

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

HSH-CAE-LC-MS/MS opened up a new avenue for the direct determination of secondary metabolic profiles from fresh plant *in vitro* cultures.

1	
2	
3	Direct determination of astragalosides and isoflavonoids from fresh Astragalus
4	membranaceus hairy root cultures by high speed homogenization coupled with
5	cavitation-accelerated extraction followed by liquid chromatography-tandem
6	mass spectrometry
7	
8	Jiao Jiao ^{a,1} , Qing-Yan Gai ^{b,c,1} , Meng Luo ^{b,c} , Xiao Peng ^{b,c} , Chun-Jian Zhao ^{b,c} , Yu-Jie
9	Fu ^{b,c,} *, Wei Ma ^{a,d,} *
10	
11	^a State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University,
12	Harbin 150040, PR China
13	^b Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry
14	University, Harbin 150040, PR China
15	^c Collaborative Innovation Center for Development and Utilization of Forest
16	Resources, Harbin 150040, PR China
17	^d School of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin
18	150040, PR China
19	
20	
21	* Corresponding author: Professors Yu-Jie Fu and Wei Ma
22	Tel./fax: +86-451-82190535 (YJ. Fu); +86-451-82193430 (W. Ma)
23	E-mail address: yujie_fu2011@yahoo.com (YJ. Fu); mawei@hljucm.net (W. Ma)
24	¹ These authors contributed equally to this work.
25	

26 Abstract

27	A direct analysis approach for plant in vitro cultures, namely high speed
28	homogenization coupled with cavitation-accelerated extraction (HSH-CAE) followed
29	by liquid chromatography-tandem mass spectrometry (LC-MS/MS), was developed
30	for simultaneous determination of six astragalosides and five isoflavonoids in
31	Astragalus membranaceus hairy root cultures (AMHRCs). In comparison to reported
32	soxhlet extraction (SE) and ultrasound-assisted extraction (UAE) methods, the
33	proposed sample preparation procedure (HSH-CAE) offers significant improvements
34	with regard to simplicity in operation (elimination of biomass drying and grinding),
35	high efficiency, enhanced yield and green aspects in terms of saving energy cost and
36	minimizing the generation of waste. Additionally, the HSH-CAE mechanism was
37	clarified via cytohistological studies of samples at cellular/tissular levels. Moreover,
38	the established LC-MS/MS method provided linearity with correlation coefficients
39	above 0.9991, limit of detections (LODs) below 1.77 ng mL ⁻¹ , relative standard
40	deviations (RSDs) below 6.01%, and recoveries above 96.84%. Furthermore, the
41	proposed HSH-CAE-LC-MS/MS method was also successfully applied for screening
42	high-productive AMHRCs. Overall, this study opened up a new avenue for the direct
43	determination of secondary metabolic profiles from fresh plant in vitro cultures, which
44	was valuable for improving the quality control of plant cell/organ cultures and shed
45	light on the metabolomics analysis from biological samples.
46	

- 47
- 48
- 49
- 49
- 50

51 **1. Introduction**

52 Astragalus membranaceus (Fisch.) Bunge roots (Radix astragali) are commonly used in United States, Europe and Asian countries as traditional medicines for the 53 54 treatment of cardiovascular disease, cancers, diabetes mellitus, nephritis, leukemia, hypertension and hyperhidrosis, or as health-promoting foodstuffs (typically soups 55 56 and teas) to enhance the human immune system and to reinforce the body vital energy ¹⁻⁴. However, the limited supply (endemic plant species for East Asia) together with 57 the over-exploitation constitutes the most important hurdles for developing Radix 58 astragali-based drugs or dietary supplements ^{5, 6}. To address these issues, it has 59 60 become feasible to use plant in vitro cultures for the large-scale production of valuable phytochemicals from this species⁴. In this context, A. membranaceus hairy roots 61 cultures (AMHRCs) generated from the genetic transformation of Agrobacterium 62 63 *rhizogenes*, have emerged as attractive alternatives to produce active compounds effectively, economically and in an environmentally friendly way $^{6-9}$. 64 Astragalosides and isoflavonoids, the principal active ingredients of Radix 65 astragali, possess versatile biological activities as diverse as anti-tumor, cardiotonic, 66 67 immunomodulatory, neuroprotective, antiviral, antioxidant, anti-inflammatory, 68 antiperspirant, hepatoprotective, antihypertensive, anti-fatigue, anti-osteoarthritis effects, etc.^{4, 10–12}. Accordingly, it is necessary to establish a valid analytical method 69 70 to characterize the major pharmaceuticals (astragalosides and isoflavonoids) and 71 efficiently control the quality of AMHRCs. It is known the fact that the analysis of 72 metabolites in plant *in vitro* cultures is a challenging task because of their chemical diversity, usually low abundance and variability within different cell/organ lines ¹³. 73 74 Liquid chromatography-mass spectrometry (LC-MS/MS) offers excellent sensitivity 75 and selectivity, combined with the ability to elucidate or confirm chemical structures

