RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

A structural evolution map of LiFePO₄ upon air exposure was drawn through various structural, spectroscopic, and electrochemical analyses.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Temperature-driven structural evolution of carbon modified $LiFePO_4$ in air atmosphere

Jiangfeng Ni *^a and Yue Wang *^b

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Lithium iron phosphate (LiFePO₄) is an appealing cathode material for lithium ion batteries. However, the degradation of LiFePO₄ in air atmosphere presents an unavoidable challenge, due to the vulnerability of divalent Fe against oxygen attack. In this work, we carried out comprehensive research on the thermal stability and temperature-driven evolution of nanocarbon modified LiFePO₄ in air. The results show that

¹⁰ LiFePO₄ can retain the structural stability up to 250 °C for short exposure to air. At long exposure, structural evolution occurs at a much lower temperature of 150 °C. The structural evolution proceeds as the temperature increases, and finishes at 400 °C. The final products are monoclinic Li₃Fe₂(PO₄)₃ and α -Fe₂O₃. A quantitative evolution map is drawn through electrochemical cyclic voltammetry and galvanostatic test. The results show that the major evolution takes place between 200 and 250 °C.

15 1 Introduction

Lithium iron phosphate (LiFePO₄) is one of the most appealing cathodes for large format lithium ion batteries (LIBs) due to its low cost, high specific capacity, excellent cycling performance, and superior safety.^{1, 2} These merits is inherently rooted in its ²⁰ olivine structure. Olivine LiFePO₄ crystallizes in the orthorhombic structure, in which oxygen atoms form slightly distorted hexagonal close-packed arrangement, and both Li atom and Fe atom take the octahedral sites. The PO₄ polyanion

- enhances the redox potential of Fe^{2+}/Fe^{3+} to 3.4 V (vs. Li, unless ²⁵ otherwise stated) via an inductive effect, but also prevents the possible oxygen release in abused condition.³ However, the low electronic (~10⁻⁹ S cm⁻¹) and the resulting sluggish kinetics present a significant challenge for the scalable utilization of LiFePO₄. To address this issue, numerous strategies have been
- ³⁰ proposed and shown promising prospect during the last decades. These strategies include surface modification,⁴ nanocarbon wiring,^{5, 6} ion doping,^{7, 8} size reduction,⁹ shape tuning,¹⁰ and so forth.
- Generally, reduction of particle size could efficiently mitigate ³⁵ the kinetic issues of LiFePO₄.^{11, 12} However, fine LiFePO₄ materials are sensitive to air exposure, due to large surface area and high activity.¹³ This presents a significant challenge for storage and processing of LiFePO₄ materials, when the materials are highly possible to be exposed to air at higher ambient
- ⁴⁰ temperature. Previously, Martin et al. reported that air exposure of LiFePO₄ at 120°C could lose 2.3% of lithium (oxidation of LiFePO₄).¹⁴ Certainly, this evolution would be more serious at higher temperatures. Therefore, it is essential to probe the thermal evolution process of LiFePO₄ versus ambient temperatures,
- ⁴⁵ particularly at temperature above room temperature. Nonetheless, such a issue has barely been addressed so far.

In this work, the evolution of LiFePO₄ materials in air as a function of ambient temperature was examined. Carbon coated LiFePO₄ was applied as the starting material as carbon modification is currently popular for olivine materials. A series of air-exposed LiFePO₄ derivatives at different temperatures were prepared. These materials were systematically investigated using various structural, spectroscopic, and electrochemical analyses. Analysis on these results could enable us to draw a clear map of temperature-driven evolution of LiFePO₄ in air.

2 Experimental

Carbon coated LiFePO₄ materials were prepared via solid-state reaction from Li₂CO₃, Fe(II)C₂O₄·2H₂O and NH₄H₂PO₄ and sucrose. The final product was predicted to contain 1 wt% carbon. ⁶⁰ Details of the experimental can be found in the supporting information (ESI). Thermal evolution of LiFePO₄ materials was probed in two approaches. One is to collect thermogravimetric analysis (TGA) data on a SDT 2960 apparatus (TA Instruments). The other is to hold LiFePO₄ materials in different temperatures, ⁶⁵ and then to characterize these derivatives using by chemical and electrochemical analyses.

