Catalytic properties of Pd nanoparticles supported on Cu_2O microspheres for hydrogen peroxide electroreduction

Limei Sun*, Shuaishuai Zhang, Wuyunga Bao and Wurigamula He

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Abstract: Cuprous oxide (Cu_2O) were synthesized by a wet-chemical approach in aqueous solution and Pd electrocatalysts supported on cuprous oxide (Pd/Cu_2O) and Vulcan XC-72 (Pd/C) were synthesized both via modified sodium borohydride reduction method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) methods were used to characterize the surface morphology and composition of Cu_2O nanoparticles and the catalysts. Linear sweep voltammetry (LSV) and Chronoamperometry (CA) were employed to evaluate the activity and stability of the catalysts. The results showed that Cu_2O nanoparticles were spherical with smooth surface and the average diameter was about 600 nm. Pd nanoparticles decorated on the surface of Cu_2O nanospheres and agglomerated slightly and the average size of the Pd nanoparticles was about 10 nm. A certain amount of Copper oxide and the metallic Cu were formed during the preparation of the Pd/Cu_2O catalyst. The Pd catalyst supported on cuprous oxide (Pd/Cu_2O) shows the superior performance to the catalyst supported on Vulcan XC-72, which attributed to the two reasons. One was the Pd/Cu_2O catalyst had the larger surface area and the other was all of the support Cu_2O itself, Copper oxide and the metallic Cu formed in the process of catalyst preparation have activity to the H_2O_2 electroreduction reaction to a certain extent.

Keywords: Palladium; cuprous oxide; Hydrogen peroxide; Electroreduction reaction; Fuel cell.

1. Introduction

Fuel cells using hydrogen peroxide as oxidant, such as metal semi-fuel cells (MSFCs)1-5, direct borohydride fuel cells (DBFCs)6-9, with the merits of high energy density, capability of operating in an air-free environment (space and underwater), and easy storage and distribution of both the fuel and the oxidant10,11, have grasped more attention recently. The activity of electrocatalysts for H_2O_2 reduction influences directly the performance of the fuel cells using H_2O_2 as oxide, so the study on the catalysts of H_2O_2 electroreduction have been reported largely, which include: (1) noble metals, such as platinum, palladium, iridium, gold, silver and their alloy12,13,16, (2) macrocycle complexes of transition metals, such as Co-porphyrin17 and Cu triazine complexes18,19, (3) transition metal oxides, such as cobalt oxides10,21, uranium oxide22, ferric oxides23. Among these catalysts, noble metal catalyst has the higher activity on the H_2O_2 reduction reaction, although meanwhile catalytic decomposition of hydrogen peroxide.

Among them, noble metal Pd-based catalysts, such as Pd-Ir24, Pd-Ag12 and Pd-Ru25, showed higher activity and better selectivity. These electrocatalysts are usually deposited on the support material to increase the surface area and reduce sintering effects. Carbon is a common choice for supporting nanosized electrocatalyst particles in low temperature fuel cells14. However, carbon materials only serve to support the noble metal nanoparticles but not to improve the activity of the composite catalyst. Therefore, more attention has been paid to the preparation of the composites between noble metals and other catalytic materials. A few studies using oxide material as active or promoting support have been reported in this regard. Examples are Pt/CuO26, Pd/Cu_2O27 which can further enhance the performance of catalyst and also improve the efficiency of noble metals.

Both the oxide of copper, including of CuO28 and Cu_2O29, have showed certain activity for H_2O_2 reduction action, however, they have low electric conductivity and catalytic performance. Many reports26,30-32 have revealed that these oxides decorated with metal particles could increase the conductivity and further improve the performance. In this study, we prepared Cu_2O nanopowders and Pd nanoparticles supported on cuprous oxide and investigated the promotion of the support for the performance of Pd-based catalysts on hydrogen peroxide electroreduction.

2. Experimental procedure

2.1. Reagents

Copper sulfate (CuSO_4·5H_2O), glucose monohydrate (C_6H_12O_6), anhydrous ethanol (C_2H_5OH), were purchased from Tianjin...
Kemiou Chemical Reagent Co. Ltd and PdCl₂, NaBH₄, NaOH, H₂SO₄, and H₂O₂ (30 wt.%) were supplied by Tianjin Tianda Chemical Preparation Co. Ltd. Vulcan XC-72(C) was obtained from Cabot Corp. with a specific surface area (BET) of 254 m² g⁻¹. Nafion solution (5 wt. %) was purchased from DuPont Corp. All chemicals were analytical grade and were used as-received without further purification. Ultrapure water (Millipore, 18 MΩ cm) was used throughout the study. Separate the symbol from the text.