76	of target constituents in complex biological samples based on their exact MS/MS
77	fragment patterns ^{14, 15} . Sample preparation is still the most tedious and
78	time-consuming step, which is recognized as the main bottleneck of the analytical
79	process ¹⁶ .
80	Extraction of secondary metabolites from plant cell/organ cultures is always
81	limited by their high water contents. Conventional sample preparation methods such
82	as soxhlet extraction (SE) and ultrasound-assisted extraction (UAE), are available for
83	phytochemicals extraction from plant in vitro cultures, but they generally require high
84	energy consumption for dewatering and drying pretreatment along with long duration
85	and low efficiency ^{17, 18} . Therefore, development of new sample preparation strategies
86	for HRCs that eliminate biomass drying and enhance extraction efficiency can lead to
87	significant energy and cost savings. Moreover, selection of a particular sample
88	preparation method should depend on the simplicity of the extraction technique and
89	its convenience. High speed homogenization (HSH) has been an effective sample
90	pretreatment technique, which can facilitate the destruction of fresh plant materials for
91	a better access to intracellular substances ^{19, 20} . In addition, cavitation-accelerated
92	extraction (CAE) developed by our laboratory, is a simple, environmentally friendly
93	and efficient technology, which has been successfully applied in the extraction and
94	analysis of bioactive ingredients from several medicinal plants ^{21, 22} . However, CAE
95	has never been used for the extraction of phytochemicals from plant in vitro cultures.
96	In this work, HSH coupled with CAE (HSH-CAE) followed by LC-MS/MS was
97	proposed for the direct determination of six astragalosides and five isoflavonoids in
98	AMHRCs. The diagram of work flow is shown in Fig. 1. Various influential
99	parameters of the proposed sample preparation method were optimized systematically.
100	Subsequently, the superiority of HSH-CAE was evaluated as compared to

4

101	conventional methods in terms of extraction efficiency and green aspects. Moreover,
102	cytohistological studies of samples before and after extraction were performed to
103	clarify the extraction mechanism. Furthermore, a sensitive and accurate LC-MS/MS
104	method with selected reaction monitoring (SRM) model for simultaneous
105	quali-quantitative analysis of eleven target compounds was successfully established.
106	The method validation of the proposed approach was also investigated. Eventually,
107	the developed analytical method was performed for screening high-productive
108	AMHRCs among eight candidates.
109	2. Materials and methods
110	2.1. Materials and reagents
111	Eight A. membranaceus hairy root lines (I-VIII) were successfully induced via
112	the genetic transformation of A. rhizogenes LBA9402 in our laboratory. Eight
113	AMHRCs (I-VIII) were initiated by culturing 1.5 g (fresh weight, FW) of different
114	hairy root lines in 250 mL Erlenmeyer's flasks containing 150 mL of Murashige and
115	Skoog (MS)-based liquid medium (pH 5.8) supplemented with 30 g L^{-1} sucrose and 1
116	g L^{-1} casein hydrolyzate but without NH_4NO_3 , and incubated on a rotary shaker (100
117	rpm) in the dark at 25 ± 1 °C. AMHRCs were harvested by filtration after 4 weeks of
118	cultivation, and then rinsed with tap and distilled water. Moisture contents of eight
119	AMHRCs (I–VIII) were pre-determined for the further quantitative analysis.
120	Astragalosides and isoflavonoids standards including including astragaloside I
121	(AG I), astragaloside II (AG II), isoastragaloside II (IAG II), astragaloside III (AG
122	III), astragaloside IV (AG IV), cycloastragenol (CY), calycosin-7-O-β-D-glucoside
123	(CAG), on onin (ON), astraisoflavan-7-O- β -D-glucoside (ASG), calycosin (CA) and
124	formononetin (FO) were purchased from Weikeqi Biological Technology Co. Ltd.

125	(Sichuan province, China). Other reagents of either analytical or optical grade were
126	obtained from Beijing Chemical Reagents Co. (Beijing, China).
127	2.2. HSH-CAE procedure
128	2.2.1. Extraction process
129	The HSH-CAE instrument was designed and manufactured by our laboratory. As
130	the diagram illustrated in Fig. 1, the apparatus consists mainly of a high speed
131	homogenizer (A), a cavitation chamber (B) and a vacuum pump (C). During the
132	extraction process, the fresh AMHRCs VI (5.0 g, FW) were initially added into the
133	homogenizer from an inlet (1) while all the valves were kept closed. After HSH
134	treatment, valves (2) and (3) and the vacuum pump were turned on successively.
135	Meanwhile, the homogenates and extraction solvents were introduced automatically
136	into the cavitation chamber by the generated negative pressure. Subsequently, the
137	valve (2) was turned off but the valve (4) was turned on, and then the continuous air
138	flow was introduced into the cavitation chamber for CAE process. The vacuum degree
139	of the extraction system was monitored by the throttling gauge (6) and the pressure
140	gauge (7). Additionally, a sieve plate set in the bottom of the cavitation chamber was
141	utilized to generate cavitations with different intensities and characteristics. After the
142	extraction, valves (3) and (4) and the vacuum pump were turned off successively. The
143	vacuum in the cavitation chamber was released by adjusting the valve (2). Eventually,
144	the extraction solvent was filtered through the sieve plate under gravity, and collected
145	via the valve (5). The obtained solution was then centrifuged and filtered through a
146	0.22 μm nylon membrane for LC-MS/MS analysis.