3 Results and discussion

The structure of the LiFePO₄ is identified by XRD and Rietveld refinement (Figure S1). The XRD pattern can be fully indexed to ⁷⁰ be olivine structure (JCPDS No. 81-1173) without diffraction peaks due to impurity. Rietveld analysis on the XRD data reveals lattice parameters to be a = 1.0316(2) nm, b = 0.6002 (3) Å, c = 0.4690(3) Å, and V= 0.2904 nm³, in line with previous results.^{3, 15} This result implies that the olivine phase has been readily ⁷⁵ fabricated through the solid route.

This journal is © The Royal Society of Chemistry [year]

35

Figure 1. Morphology of the prepared LiFePO₄. (a) TEM and (b) high resolution TEM images. The lattice fringe spacing of 0.392 nm shown in (b) coincides with the (210) facets of olivine LiFePO₄.

⁵ Figure 1 illustrates the TEM images of the LiFePO₄, revealing that most grains are in the nanoscale with average particle size of 100 nm. An amorphous nanolayer covered on the particles can be clearly observed, which is identified as carbon derived from sucrose (Figure 1a). The thickness of carbon nanolayer is only ¹⁰ about 2 nm (Figure 1b) due to a low carbon loading, but it

remarkably enhances the material conductivity to 2×10^{-2} S cm⁻¹. The thermal evolution of LiFePO₄ in air atmosphere was examined by TGA, and the result is presented in Figure 2. The data were collected from room temperature to 700 °C at a

- ¹⁵ ramping rate of 10 °C min⁻¹. Mass changes reflecting possible phase evolution can be readily seen from the TGA curve. There are two possible reactions involved in the heating process. One is the oxidation of LiFePO₄ (Eq.1), and the other the burning out of coated carbon (Eq. 2).¹⁶ In detail, the mass loss of 0.4 wt% below
- $_{20}$ 150 °C is due to the removal of adsorption water. From 150 to 250 °C, the mass remains constant (inset in Figure 2), suggesting that the LiFePO₄ is still stable in air at this temperature range. From 250 to 400 °C, gradual mass augment suggests possible oxygen uptake due to oxidation of divalent Fe species (Eq.1).
- ²⁵ Interestingly, this mass then remains steady in the following temperature range of 400–450 °C. However, this is probably because the mass gain and loss between LiFePO₄ oxidation and carbon loss (Eq. 2) reach a balance. Above 450 °C, most amorphous carbon is burnt out and bulk oxidation of divalent Fe
- $_{30}$ occurs, leading to a net mass gain of 3.6 wt%. As a full oxidization of LiFePO₄ (Eq. 1) results in a mass gain of 5.1 wt%, the exact carbon loading in the LiFePO₄ product is 1.1 wt%.

Figure 2. TGA curves of LiFePO₄ in air atmosphere at ramping rate of 10°C min⁻¹. Inset shows the enlarged curve before 350°C.

Figure 3. Evolution of XRD patterns of LiFePO₄ exposed to air versus temperature. The LiFePO₄ samples were held at set temperatures for 3 h.

 $6\text{LiFePO}_4 + 3/2\text{O}_2 \rightarrow 2 \text{ Li}_3\text{Fe}_2(\text{PO}_4)_3 + \text{Fe}_2\text{O}_3 \quad (\text{Eq. 1})$

 $_{40} \text{ C} + \text{O}_2 \rightarrow \text{CO}_2$ (Eq. 2)

To investigate the structural evolution under long exposure to air, the LiFePO₄ samples were held at set temperatures (150–400 °C) for 3 h. These derivatives were then subject to structural, spectroscopic and electrochemical analyses to reveal the ⁴⁵ evolution process. XRD patterns of these LiFePO₄ products are shown in Figure 3. It is clearly seen from Figure 3 that degradation of the olivine phase starts at 200 °C. At this temperature, the diffraction intensity decreases and splitting of the (020) peak in the pattern occurs. When the temperature ⁵⁰ increases to 250 °C, new diffraction peaks due to monoclinic Li₃Fe₂(PO₄)₃ ¹⁷ and α-Fe₂O₃ ¹⁸ appear in the pattern of the derivative. This result indicates that bulk phase evolution due to oxygen uptake occurs. Further increasing the temperature to 300 °C results in more Li₃Fe₂(PO₄)₃ and Fe₂O₃ phases at the expense ⁵⁵ of olivine structure. When the LiFePO₄ was treated at 400 °C, no

peaks due to olivine phase can be detected in the XRD pattern, suggesting a complete structural evolution.

2 | *Journal Name*, [year], **[vol]**, 00–00

Figure 4. Evolution of (a) FTIR and (b) XPS spectra of LiFePO₄ exposed to air upon heating at various temperatures.