2.2. Catalyst preparation

The preparation of Cu₂O nanoparticles was carried out as follows. 0.2 mol CuSO₄ was dissolved in 200 mL deionized water. Then 200 mL 2 mol L⁻¹ NaOH aqueous solution was added dropwise with a speed of 2 mL min⁻¹ to the above CuSO₄ solution under constant stirring. A blue precipitate of Cu(OH)₂ was produced, and 200 mL 2.5 mol L⁻¹ glucose solution was added to the above suspension, and stirred constantly at 80 °C for 1 h. Then the brick red precipitates were produced and centrifugated, rinsed five times by using deionized water and rinsed two times by using anhydrous ethanol, then dried in a vacuum desiccator at 65 °C for 24 h.

The Pd/Cu₂O catalysts with Pd metal loading of 20 wt. % were obtained by the chemical reduction method. First, the pH of H₂PdCl₄ solution was adjusted to 8-9 by the NaOH solution. And then 60 mg Cu₂O nanopowders were added into the mixture and treated in an ultrasonic bath. 15 mL 1 mol L⁻¹ NaBH₄ solution was added drop by drop and stirred for 4 h. Finally, the mixtures were filtered, washed and dried under vacuum. To compare the characteristics of electrocatalysts, 20 wt. % Pd/C catalysts were prepared through the same procedure using Vulcan XC-72 as the support material.

2.3. Characterization

The crystal phase of the synthesized nanoparticles and the catalysts were identified by X-ray diffraction (XRD, D8FOCUS) using CuKα radiation (2 kV rotating anode, λ= 0.154056 nm). The samples were scanned from 20° to 90° at a scanning rate of 0.02° s⁻¹. The microstructures and morphologies of the Pd/Cu₂O catalysts were determined by scanning electron microscopy (SEM, JSM-6480) and transmission electron microscope (TEM, H-7650). X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Thermo ESCALAB 250 with Al Kα radiation for the X-ray sources and the binding energy was calibrated by means of the Cls peak energy of 284.8 eV. The curves were fitted by using the XPSPEAK41 software.

2.4. Electrochemical characterizations

Electrochemical experiments were measured in a conventional three-electrode electrochemical cell using a glassy-carbon electrode (d = 5 mm) as the working electrode, Carbon rod as the auxiliary electrode, and a saturated calomel electrode (SCE) as the reference electrode. The coating of catalyst on glassy-carbon electrode was carried out as follows: the glassy-carbon electrode was polished with alumina power down to 0.3 µm, washed with ultrapure water and dried in air completely. 5 mg of the catalyst was mixed with 2 mL ultrapure water. The mixture was homogenized in an ultrasonic bath for 30 min to obtain catalyst suspension. 15 µL of the catalyst suspension was spread on the surface of the glassy carbon electrode with a loading of approximately 200 µg cm⁻² and dried in air at room temperature for 2 h. Then, 5 µL of Nafion solution was applied to the glassy-carbon electrode and dried in air in order to prevent the catalyst from falling apart. Thus a thin layer of catalyst was fixed on the surface of glassy-carbon electrode.

Electrochemical measurements were performed on a PARSTAT 2273 Potentiostats-Electrochemistry Workstation (Ametek Corp.). Cyclic voltammetry measurements (CV) were conducted in the potential between -0.3 V and 1.2 V in 0.1 mol L⁻¹ H₂SO₄ solution. Linear scan voltammetry (LSV) was obtained in 0.1 mol L⁻¹ H₂SO₄ solution containing H₂O₂ with various concentration. The scan rates of the above two procedures were both 50 mV s⁻¹ and the procedures were both repeated 5 times to obtain the stable results. Chronoamperometry (CA) was performed in 0.1 mol L⁻¹ H₂SO₄ + 0.5 mol L⁻¹ H₂O₂ solution for 1800 s at 0 V. The electrolyte solutions were saturated by bubbling high purity nitrogen for 20 min before the measurements and were protected with the nitrogen during potential cycling. All potentials in this paper are reported versus the saturated calomel electrode (SCE).