147 2.2.2. Experimental design

To achieve the optimum efficiency by HSH-CAE, Box-Behnken design (BBD) ²³
was applied to survey the effect of four key independent variables at three levels

150	(negative pressure -0.06 to -0.09 MPa, homogenization time 30 to 60 s, liquid/solid
151	ratio 3 to 8, and extraction time 10 to 30 min) on the dependent variable (the sum
152	yields of AG I, AG II, IAG II, AG III, AG IV, CY, CAG, ON, ASG, CA and FO).
153	Liquid/solid ratio was calculated based on the fresh weight of hairy roots. The actual
154	and coded levels of the independent variables used in the experimental design are
155	summarized in Table S1. The experiment data were analyzed statistically with
156	Design-Expert 7.0 software (State-Ease, Inc., Minneapolis MN). Analyses of variance
157	(ANOVA) were performed to calculate and simulate the optimal values of the tested
158	parameters.
159	2.3. Conventional procedures
160	The washed AMHRCs VI were dried in a vacuum drier at 60 °C till a constant
161	weight, and then the dry materials were ground to fine powders and extracted by the
162	reported soxhlet extraction (SE) and ultrasound-assisted extraction (UAE) methods
163	with slight modifications $^{17, 18}$. For SE: root powders (0.5 g) were placed in a Soxhlet
164	apparatus and extracted with 80% ethanol solution (25 mL) at 90 °C for 4 h. For UAE:
165	root powders (0.5 g) were extracted with 80% ethanol solution (25 mL) in an
166	ultrasonic bath (KQ-250DB, Kun-shan Ultrasonic Instrument Co. Ltd., China) for 120
167	min. After the extraction of each method, the obtained solutions were centrifuged and
168	filtered through a 0.22 μ m nylon membrane for LC-MS/MS analysis.
169	2.4. LC-MS/MS analysis
170	An Agilent 1100 series HPLC (Agilent, San Jose, USA) coupled to an API 3000
171	triple tandem quadrupole MS (Applied Biosystems, Concord, Canada) equipped with
172	a Phenomenex Gemini C18 110A reversed-phase column (250 mm \times 4.6 mm I.D., 5
173	μ m) was applied for the analysis of target compounds from AMHRCs. The binary
174	mobile phase consisted of acetonitrile (A) and 0.01% formic acid aqueous solution (B)

175	using the gradient program as follows: 0-3 min, 45% (A); 3-8 min, 45-50% (A);
176	8–13 min, 50–60% (A); 13–18 min, 60–65% (A); and 18–20 min, 65–45% (A). The
177	column temperature was maintained at 30 °C, the flow rate 1.0 mL min ⁻¹ and the
178	injection volume 10 μL.
179	All mass spectra of target analyses were acquired in SRM mode with
180	electrospray ionization (ESI) source operating in the negative ion mode. The universal
181	parameters were as follows: nebulising gas, curtain gas and collision gas set as 12, 10
182	and 6 a.u. (arbitrary units), respectively; ion source temperature 300 °C; ion spray
183	voltage -4500 V; focusing potential and entrance potential set as -75 and -10 V,
184	respectively. To obtain the highest response for each analyte, the specific parameters
185	for acquiring the optimal precursor/product ion combinations including declustering
186	potential (DP), collision energy (CE) and collision cell exit potential (CXP) were
187	optimized and summarized in Table 1. Contents of target compounds were calculated
188	by corresponding calibration curves based on the dry weight of roots. For fresh
189	AMHRCs, the dry weights were obtained through converting fresh weights by the aid
190	of their moisture contents.
191	2.5. Statistical analysis
192	All experiments in this work were conducted for three times. Results were
193	expressed as means \pm standard deviations. The data were statistically analyzed using
194	the SPSS statistical software, version 17.0 (SPSS Inc, Chicago, Illinois, USA).

- 195 Differences between means were determined by analysis of variance (ANOVA) with
- 196 Duncan's test on the level of significance declared at P < 0.05.
- 197 **3. Results and discussion**

198 **3.1. Optimization of HSH-CAE conditions**

199 The rationale for application of the HSH pretreatment is various, the most

RSC Advances Accepted Manuscript

200	evident being the ability of a high speed homogenizer (12000 rpm) to handle fresh
201	plant materials in a continuous stream with turbulence, shear stress and friction, which
202	can affect morphological changes in plant matrix that enhances the following
203	extraction process ^{19, 20} . Additionally, the cavitation of CAE in this work is generated
204	by negative pressure via vacuum pump, and air is introduced continuously into the
205	extraction vessel along with the collapse of bubbles that creates intensive
206	cavitation-collision, turbulence, suspension and interface effects for disrupting plant
207	cells and accelerating mass transfer ^{21, 22} .
208	According to results of our preliminary experiments (data not shown), 80%
209	ethanol solution was adopted for the simultaneous extraction of six astragalosides and
210	five isoflavonoids. Considering that the numbers of experiments necessary for
211	optimizing extraction conditions can be reduced by statistical experimental design, the
212	homogenization time, negative pressure, liquid/solid ratio and extraction time on the
213	yield of total target analytes were optimized by BBD combined with response surface
214	methodology (RSM) 24 . The experimental design matrix and all the related data are
215	illustrated in Table S1.
216	3.1.1 Fitting the mathematical model