In addition to XRD, the temperature-driven structural $_{\rm 5}$ evolution of the LiFePO₄ was further studied by FTIR. It is known that LiFePO₄ has two kinds of vibrational motions in the FTIR: internal modes originating from intramolecular vibrations of PO₄ polyanion and external mode due to lattice vibration.¹⁹ The latter involving Li ion motion usually occurs below 400 cm⁻¹

- ¹⁰ and is difficult to discern, thus will not be discussed here. As shown in Figure 4a, the fresh LiFePO₄ exhibits four absorption bands at 1139, 1095, 1056, and 973 cm⁻¹, which can be assigned to sketching of PO₄ group. Five additional bands at 637, 578, 551, 502 and 471 cm⁻¹ can be ascribed to the bending mode of PO₄
- ¹⁵ group.²⁰ The derivative treated at 150 °C shows a quite similar spectrum as the fresh LiFePO₄ and imply an intact microstructure, consistent with the XRD result. However, structural evolution can be clearly observed for the sample heated at 200 °C. In this spectrum, the sketching bands of PO₄ group become broad and
- $_{20}$ the band at 1095 cm $^{-1}$ loses its intensity to a large degree. Pronounced evolution is visible in the spectrum of the sample treated at 250 °C. The band at 1095 cm $^{-1}$ disappears and two new bands at 668 and 437 cm $^{-1}$ appear, which might be ascribed to α -Fe₂O₃. 21 Further raising the temperature to 300 and 400 °C results
- 25 in disappearance of more absorption bands ascribed to olivine phase. This is accompanied with emerging of new absorption bands located at 1182, 962, 602 cm⁻¹, which can be related to monoclinic Li₃Fe₂(PO₄)₃.

As oxidation of divalent Fe triggers the structural evolution ³⁰ of olivine phase, XPS spectroscopy was recorded to probe the evolution of chemical valence of Fe in LiFePO₄. XPS is a typical surface technique with high sensitivity, thus it would give direct

50 Figure 5. (a) CV graphs and (b) discharge curves of LiFePO₄ exposed to air upon heating at various temperatures.

The XRD and FTIR results suggest that evolution of LiFePO₄ bulk initiates at 200°C, while the XPS suggest that the surface degradation starts at a lower temperature of 150°C.¹⁴ To ⁵⁵ understand this evolution from the viewpoint of electrochemistry, CV and galvanoststic tests on the LiFePO₄ samples were implemented. Figure 5a displays their CV curves in the first two cycles at a scanning rate of 0.1 mV s⁻¹. The fresh LiFePO₄ discloses a distinct redox pairs at 3.4 V, representing the typical ⁶⁰ Fe²⁺/Fe³⁺ redox reaction in olivine.^{1, 24} This reaction reveals a

RSC Advances Accepted Manuscript

considerable reversibility, due to small particle size of LiFePO₄ and uniform carbon coating.^{25, 26} Surprisingly, the CV curve is highly sensitive to structural evolution. A redox pair emerges at 2.7 V for the LiFePO₄ upon 150 °C exposure, unambiguously

- ⁵ reflecting the occurrence of structural evolution at this temperature. The 2.7 V peak can be ascribed to Li insertion/extraction in the monoclinic Li₃Fe₂(PO₄)₃.²⁷ This redox pair continues growing with increasing exposing temperature, at the expense of the original 3.4 V pair. Finally, the peaks at 3.4 V ¹⁰ disappears for the 400 °C sample, and only the 2.7 V redox
- remains, suggesting a full evolution of LiFePO₄ phase.²⁸ This CV results correlate the structural and spectroscopic analyses well.
- Figure 5b shows their galvanostatic discharge curves during the first cycle. The fresh LiFePO₄ delivers a reversible capacity 15 of ~150 mAh g⁻¹ with flat potential plateau at 3.4 V, indicating favorable electrochemical activity of olivine material.⁸ Similarly, slight changes in the end of discharge can be found for the LiFePO₄ exposed to air at 150 °C. This change becomes remarkable for the samples treated at 200 °C or higher
- $_{20}$ temperatures, and a new potential at 2.7 V appears. The new plateau matches the CV peak at 2.7 V, and can be due to Li insertion into the monoclinic $\rm Li_3Fe_2(PO_4)_3$ phase. Theoretically, the $\rm Li_3Fe_2(PO_4)_3$ can electrochemically accommodate two Li ions per formula unit, leading to a capacity of 128 mAh g^{-1.27}
- ²⁵ Increasing the exposure temperature results in reduction of the 3.4-V plateau and concomitant increase of the 2.7-V one monotonically. The LiFePO₄ derivative at 400 °C only exhibits one plateau at 2.7 V, indicating the entire loss of olivine phase. Meanwhile, the overall discharge capacity decreases with
- ³⁰ increasing temperature, probably due to the lower capacity of the monoclinic phase and the gradual loss of conductive network of carbon. If ignoring the kinetic factor, we can quantitatively draw an evolution map by comparing the length of the two plateaux (Figure S2, ESI). The results reveal that the thermal evolution
- ³⁵ starts at 150 °C and the major process takes place between 200 and 250 °C. Previously, Martin et al reported a 2.3% evolution of LiFePO₄ at a lower temperature of 120 °C.¹⁴ The discrepancy might stem from the carbon coating. During the synthesis, we added sucrose rather than carbon as Martin et al. did in their case,
- ⁴⁰ to form a composite. This in situ carbon coating process forms an uniform overlayer on the surface of LiFePO₄ particles and thus provide good protection from oxygen attack,²⁹⁻³¹ which can significantly retard the structural evolution.