![Fig.1 XRD pattern of Pd/Cu₂O and Pd/C samples. The inset shows XRD pattern of Cu₂O nanopowders.](image-url)
3. Results and discussion

3.1. Catalyst characterization

XRD measurements were carried out to obtain the structural information for the prepared Cu$_2$O nanopowders and the two catalysts obtained from different catalyst carriers. Figure 1 shows the XRD patterns of the Pd/Cu$_2$O and Pd/C catalysts, and the insert shows the XRD patterns of the Cu$_2$O nanopowders. From the insert, peaks were observed at about $2\theta = 29.8^\circ$, 36.7°, 42.5°, 61.5° and 73.7°, which were characteristic of cubic Cu$_2$O phase (JCPDS Card No. 65,3288). From the pattern of the Pd/C catalyst, the diffraction peaks at about 39.9°, 46.4°, 67.8° and 81.6° are attributed to the Pd (111), Pd (200), Pd (220) and Pd (311) planes of face-centered cubic (fcc) phase (JCPDS Card No. 65-2867) and the peak at about 25° was associated with the Vulcan XC-72 support material. From the pattern of the Pd/Cu$_2$O catalyst, besides the cubic Cu$_2$O phase and the Pd fcc phase, some unexpectedly characteristic peaks are observed. The peak at 38.8° is attributed to the CuO(111) planes (JCPDS Card No. 65-2309) and the peaks at 43.3° and 50.4° can be indexed to (111) and (200) planes of the Cu crystal structure (JCPDS Card No. 04-0836). The results demonstrate that some Cu$^+$ ions have been oxidized to the Cu$^{2+}$ ions and at the same time, others have been reduced to the metallic Cu by NaBH$_4$ during the preparation of the Pd/Cu$_2$O catalyst.

Figure 2(a) shows the SEM images of the Cu$_2$O samples in different resolutions, respectively. It can be seen that the Cu$_2$O particles prepared are in a spherical shape with smooth surface as well as high dispersity and the average diameter of the spheres is about 600 nm. Fig.2(c) shows the TEM image of the Pd/Cu$_2$O catalyst and fig. 2(d) is the corresponding high magnification images. Pd nanoparticles decorate on the surface of Cu$_2$O nanospheres and agglomerate slightly together to form larger clusters and the average size of the Pd nanoparticles is about 10 nm. It was confirmed from the SEM and TEM that Pd/Cu$_2$O composite microspheres with core-shell structure were obtained.
X-ray photoelectron spectroscopy (XPS) was used to determine the surface composition and possible electronic interactions of the Cu$_2$O nanopowders and the Pd/Cu$_2$O catalysts. A typical survey XPS spectrum in Fig. 3(a) reveals that both samples are composed of Cu and O elements, while an additional peak assigned to Pd element appears in XPS spectrum of Pd/Cu$_2$O, which indicates the presence of Pd species on Cu$_2$O. Fig. 3(b) presents the high resolution XPS scan spectra of Pd 3d. As shown in Fig. 3(b), the Pd 3d signal of the Pd/Cu$_2$O catalyst can be fitted to two pairs of doubles: Pd 3d$_{3/2}$ (340.5 eV), Pd 3d$_{5/2}$ (335.2 eV) and Pd 3d$_{3/2}$ (342.2 eV), Pd 3d$_{5/2}$ (337.0 eV), which can be assigned to Pd0 and PdIO species, respectively.33 Fig. 3(c) and (d) show the Cu 2p XPS scan spectra of Cu$_2$O and Pd/Cu$_2$O samples, respectively. The fitting Cu2p spectrum (Fig. 3(c)) shows the peaks at 932.5 eV and 952.5 eV, which were corresponding to the Cu 2p$_{3/2}$ and Cu 2p$_{1/2}$ of the Cu$_2$O.34 respectively. As shown in Fig. 3(d), the peak fit of the Cu 2p$_{3/2}$ core level for the Pd/Cu$_2$O catalyst revealed two binding energy states at 932.0 eV and 942.0 eV, which were assigned to Cu$_2$O and CuO.33,35 Moreover, a satellite signal at 934.4 eV was also assigned to CuO.36 It is obvious that a considerable amount of CuO exists on the surface of the Pd/Cu$_2$O catalyst, supporting the presence of the characteristic peak of CuO (1 1 1) in the XRD pattern of the Pd/Cu$_2$O catalyst. Although some Cu0 should also exist on the catalyst surface, it is hard to be discriminated from Cu$_2$O due to their similar binding energy. One can distinguish them from the position of their LMM-2 auger transition in XPS spectra which are about 568 eV and 570 eV for Cu and Cu$_2$O, respectively.37 From Fig. 3(e), it can be seen that there is a peak at about 570 eV in the XPS spectra of Cu$_2$O samples, thus it can be make a certain conclusion that the 932.0 eV in Fig. 3(c) is related to Cu$_2$O. However, the peak at 569 eV in the XPS spectra of Pd/Cu$_2$O samples revealed two binding energy states at 968.0 and