ANOVA results of the built quadratic model are presented in Table S2. A highly 217 significant level of the model (P < 0.0001), a not significant "lack of fit" (P > 0.05) 218 and a desirable determination coefficient ($R^2 = 0.9843$) suggested that the built 219 220 mathematical model was precise and applicable. Moreover, the factors with the 221 significant effects (P < 0.05) on the dependent variable of the model were the linear terms of X_1 , X_2 , X_3 and X_4 , interaction term of X_1X_4 , X_2X_4 and X_3X_4 , and quadratic 222 terms of X_1^2 , X_2^2 , X_3^2 and X_4^2 . However, the interaction terms of X_1X_3 , X_1X_3 and X_2X_3 223 were insignificant (P > 0.05) and could be negligible. The second-order polynomial 224

246

247

248

RSC Advances

225 model was applied to express the extraction efficiency of total target analytes as the 226 following equation: $Y = 2.79 - 1.11X_1 + 0.13X_2 - 0.092X_3 + 0.043X_4 + 0.065X_1X_4 - 0.08X_2X_4$ 227 $-0.11X_3X_4 - 0.52X_1^2 - 0.095X_2^2 - 0.3X_3^2 - 0.067X_4^2$ Where Y was the yield of total target analytes; X_1 was the negative pressure (MPa); X_2 228 was the homogenization time (s); X_3 was liquid/solid ratio (mL g⁻¹); and X_4 was the 229 230 extraction time (min). 231 **3.1.2.** Analysis of the response surface 232 As shown in Fig. 2A, both negative pressure and liquid/solid ratio exhibited significantly double effect on the yield of target analytes, and it demonstrated that 233 234 negative pressure around -0.08 MPa and liquid/solid ratio around 5 resulted in high 235 recovery. As presented in Fig. 2B, the yield of target analytes increased with the 236 decrease of negative pressure from -0.06 to -0.08 MPa at a fixed homogenization time, 237 but decreased significantly afterwards. This phenomenon is closely related to the 238 cavitation effect of CAE that can promote the extraction of intracellular substances by means of disrupting plant cells and accelerating mass transfer ^{21, 22}. Factually, the 239 240 cavitation effect increases initially with the decrease of negative pressure, but 241 diminishes expeditiously with the further decrease of negative pressure due to the lack of air to form cavitation bubbles²¹. As exhibited in Fig. 2C, with increasing 242 243 liquid/solid ratio from 3 to 5 at a given extraction time, the yield of target analytes 244 increased accordingly, however, the further increase in liquid/solid ratio resulted in a 245 significant decrease in the recovery. The inadequate solvent can promote mass transfer

can consume the cavitation energy of CAE thus resulting in the poor extraction

10

barrier as the distribution of intracellular compounds is concentrated in certain regions

which limits the movement of them out of cell matrix. However, the excessive solvent

249	efficiency. It was observed from Fig. 2D that the yield of target analytes increased
250	with the extension of homogenization time from 30 to 54 s at a fixed liquid/solid ratio
251	but increased slightly afterwards. The extended homogenization time did not improve
252	extraction yield significantly as the target ingredients may have leached out from
253	sample matrices before extraction. As seen from Fig. 3E and F, at a given negative
254	pressure or homogenization time, the yield of target analytes increased with extended
255	time initially but stabilized beyond 22 min, which was likely ascribable to the
256	exhaustion of target compounds in AMHRCs.
257	3.1.3. Verification of the predictive model
258	Based on the mathematical model built, the optimal experimental parameters
259	were as follows: negative pressure -0.077 MPa, homogenization time 55.7 s,
260	liquid/solid ratio 5.21 and extraction time 19.28 min. Considering the actual operation,
261	the homogenization time, liquid/solid ratio and extraction time were modified slightly
262	to 56 s, 5.2 and 19.3 min, respectively. To validate the reliability of the theoretical
263	model prediction, three sequential experiments were performed under optimal
264	parameters. The yield of total target analytes was $2.81 \pm 0.09 \text{ mg g}^{-1}$ from the actual
265	experiments, which was a good fit for the value (2.85 mg g^{-1}) forecasted by the
266	regression model. Therefore, the optimal extraction conditions obtained were reliable
267	and practical.
268	3.2. HSH-CAE predominance
269	In the previous reports, conventional SE and UAE methods were utilized for the

RSC Advances Accepted Manuscript

273 reflected as follows: simplicity in operation (elimination of biomass drying and