45 4 Conclusions

The temperature-driven evolution of the carbon coated LiFePO₄ in air atmosphere was investigated using various structural, spectroscopic and electrochemical techniques. The results indicate that nanocarbon coated LiFePO₄ is stable up to 250 °C

- ⁵⁰ over short exposure to air. Under long exposure, however, the bulk phase stability can maintain at 200°C while the surface evolution initiates at a much lower temperature of 150 °C, as revealed by XRD, FTIR, XPS and electrochemical analyses. Structural evolution proceeds as the temperature increases, and
- $_{55}$ the final products includes monoclinic $\rm Li_3Fe_2(PO_4)_3$ and $\alpha\text{-}Fe_2O_3.$ The evolution process can be quantitatively drawn through electrochemical galvanostatic test. The results show that the

major evolution takes place between 200 and 250 °C. This research provides quantitative understanding on the temperature-⁶⁰ driven evolution of olivine LiFePO₄ materials in air, and surely will benefit relative material research and production. ³²⁻³⁴

Acknowledgments

Support of this work by National Natural Science Foundation of 65 China (51302181), China Postdoctoral Science Foundation (2014M551647), and SRF for ROCS, SEM is acknowledged.

Notes and references

- ^a College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China. Fax: +81-512-67875503; Tel: +81-512-
- 70 67875503; E-mail: jeffni@suda.edu.cn (J. Ni) ^b Institute of Chemical Defense of PLA, Beijing 102205, China. E-mail: wyuejms52088@sohu.com (Y. Wang)

† Electronic Supplementary Information (ESI) available: [Materials 75 synthesis and chracterization, electrochemical evalution, and evolution of LiFePO₄]. See DOI: 10.1039/b000000x/

- 1. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J.
- Electrochem. Soc., 1997, 144, 1188-1194.
 M. S. Whittingham, Chem. Rev., 2014, 114, 11414-11443.
- X. S. whithingham, *Chem. Rev.*, 2014, 114, 11414-11445.
 C. Hu, Y. Wu and Y. Dai, *Funct. Mater. Lett.*, 2014, 07, 1450016.
- C. H., F. Wu and F. Bai, Fance mater. Ett., 2014, 97, 1450010.
 M. Molenda, A. Chojnacka, M. Bakierska and R. Dziembaj, *Mater. Technol.*, 2014, 29, A88-A92.
- 85 5. J. W. Zhang, L. H. Zhuo, L. L. Zhang, C. Y. Wu, X. B. Zhang and L. M. Wang, J. Mater. Chem., 2011, 21, 6975-6980.
 - J. F. Ni, Y. H. Han, L. J. Gao and L. Lu, *Electrochem. Commun.*, 2013, 31, 84-87.
- 7. J. F. Ni, H. H. Zhou, J. T. Chen and X. X. Zhang, *Chinese Journal of Inorganic Chemistry*, 2005, **21**, 472-476.
- J. Ni, Y. Zhao, J. Chen, L. Gao and L. Lu, *Electrochem. Commun.*, 2014, 44, 4-7.
- 9. J. F. Ni, M. Morishita, Y. Kawabe, M. Watada, N. Takeichi and T. Sakai, *J. Power Sources*, 2010, **195**, 2877-2882.
- 95 10. C. Nan, J. Lu, C. Chen, Q. Peng and Y. Li, *J. Mater. Chem.*, 2011, **21**, 9994.
- L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang and J. B. Goodenough, *Energy Environ. Sci.*, 2011, 4, 269-284.
- 100 12. C. Gong, F. Deng, C.-P. Tsui, Z. Xue, Y. S. Ye, C.-Y. Tang, X. Zhou and X. Xie, *J. Mater. Chem. A*, 2014, **2**, 19315-19323.
 - Y. G. Wang, P. He and H. S. Zhou, *Energy Environ. Sci.*, 2011, 4, 805-817.
- 14. J. F. Martin, A. Yamada, G. Kobayashi, S. Nishimura, R. Kanno, D.
 Guyomard and N. Dupré, *Electrochem. Solid-State Lett.*, 2008, 11, A12-A16.
 - P. F. Xiao, B. Ding, M. O. Lai and L. Lu, J. Electrochem. Soc., 2013, 160, A918-A926.
- I. Belharouak, C. Johnson and K. Amine, *Electrochem. Commun.*, 2005, 7, 983-988.
 - 17. M. Morcrette, C. Wurm and C. Masquelier, *Solid State Sci.*, 2002, 4, 239-246.