Fig. 3 (a) XPS survey spectra of Cu$_2$O and Pd/Cu$_2$O samples. (b) Pd3d scan spectra of Pd/Cu$_2$O samples. (c) (d) Cu2p scan spectra of Cu$_2$O and Pd/Cu$_2$O samples. (e) Cu LMM-2 auger transition of Cu$_2$O and Pd/Cu$_2$O samples.

5 X-ray photoelectron spectroscopy (XPS) was used to determine the surface composition and possible electronic interactions of the Cu$_2$O nanopowders and the Pd/Cu$_2$O catalysts. A typical survey XPS spectrum in Fig. 3(a) reveals that both samples are composed of Cu and O elements, while an additional peak assigned to Pd element appears in XPS spectrum of Pd/Cu$_2$O, which indicates the presence of Pd species on Cu$_2$O. Fig. 3(b) presents the high resolution XPS scan spectra of Pd 3d. As shown in Fig. 3(b), the Pd 3d signal of the Pd/Cu$_2$O catalyst can be fitted to two pairs of doubles: Pd 3d$_{3/2}$ (340.5 eV), Pd 3d$_{5/2}$ (335.2 eV) and Pd 3d$_{3/2}$ (342.2 eV), Pd 3d$_{5/2}$ (337.0 eV), which can be assigned to Pd0 and PdIO species, respectively.33 Fig. 3(c) and (d) show the Cu 2p XPS scan spectra of Cu$_2$O and Pd/Cu$_2$O samples, respectively. The fitting Cu2p spectrum (Fig. 3(c)) shows the peaks at 932.5 eV and 952.5 eV, which were corresponding to the Cu 2p$_{3/2}$ and Cu 2p$_{1/2}$ of the Cu$_2$O,34 respectively. As shown in Fig. 3(d), the peak fit of the Cu 2p$_{3/2}$ core level for the Pd/Cu$_2$O catalyst revealed two binding energy states at 932.0 and 942.0 eV, which were assigned to Cu$_2$O and CuO.33,35 Moreover, a satellite signal at 934.4 eV was also assigned to CuO.36 It is obvious that a considerable amount of CuO exists on the surface of the Pd/Cu$_2$O catalyst, supporting the presence of the characteristic peak of CuO (1 1 1) in the XRD pattern of the Pd/Cu$_2$O catalyst. Although some Cu0 should also exist on the catalyst surface, it is hard to be discriminated from Cu$_2$O due to their similar binding energy. One can distinguish them from the position of their LMM-2 auger transition in XPS spectra which are about 568 eV and 570 eV for Cu and Cu$_2$O, respectively.37 From Fig. 3(e), it can be seen that there is a peak at about 570 eV in the XPS spectra of Cu$_2$O samples, thus it can be make a certain conclusion that the 932.0 eV in Fig. 3(c) is related to Cu$_2$O. However, the peak at 569 eV in the XPS spectra of Pd/Cu$_2$O samples revealed two binding energy states at 968.0 and
970.0 eV, which are attributed to Cu⁰ and Cu⁺ ions, respectively. This illustrates a certain quantity of the metallic Cu also exists on the surface of the Pd/Cu₂O catalyst which is in agreement with that discussed in XRD.

Fig. 4 Cyclic voltammograms of Pd/C and Pd/Cu₂O catalysts in 0.1 mol/L H₂SO₄ solution at a scan rate of 50 mV/s.