270

271

272

11

extraction of phytochemicals from dried plant hairy root cultures ^{17, 18}. Therefore, the

traditional methods in this work. The obvious advantages of HSH-CAE were mainly

superiority of the proposed HSH-CAE approach was evaluated against these

274	grinding), highest efficiency (20.2 min as against 240 min of SE and 120 min of
275	UAE), improvable yield (2.81 mg g ⁻¹ as against 2.69 mg g ⁻¹ of SE and 2.57 mg g ⁻¹ of
276	SE), lowest energy cost (0.021 kWh mg ⁻¹ as against 15.94 kWh mg ⁻¹ of SE and 15.32
277	kWh mg ⁻¹ of UAE) and minimal CO ₂ generation (0.017 Kg mg ⁻¹ as against 12.75 Kg
278	mg ⁻¹ of SE and 12.26 Kg mg ⁻¹ for UAE). The energy consumption was determined
279	with a Wattmeter based on the extraction of 1 mg total target analytes. The calculation
280	of CO_2 ejected was made according to the previous literature ²⁵ .
281	Conventional mechanical grinding technology for dried biomasses always causes

282 the local overheating of materials thus leading to the thermal degradation of some 283 susceptible compounds. However, HSH technique can effectively pulverize fresh 284 plant materials in a continuous slurry stream and avoid the localized increased 285 temperatures. In addition, traditional extraction methods always need long-term 286 heating at high temperature, which will result in the degradation of thermolabile 287 compounds. Conversely, CAE was performed with air flow at room temperature, thus, 288 the thermal degradation of sensitive analytes could be reduced or prevented. These 289 beneficial properties of HSH-CAE contributed to an increase in extraction yields of 290 target compounds. Consequently, the proposed HSH-CAE is a simple, low cost, green 291 and effective method for the direct and augmentation extraction of astragalosides and 292 isoflavonoids from fresh AMHRCs.

293

3.3. HSH-CAE mechanism

294 Since cell walls and membranes present formidable barriers to permeation by 295 extraction solvents, cells have to be disrupted prior to extraction. Herein, the 296 cytohistological analysis of AMHRCs samples before and after each procedure was 297 performed to clarify the HSH-CAE mechanism. The micrograph of untreated 298 AMHRCs is shown in Fig. 3A. After HSH (Fig. 3B), AMHRCs were obviously

299	dispersed from an intact organ into numerous cells (arrows). After CAE (Fig. 3C),
300	AMHRCs cells exhibited an evident rupture of cellular matrix (arrows), and a
301	movement of intracellular substances into the solvent media could be thus envisaged.
302	During extraction process, the intensive cavitation-collision effect along with the
303	collapse of bubbles can penetrate the surface of cellular matrix, thus resulting in the
304	effective disintegration of plant cells. The conclusive phenomenon in this study
305	suggested that HSH-CAE was an efficient hyphenated sample preparation technique
306	for the extraction of intracellular phytochemicals from plant in vitro cultures.
307	3.4. Establishment of LC-MS/MS method
308	3.4.1. Optimization of LC conditions
309	The fundamental basis of an efficient chromatographic process is the
310	development of a suitable mobile phase with an appropriate elution program, which
311	can achieve the best possible resolution and ionization of analytes in LC-MS/MS
312	analysis. According to our previous report, the acetonitrile-water mobile phase is the
313	best choice of separation and ionization of astragalosides and isoflavonoids ^{8,9} .
314	Therefore, the mobile phase composition was simplified by using an
315	acetonitrile-water mixture for all analytes in this work. Additionally, the presence of
316	acid could improve the chromatographic behavior and reduce the peak tailing in the
317	present study. On the other hand, the addition of acid was not beneficial for the
318	deprotonation of analytes in the following ESI-MS/MS process with negative ion
319	mode. Taking into account the balance between the above two aspects, a solvent
320	system consisting of acetonitrile and 0.01% formic acid aqueous solution, which
321	could provide the satisfactory baseline stability and ionization efficiency, was
322	ultimately selected as mobile phase. Moreover, the developed gradient elution
323	program as described in Section 2.4 offered a short run time (20 min) and sufficient

