1 kJ mol⁻¹, which is well consistent with their observations. In addition, Table 1 shows that $Fe₃(BTC)₂$,
- ¹⁰ Co₃(BTC)₂ and Ni₃(BTC)₂ have lower adsorption affinities for O₂ $(-61.6, -35.4 \text{ and } -44.0 \text{ kJ mol}^{-1}, \text{ respectively}) \text{ than } Cr_3(BTC)_2.$ These results suggest that the three MOFs could be considered as more promising adsorbents with a relatively easier deoxygenation for practical O_2 separation applications.

3.4. Potential Capability for O² /N² ¹⁵**Separation**

To evaluate the potential capability of $M_3(BTC)_2$ for O_2/N_2 separation, we conducted further calculations to obtain the interaction energies for N_2 with the cluster models, as tabulated in Table S2 (see ESI†). For $Cu_3(BTC)_2$, our calculated value (-18.9)

- $_{20}$ kJ mol⁻¹) agrees well with the result (-19.3 kJ mol⁻¹) obtained at the B3LYP-D3/TZVP level.²² N₂ has a stronger adsorption affinity with this material than that of O_2 , which is also in good agreement with the experimental observation that the Henry's constant of the former is larger than that of the latter. 41 For
- $_{25}$ practical air separation, it would be desirable to extract O_2 rather than the main component N_2 due to the limited number of CUS metals in $M_3(BTC)_2$. This will greatly reduce the separation cost because of the requirement of less adsorbent amount. Since $Fe₃(BTC)₂$ and $Co₃(BTC)₂$ show stronger adsorption interactions
- $_{30}$ toward N₂ compared to O₂, the two MOFs are not the preferential materials for the separation of interest. For $Cr_3(BTC)_2$, the interaction energy of N_2 is significantly lower than that of O_2 , and thus this material can exhibit a high O_2/N_2 selectivity (~22) as reported by Long and co-workers.¹⁵ However, as described
- 35 previously, $Cr_3(BTC)_2$ cannot achieve a complete release of bound O_2 due to too high adsorption affinity toward O_2 . This will lead to the recycle issue, which is also the case for $Mn_3(BTC)_2$. Interestingly, $Ni₃(BTC)₂$ shows 11 kJ mol⁻¹ higher interaction energy toward O_2 than that of N_2 , and the adsorption affinity
- 40 toward O_2 is much weaker than $Cr_3(BTC)_2$. This demonstrates that the O_2/N_2 selectivity of $Ni_3(BTC)_2$ may be lower than that of $Cr₃(BTC)₂$, but the former material could potentially achieve complete release of the adsorbed O_2 under near room temperature. As a result, $Ni₃(BTC)₂$ is predicted to be the more promising

45 adsorbent for O_2/N_2 separation with easier deoxygenation.

4. Conclusions

Dispersion-corrected DFT calculations were performed in this work to investigate the adsorption behaviors of O_2 on a series of CUS-containing MOFs $M_3(BTC)_2$ (M = Cr, Mn, Fe, Co, Ni and

- 50 Cu). The results show that the interaction energy of O_2 with $M_3(BTC)_2$ can be tuned in a wide range by metal substation. The magnitudes of charge transfer from CUS metals to O_2 correlate very well with the interaction energies of O_2 with $M_3(BTC)_2$. $Cu₃(BTC)₂$ has the lowest adsorption affinity toward $O₂$ among
- ⁵⁵the considered systems due to a negligible charge transfer. Furthermore, this work suggests that $\text{Ni}_3(\text{BTC})_2$ could be

regarded as the promising adsorbent for O_2 capture and separation. Since the separation of O_2 is a challenging topic at the moment, the knowledge obtained might provide a helpful ⁶⁰guidance for future efforts on the synthesis of new materials with improved performance for O_2 separation.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21136007, 21136001, 21322603,

⁶⁵51302184) and the National Key Basic Research Program of China (Nos. 2014CB260402).

Notes and references

^aResearch Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China

b ⁷⁰*State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China E-mail: jpli211@hotmail.com, qyyang@mail.buct.edu.cn* † Electronic Supplementary Information (ESI) available: The dispersion parameters and the interaction energies of N_2 molecules with $M_3(BTC)_2$.