3.2. Electrochemical measurements

Figure 4 shows cyclic voltammograms (CV) of the Pd/Cu₂O and Pd/C catalysts in 0.1 mol/L H₂SO₄ solution, and the insert is the CV of Cu₂O nanopowder. It can be seen from the insert, a pair of nearly reversible redox peaks were observed at about -0.2 V and 0.1 V (versus SCE) which can be attributed to the reduction of CuO/Cu₂O redox couple. The shape of the voltammeter curve of the Pd/Cu₂O and Pd/C catalysts is very similar and both samples exhibit a hydrogen adsorption/desorption peak at -0.3 V – 0 V and Pd-oxide formation/reduction peak at 0.5 V – 1.2 V. The reduction of palladium oxide of the Pd/Cu₂O or Pd/C catalyst shows a well-defined cathodic peak between 0.1 V and 0.5 V.

However, the anodic peak at 0.3 V in the Pd/Cu₂O catalyst, which was not seen in the Pd/C sample, indicates the oxidation of an Cu–O species. It is due to a certain quantity of the metallic Cu exists on the surface of the Pd/Cu₂O catalyst, which is consistent with the findings in XRD and XPS. The electrochemically active surface area (EASA) of the catalysts can be calculated from the charge obtained from the cathodic peak between 0.1 V and 0.5 V. Pd assumes that a monolayer of PdO was formed and its reduction charge value is 405 µC/cm². Such estimated EASA of the Pd/Cu₂O and Pd/C catalysts are 53.3 m²/g_{Pd} and 30 m²/g_{Pd}, respectively. This indicated that the Pd/Cu₂O electrode has the larger surface area than the Pd/C electrode.

Fig. 5 Linear sweep voltammograms of Pd/C and Pd/Cu₂O catalysts in 0.1 mol/L H₂SO₄ solution with different concentration at a scan rate of 50 mV/s.
Figure 5 shows linear sweep voltammograms of the Pd/Cu2O and Pd/C catalysts in N2-saturated 0.1 mol L−1 H2SO4 solutions with various H2O2 concentrations at a scan rate of 50 mV s−1. It can be seen that both the current density for hydrogen peroxide electroreduction on the two catalysts increase with the concentration of H2O2 increasing and the current density on Pd/Cu2O electrode has been higher than that on the Pd/C electrode, which indicate that the catalytic activity of the Pd/Cu2O electrode is higher than that of the Pd/C. There are two reasons leading to the higher catalytic activity of the Pd/Cu2O catalyst. One is the Pd/Cu2O electrode has a larger specific surface and the other may be that both the support Cu2O itself and two other products formed during the preparation of the Pd/Cu2O catalyst, including CuO, and the metal Cu, show certain activity for the action of H2O2 reduction except the noble metal Pd has the higher catalytic activity on H2O2 reduction in acid medium. There have been several studies of the electroreduction action of hydrogen peroxide on the Cu and its oxides surface in different pH solution. It has been shown that the catalysts in this action are brought about by the Cu(II)/Cu(I) and Cu(I)/Cu(0) couples. As shown in Equation (1)-(4), Cu with the higher valence in the couples, such as Cu(II) and Cu(I), firstly reduced electrochemically to Cu with the lower valence, such as Cu(I) and Cu(0), which reacted chemically with H2O2 and resulted in the H2O2 revert to OH− and in the regeneration of the catalyst.

\[
\begin{align*}
2\text{CuO} + \text{H}_2\text{O}_2 + 2e^- &\rightarrow \text{Cu}_2\text{O} + 2\text{OH}^- \quad (1) \\
\text{Cu}_2\text{O} + \text{H}_2\text{O}_2 + 2e^- &\rightarrow 2\text{Cu} + 2\text{OH}^- \quad (2) \\
\text{Cu}_2\text{O} + \text{H}_2\text{O}_2 &\rightarrow 2\text{CuO} + \text{H}_2\text{O} \quad (3) \\
2\text{Cu} + \text{H}_2\text{O}_2 &\rightarrow \text{Cu}_2\text{O} + \text{H}_2\text{O} \quad (4)
\end{align*}
\]

Fig. 6 shows that both the current density for hydrogen peroxide electroreduction on the two catalysts increase with the concentration of H2O2 increasing and the current density on Pd/Cu2O electrode has been higher than that on the Pd/C electrode, which indicates that the catalytic activity of the Pd/Cu2O electrode is higher than that of the Pd/C. There are two reasons leading to the higher catalytic activity of the Pd/Cu2O catalyst. One is the Pd/Cu2O electrode has a larger specific surface and the other may be that both the support Cu2O itself and two other products formed during the preparation of the Pd/Cu2O catalyst, including CuO and the metal Cu, show certain activity for the action of H2O2 reduction except the noble metal Pd has the higher catalytic activity on H2O2 reduction in acid medium. There have been several studies of the electroreduction action of hydrogen peroxide on the Cu and its oxides surface in different pH solution. It has been shown that the catalysts in this action are brought about by the Cu(II)/Cu(I) and Cu(I)/Cu(0) couples. As shown in Equation (1)-(4), Cu with the higher valence in the couples, such as Cu(II) and Cu(I), firstly reduced electrochemically to Cu with the lower valence, such as Cu(I) and Cu(0), which reacted chemically with H2O2 and resulted in the H2O2 revert to OH− and in the regeneration of the catalyst.