13

324	resolution of eleven target analytes with very little matrix effects in the following
325	ESI-MS/MS analysis.
326	3.4.2. Optimization of ESI-MS/MS parameters
327	In our previous study, the ESI-MS/MS measurements of astragalosides in
328	positive ionization mode could provide higher response sensitivity as against those in
329	negative ionization mode ⁸ . However, the signals of isoflavonoids were hardly
330	detected in positive ionization mode but could be easily caught in negative ionization
331	mode ⁹ . For the simultaneous determination of all target analytes, the ESI-MS/MS
332	with negative-ion mode was eventually chosen to analyze the eleven target
333	compounds in spite of sacrificing the detection sensitivity of astragalosides. To obtain
334	the most informative fragmentation spectrum in ESI-MS/MS with SRM model,
335	several critical parameters including DP, CE and CXP on the signal intensities of all
336	target analytes were investigated systematically. Results of these parameters were
337	optimized manually, acquired and summarized in Table 1.
338	Under the optimal conditions, the product ions mass spectra of CAG, ON, ASG,
339	AG IV, AG III, CA, AG II, IAG II, AG I, FO and CY are presented in Fig. 4B-L,
340	respectively. The ESI-MS/MS analysis of CAG produced a precursor ion of m/z 445.4
341	([M-H] ⁻), which produced a fragmentation pattern dominated by an ion at m/z 283.0
342	([(M-H-glucose] ⁻) (Fig. 4B). Therefore, the mass transition pattern m/z 445.4 \rightarrow 283.0
343	with the highest intensity was chosen for the identification and quantification of CAG.
344	Likewise, the SRM transitions at m/z 371.0 \rightarrow 356.1, m/z 429.1 \rightarrow 266.9, m/z
345	463.3→301.1, <i>m/z</i> 783.6→160.9, <i>m/z</i> 283.1→268.0, <i>m/z</i> 825.6→765.6, <i>m/z</i>
346	868.7 \rightarrow 807.4, <i>m/z</i> 267.1 \rightarrow 252.0, <i>m/z</i> 489.6 \rightarrow 383.3 and <i>m/z</i> 463.3 \rightarrow 301.1 were
347	selected for monitoring ON, ASG, AG IV & AG III, CA, AG II & IAG II, AG I, FO
348	and CY, respectively. The representative total ion chromatogram with SRM model of

349	standard mixture is shown in Fig. 4A. Obviously, the established LC-MS/MS method
350	achieved a rapid separation of all target compounds without sacrificing resolution.
351	3.5. Method validation
352	As the results summarized in Table 2, all calibration curves exhibited an
353	excellent linearity ($R^2 \ge 0.9991$) within the range of tested concentrations. Limit of
354	detections (LODs) for all target analytes were less than 1.77 ng mL ⁻¹ . Relative
355	standard deviations (RSDs) of intra- and inter-day measurements for the retention
356	time of all target analytes were less than 0.58% and 0.84%, respectively, and for the
357	peak area were less than 3.88% and 6.01%, respectively. Recoveries of standard
358	additions of all target analytes were ranging from 96.84% to 104.76%. Overall, the
359	aforementioned data indicated that the present method possessed good accuracy and
360	sensitivity for the quantification of target astragalosides and isoflavonoids in
361	AMHRCs.
362	3.6. Application for screening high-productive AMHRCs
363	Owing to the uncertainty of A. rhizogenes T-DNA integration into the host plant
363 364	Owing to the uncertainty of <i>A. rhizogenes</i> T-DNA integration into the host plant genome, different <i>A. membranaceus</i> hairy root lines derived often show considerable
363 364 365	Owing to the uncertainty of <i>A. rhizogenes</i> T-DNA integration into the host plant genome, different <i>A. membranaceus</i> hairy root lines derived often show considerable diverse biosynthesis patterns of secondary metabolites ²⁶ . Therefore, the proposed
363 364 365 366	Owing to the uncertainty of <i>A. rhizogenes</i> T-DNA integration into the host plant genome, different <i>A. membranaceus</i> hairy root lines derived often show considerable diverse biosynthesis patterns of secondary metabolites ²⁶ . Therefore, the proposed HSH-CAE-LC-MS/MS method was applied for the determination of target
363 364 365 366 367	Owing to the uncertainty of <i>A. rhizogenes</i> T-DNA integration into the host plant genome, different <i>A. membranaceus</i> hairy root lines derived often show considerable diverse biosynthesis patterns of secondary metabolites ²⁶ . Therefore, the proposed HSH-CAE-LC-MS/MS method was applied for the determination of target astragalosides and isoflavonoids in eight candidate AMHRCs (I–VIII) originated from
 363 364 365 366 367 368 	Owing to the uncertainty of <i>A. rhizogenes</i> T-DNA integration into the host plant genome, different <i>A. membranaceus</i> hairy root lines derived often show considerable diverse biosynthesis patterns of secondary metabolites ²⁶ . Therefore, the proposed HSH-CAE-LC-MS/MS method was applied for the determination of target astragalosides and isoflavonoids in eight candidate AMHRCs (I–VIII) originated from distinct hairy root lines. Quantitative results of eleven target analytes in different
 363 364 365 366 367 368 369 	Owing to the uncertainty of <i>A. rhizogenes</i> T-DNA integration into the host plant genome, different <i>A. membranaceus</i> hairy root lines derived often show considerable diverse biosynthesis patterns of secondary metabolites ²⁶ . Therefore, the proposed HSH-CAE-LC-MS/MS method was applied for the determination of target astragalosides and isoflavonoids in eight candidate AMHRCs (I–VIII) originated from distinct hairy root lines. Quantitative results of eleven target analytes in different cultures are presented in Table 3.
 363 364 365 366 367 368 369 370 	Owing to the uncertainty of <i>A. rhizogenes</i> T-DNA integration into the host plant genome, different <i>A. membranaceus</i> hairy root lines derived often show considerable diverse biosynthesis patterns of secondary metabolites ²⁶ . Therefore, the proposed HSH-CAE-LC-MS/MS method was applied for the determination of target astragalosides and isoflavonoids in eight candidate AMHRCs (I–VIII) originated from distinct hairy root lines. Quantitative results of eleven target analytes in different cultures are presented in Table 3. Obviously, various AMHRCs showed variations in contents of AG I, AG II, IAG
 363 364 365 366 367 368 369 370 371 	Owing to the uncertainty of <i>A. rhizogenes</i> T-DNA integration into the host plant genome, different <i>A. membranaceus</i> hairy root lines derived often show considerable diverse biosynthesis patterns of secondary metabolites ²⁶ . Therefore, the proposed HSH-CAE-LC-MS/MS method was applied for the determination of target astragalosides and isoflavonoids in eight candidate AMHRCs (I–VIII) originated from distinct hairy root lines. Quantitative results of eleven target analytes in different cultures are presented in Table 3. Obviously, various AMHRCs showed variations in contents of AG I, AG II, IAG II, AG III, AG IV, CY, CAG, ON, ASG, CA and FO within the ranges of
 363 364 365 366 367 368 369 370 371 372 	Owing to the uncertainty of <i>A. rhizogenes</i> T-DNA integration into the host plant genome, different <i>A. membranaceus</i> hairy root lines derived often show considerable diverse biosynthesis patterns of secondary metabolites ²⁶ . Therefore, the proposed HSH-CAE-LC-MS/MS method was applied for the determination of target astragalosides and isoflavonoids in eight candidate AMHRCs (I–VIII) originated from distinct hairy root lines. Quantitative results of eleven target analytes in different cultures are presented in Table 3. Obviously, various AMHRCs showed variations in contents of AG I, AG II, IAG II, AG III, AG IV, CY, CAG, ON, ASG, CA and FO within the ranges of 914.22–1275.39, 564.61–707.61, 171.42–211.69, 151.65–198.55, 158.76–179.88,
 363 364 365 366 367 368 369 370 371 372 373 	Owing to the uncertainty of <i>A. rhizogenes</i> T-DNA integration into the host plant genome, different <i>A. membranaceus</i> hairy root lines derived often show considerable diverse biosynthesis patterns of secondary metabolites ²⁶ . Therefore, the proposed HSH-CAE-LC-MS/MS method was applied for the determination of target astragalosides and isoflavonoids in eight candidate AMHRCs (I–VIII) originated from distinct hairy root lines. Quantitative results of eleven target analytes in different cultures are presented in Table 3. Obviously, various AMHRCs showed variations in contents of AG I, AG II, IAG II, AG III, AG IV, CY, CAG, ON, ASG, CA and FO within the ranges of 914.22–1275.39, 564.61–707.61, 171.42–211.69, 151.65–198.55, 158.76–179.88, 13.94–17.69, 6.37–10.52, 4.18–6.07, 44.56–68.27, 63.97–97.26 and 51.89–65.93, µg