4 | Journal Name, [year], [vol], 00-00

- X.-L. Cheng, J.-S. Jiang, M. Hu, G.-Y. Mao, Z.-W. Liu, Y. Zeng and Q.-H. Zhang, *CrystEngComm*, 2012, 14, 3056-3062.
- C. M. Burba and R. Frech, J. Electrochem. Soc., 2004, 151, A1032-A1038.
- 5 20. J. F. Ni, Y. H. Han, J. Z. Liu, H. B. Wang and L. J. Gao, ECS Electrochem. Lett., 2013, 2, A3-A5.
- 21. G. H. Jiang and J. S. Jiang, Chem. J. Chin. Univ., 2004, 25, 405-408.
- M. Descostes, F. Mercier, N. Thromat, C. Beaucaire and M. Gautier-Soyer, *Appl. Surf. Sci.*, 2000, 165, 288-302.
- 10 23. K. Shimoda, H. Sugaya, M. Murakami, H. Arai, Y. Uchimoto and Z. Ogumi, J. Electrochem. Soc., 2014, 161, A1012-A1018.
 - Z.-X. Chi, W. Zhang, X.-S. Wang, F.-Q. Cheng, J.-T. Chen, A.-M. Cao and L.-J. Wan, *J. Mater. Chem. A*, 2014, 2, 17359-17365.
- 25. J. Yang, J. Wang, Y. Tang, D. Wang, B. Xiao, X. Li, R. Li, G. Liang,
- T.-K. Sham and X. Sun, *J. Mater. Chem. A*, 2013, **1**, 7306-7311.
 B. Ding, G. Ji, Y. Ma, P. Xiao, L. Lu and J. Y. Lee, *J. Power Sources*, 2014, **247**, 273-279.
 - 27. H. Karami and F. Taala, J. Power Sources, 2011, 196, 6400-6411.
- 28. D. L. Smiley, L. J. Davis and G. R. Goward, *J. Phys. Chem. C*, 2013,
 117, 24181-24188.
- K. Weichert, W. Sigle, P. A. van Aken, J. Jamnik, C. Zhu, R. Amin, T. Acartuerk, U. Starke and J. Maier, *Journal of the American Chemical Society*, 2012, 134, 2988-2992.
- 30. J. F. Ni, L. J. Gao and L. Lu, J. Power Sources, 2013, 221, 35-41.
- 25 31. J. Ni, L. Zhang, S. Fu, S. Savilov, S. Aldoshin and L. Lu, Carbon, 2015, 92, 15–25.
 - 32. J. Wang, J. Yang, Y. Zhang, Y. Li, Y. Tang, M. N. Banis, X. Li, G. Liang, R. Li and X. Sun, *Adv. Funct. Mater.*, 2013, 23, 806-814.
- 33. J. Wang, Y. Tang, J. Yang, R. Li, G. Liang and X. Sun, *J. Power Sources*, 2013, **238**, 454-463.
- 34. J. Wang, J. Yang, Y. Tang, J. Liu, Y. Zhang, G. Liang, M. Gauthier, Y. K. Chen-Wiegart, M. Norouzi Banis, X. Li, R. Li, J. Wang, T. K. Sham and X. Sun, *Nat. Commun.*, 2014, 5.

35

RSC Advances Accepted Manuscript