\[
\begin{align*}
2\text{CuO} + \text{H}_2\text{O}_2 + 2e^- &\rightarrow \text{Cu}_2\text{O} + 2\text{OH}^- \quad (1) \\
\text{Cu}_2\text{O} + \text{H}_2\text{O}_2 + 2e^- &\rightarrow 2\text{Cu} + 2\text{OH}^- \quad (2) \\
\text{Cu}_2\text{O} + \text{H}_2\text{O}_2 &\rightarrow 2\text{CuO} + \text{H}_2\text{O} \quad (3) \\
2\text{Cu} + \text{H}_2\text{O}_2 &\rightarrow \text{Cu}_2\text{O} + \text{H}_2\text{O} \quad (4)
\end{align*}
\]

Fig. 6 shows linear sweep voltammograms of the Pd/Cu2O and Pd/C catalysts in N2-saturated 0.1 mol L−1 H2SO4 solutions with various H2O2 concentrations at a scan rate of 50 mV s−1. It can be seen that both the current density for hydrogen peroxide electroreduction on the two catalysts increase with the concentration of H2O2 increasing and the current density on Pd/Cu2O electrode has been higher than that on the Pd/C electrode, which indicates that the catalytic activity of the Pd/Cu2O electrode is higher than that of the Pd/C. There are two reasons leading to the higher catalytic activity of the Pd/Cu2O catalyst. One is the Pd/Cu2O electrode has a larger specific surface and the other may be that both the support Cu2O itself and two other products formed during the preparation of the Pd/Cu2O catalyst, including CuO and the metal Cu, show certain activity for the action of H2O2 reduction except the noble metal Pd has the higher catalytic activity on H2O2 reduction in acid medium. There have been several studies of the electroreduction action of hydrogen peroxide on the Cu and its oxides surface in different pH solution. It has been shown that the catalysts in this action are brought about by the Cu(II)/Cu(I) and Cu(I)/Cu(0) couples. As shown in Equation (1)-(4), Cu with the higher valence in the couples, such as Cu(II) and Cu(I), firstly reduced electrochemically to Cu with the lower valence, such as Cu(I) and Cu(0), which reacted chemically with H2O2 and resulted in the H2O2 revert to OH− and in the regeneration of the catalyst.

\[
\begin{align*}
2\text{CuO} + \text{H}_2\text{O}_2 + 2e^- &\rightarrow \text{Cu}_2\text{O} + 2\text{OH}^- \quad (1) \\
\text{Cu}_2\text{O} + \text{H}_2\text{O}_2 + 2e^- &\rightarrow 2\text{Cu} + 2\text{OH}^- \quad (2) \\
\text{Cu}_2\text{O} + \text{H}_2\text{O}_2 &\rightarrow 2\text{CuO} + \text{H}_2\text{O} \quad (3) \\
2\text{Cu} + \text{H}_2\text{O}_2 &\rightarrow \text{Cu}_2\text{O} + \text{H}_2\text{O} \quad (4)
\end{align*}
\]

The palladium decorated on Cu2O as metal with face-centered cubic structure and the particle size was about 10 nm. The metallic Cu and CuO produced during the synthesis of the Pd/Cu2O composites. The reduction reaction of Hydrogen peroxide on the Pd/Cu2O catalyst has good stability and higher current density. This was due to that (1) the Pd/Cu2O catalyst has the larger surface area; (2) the support Cu2O and the metallic Cu and CuO produced in preparation process improved the activity of Pd towards H2O2 reduction reaction. Using this method, catalysts are prepared in aqueous solution easily with high catalytic activity and lower cost, which has great potential in industrial application.

This work was financially supported by the National Natural Science Foundation of China (21003070, 21463017) and the Natural Science Foundation of Inner Mongolia, China (2012MS0208).
Notes and references