374	g ⁻¹ , respectively. Among them, the levels of astragalosides (AG I, AG II, IAG II, AG
375	III, AG IV and CY) in AMHRCs VI were significantly higher as compared to other
376	candidates, while AMHRCs II was categorized as the high-productive culture in terms
377	of isoflavonoids (CAG, ON, ASG, CA and FO) accumulation. The representative
378	LC-MS/MS total ion chromatogram of AMHRCs VI sample, and the corresponding
379	extracted ion chromatograms of CAG, ON, ASG, AG IV & AG III, CA, AG II & IAG
380	II, AG I, FO and CY are shown in Fig. 5A–J, respectively. This successful application
381	example indicated that the proposed analytical method is suitable for quality control
382	of AMHRCs or other plant in vitro cultures.
383	4. Conclusions
384	In the present study, a rapid, green and effective sample preparation and
385	analytical procedure for fresh plant in vitro cultures, i.e. HSH-CAE method followed
386	by LC-MS/MS detection, was developed and validated for the simultaneous
387	determination of six astragalosides (AG I, AG II, IAG II, AG III, AG IV and CY) and
388	five isoflavonoids (CAG, ON, ASG, CA and FO) in AMHRCs. Operational
389	conditions of HSH-CAE were optimized systematically. Compared with reported SE
390	and UAE methods, the proposed approach exhibited predominance of easy
391	manipulation, time-saving, high yield, low energy consumption and reduced waste.
392	Cytohistological investigations provided evidences of pronounced tissular/cellular
393	damages within HSH-CAE process. Moreover, the established LC-MS/MS method
394	was proved to have excellent linearity, precision, repeatability and reproducibility.
395	The validated HSH-CAE-LC-MS/MS method was also successfully applied for the
396	selection of high-productive AMHRCs. The observed beneficial effects exerted by the
397	proposed method in this work were valuable for the rapid and valid determination of
398	secondary metabolic profiles in AMHRCs or other plant in vitro cultures.
399	

16

400 Acknowledgements

401	The authors gratefully acknowledge the financial supports by Application
402	Technology Research and Development Program of Harbin (2013AA3BS014),
403	Fundamental Research Funds for the Central Universities (2572014AA06),
404	Fundamental Research Funds for the Central Universities (2572015AA14), Special
405	Fund of National Natural Science Foundation of China (31270618), Key Program of
406	National Natural Science Foundation of China (81274010), and Heilongjiang
407	Province Outstanding Youth Fund (JC201101).
408	
409	
410	
411	
412	
413	
414	
415	
416	
417	
418	
419	
420	
421	
422	
423	
424	