⁷⁵See DOI: 10.1039/b000000x/

- 1 J. Sundberg, L. J. Cameron, P. D. Southon, C. J. Kepert and C. J. Mckenzie, *Chem. Sci.*, 2014, **5**, 4017.
- 2 J. Emsley, *Nature's Building Blocks: An Az Guide to the Elements*, 80 Oxford University Press, 2011.
	- 3 A. Kather and G. Scheffknecht, *Naturwissenschaften*, 2009, **96**, 993.
	- 4 P. Verma, X. Xu and D. G. Truhlar, *J. Phys. Chem. C*, 2013, **117**, 12648.
- 5 S. P. Nandi, P. L. Walker, *Sep. Sci. Technol.*, 1976, **11**, 441.
- ⁸⁵6 E. D. Bloch, L. J. Murray, W. L. Queen, S. Chavan, S. N. Maximoff, J. P. Bigi, R. Krishna, V. K. Peterson, F. Grandjean and G. J. Long, *J. Am. Chem. Soc.*, 2011, **133**, 14814.
- 7 Q. Yang, A. D. Wiersum, H. Jobic, V. Guillerm, C. Serre, P. L. Llewellyn and G. Maurin, *J. Phys. Chem. C*, 2011, **115**, 13768.
- ⁹⁰8 J. Park, H. Kim, S. S. Han and Y. Jung, *J. Phys. Chem. Lett.*, 2012, **3**, 826.
- 9 Q. Yang, V. Guillerm, F. Ragon, A. D. Wiersum, P. L. Llewellyn, C. Zhong, T. Devic, C. Serre and G. Maurin, *Chem. Commun.*, 2012, **48**, 9831.
- ⁹⁵10 P. A. Mendes, P. Horcajada, S. Rives, H. Ren, A. E. Rodrigues, T. Devic, E. Magnier, P. Trens, H. Jobic, J. Ollivier, G. Maurin, *Adv. Funct. Mater.*, 2014, **24**, 7666
- 11 Y. Lin, C. Kong, L. Chen, *RSC Adv.*, 2012, **2**, 6417.
- 12 J. B. DeCoste, M. H. Weston, P. E. Fuller, T. M. Tovar, G. W. 100 Peterson, M. D. LeVan and O. K. Farha, *Angew. Chem., Int. Ed.,* 2014, **53**, 14092.
	- 13 S. N. Maximoff and B. Smit, *Nat. Commun.*, 2014, **5**, 4032.
	- 14 K. Zhang, A. Nalaparaju, Y. Chen, J. Jiang, *RSC Adv.*, 2013, **3**, 16152.
- ¹⁰⁵15 L. J. Murray, M. Dinca, J. Yano, S. Chavan, S. Bordiga, C. M. Brown and J. R. Long, *J. Am. Chem. Soc.*, 2010, **132**, 7856.
	- 16 S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, *J. Am. Chem. Soc.*, 2008, **130**, 10870.
	- 17 C. R. Wade and M. Dincă, *Dalton Trans.*, 2012, **41**, 7931.
- ¹¹⁰18 H. S. Koh, M. K. Rana, J. Hwang and D. J. Siegel, *Phys. Chem. Chem. Phys.*, 2013, **15**, 4573.
	- 19 Y. Hijikata and S. Sakaki, *Inorg. Chem.*, 2014, **53**, 2417.
	- 20 D. Liu and C. Zhong, *J. Phys. Chem. Lett.*, 2009, **1**, 97.
- 21 Y. Y. Sun, Y.-H. Kim and S. B. Zhang, *J. Am. Chem. Soc.*, 2007, **129**, 12606.
- 22 B. Supronowicz, A. Mavrandonakis and T. Heine, *J. Phys. Chem. C*, 2013, **117**, 14570.
- ⁵23 C. Zhou, L. Cao, S. Wei, Q. Zhang and L. Chen, *Comput. Theor. Chem.*, 2011, **976**, 153.
- 24 A. R. Millward and O. M. Yaghi, *J. Am. Chem. Soc.*, 2005, **127**, 17998.
- 25 M. Rubeš, L. Grajciar, O. Bludský, A. D. Wiersum, P. L. Llewellyn ¹⁰and P. Nachtigall, *ChemPhysChem*, 2012, **13**, 488.
	- 26 T. Watanabe and D. S. Sholl, *J. Chem. Phys.*, 2010, **133**, 094509.
	- 27 H. Ji, J. Park, M. Cho and Y. Jung, *ChemPhysChem*, 2014, **15**, 3157.
	- 28 B. Delley, *J. Chem. Phys.*, 1990, **92**, 508.
	- 29 B. Delley, *J. Chem. Phys.*,2000, **113**, 7756.
- ¹⁵30 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
	- 31 S. Grimme, *J. Comput. Chem.*, 2006, **27**, 1787.
	- 32 Q. Sun, Z. Li, D. J. Searles, Y. Chen, G. Lu and A. Du, *J. Am. Chem. Soc.*, 2013, **135**, 8246.
- ²⁰33 Y. Chen, J. Lee, R. Babarao, J. Li and J. Jiang, *J. Phys. Chem. C*, 2010, **114**, 6602.
	- 34 B. Delley, *Phys. Rev. B*, 2002, **66**, 155125.
	- 35 Y. Yong, X. Li, X. Hao, J. Cao, T. Li, *RSC Adv.*, 2014, **4**, 37333.
	- 36 P. Pulay, *J. Comput. Chem.*, 1982, **3**, 556.
- ²⁵37 Y. Inada and H. Orita, *J. Comput. Chem.*, 2008, **29**, 225.
	- 38 K. M. Gupta, Z. Hu and J. Jiang, *RSC Adv.*, 2013, **3**, 12794.
	- 39 E. Albanese, B. Civalleri, S. Casassa and M. Baricco, *J. Phys. Chem. C*, 2014, **118**, 23468.
- 40 D. F. Plant, G. Maurin, I. Deroche, L. Gaberova and Pl L. Llewellyn, ³⁰*Chem. Phys. Lett.*, 2006, **426**, 387-392.
- 41 Q. M. Wang, D. Shen, M. Bülow, M. Ling Lau, S. Deng, F. R. Fitch, N. O. Lemcoff and J. Semanscin, *Micropoous Mesoporous Mater.*, 2002, **55**, 217.