425	Ref	ferences
426	1	L. W. Qi, J. Cao, P. Li, Q. T. Yu, X. D. Wen, Y. X. Wang, C. Y. Li, K. D. Bao,
427		X. X. Ge and X. L. Cheng, J. Chromatogr. A, 2008, 1203, 27–35.
428	2	X. Huang, Y. Liu, F. Song, Z. Liu, S. Liu, Talanta, 2009, 78, 1090-1101.
429	3	A. Napolitano, S. Akay, A. Mari, E. Bedir, C. Pizza and S. Piacente, J.
430		<i>Pharmaceut. Biomed.</i> , 2013, 85 , 46–54.
431	4	I. Ionkova, A. Shkondrov, I. Krasteva and T. Ionkov, <i>Phytochem. Rev.</i> , 2014, 13,
432		343–374.
433	5	W. L. Xiao, T. J. Motley, U. J. Unachukwu, C. B. S. Lau, B. Jiang, F. Hong, P. C.
434		Leung, Q. F. Wang, P. O. Livingston, B. R. Cassileth and E. J. Kennelly, J. Agric.
435		Food Chem., 2011, 59 , 1548–1556.
436	6	I. Ionkova, G. Momekov and P. Proksch, Fitoterapia, 2010, 81, 447-451.
437	7	M. Du, X. J. Wu, J. Ding, Z. B. Hu, K. N. White and C. J. Branford-White,
438		Biotechnol. Lett., 2003, 25, 1853–1856.
439	8	J. Jiao, Q. Y. Gai, Y. J. Fu, W. Ma, L. P. Yao, C. F and X. X. Xia, Plant Cell
440		<i>Tiss. Organ Cult.</i> , 2015, 120 , 1117–1130.
441	9	J. Jiao, Q. Y. Gai, Y. J. Fu, W. Ma, X. Peng, S. N. Tan and T. Efferth, J. Agric.
442		Food Chem., 2014, 62 , 12649–12658.
443	10	J. Z. Song, H. H. W. Yiu, C. F. Qiao, Q. B. Han and H. X. Xu, J. Pharmaceut.
444		Biomed., 2008, 47, 399–406.
445	11	I. C. Sheih, T. J. Fang, T. K. Wu, C. H. Chang and R. Y. Chen, J. Agric. Food
446		Chem., 2011, 59 , 6520–6525.
447	12	K. Y. Z. Zheng, R. C. Y. Choi, A. W. H. Cheung, A. J. Y. Guo, C. W. C. Bi, K.
448		Y. Zhu, Q. Fu, Y. Du, W.L. Zhang, J. Y. X. Zhan, R. Duan, D. T. W. Lau, T. T.
449		X. Dong and K. W. K. Tsim, J. Agric. Food Chem., 2011, 59, 1697–1704.

- 450 13 H. N. Murthy, E. J. Lee and K. Y. Paek, *Plant Cell Tiss. Organ Cult.*, 2014, **118**,
 451 1–16.
- 452 14 R. Chen, X. Liu, J. Zou, L. Yang and J. Dai, *J. Pharmaceut. Biomed.*, 2013, 74,
 453 39–46.
- 454 15 D. Steinmann and M. Ganzera, J. Pharmaceut. Biomed., 2011, 55, 744–757.
- 455 16 L. Ramos, J. Chromatogr. A, 2012, 1221, 84–98.
- 456 17 L. Kursinszki, H. Hank, I. László and É. Szőke, *J. Chromatogr. A*, 2005, 1091,
 457 32–39.
- I. Wahby, D. Arráez-Román, A. Segura-Carretero, F. Ligero, J. M. Caba and A.
 Fernández-Gutiérrez, *Electrophoresis*, 2006, 27, 2208–2215.
- 460 19 G. Romanik, E. Gilgenast, A. Przyjazny and M. Kamiński, *J. Biochem. Biophys.*461 *Methods*, 2007, **70**, 253–261.
- 462 20 K. H. Musa, A. Abdullah, K. Jusoh and V. Subramaniam, Food Anal. Methods,
- 463 2011, **4**, 100–107.
- 464 21 W. Liu, Y. Fu, Y. Zu, Y. Kong, L. Zhang, B. Zu and T. Efferth, *J. Chromatogr.*465 *A*, 2009, **1216**, 3841–3850.
- 466 22 S. Li, Y. Fu, Y. Zu, B. Zu, Y Wang and T. Efferth, J. Sep. Sci., 2009, **32**,
- 467 3958–3966.
- 468 23 S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C.
- 469 Brandão, E. G. P. da Silva, L. A. Portugal, P. S. dos Reis, A. S. Souza and W. N.
- 470 L. dos Santos, Anal. Chim. Acta, 2007, **597**, 179–186.
- 471 24 A. I. Khuri and S. Mukhopadhyay, *WIREs Comput. Stat.*, 2010, **2**, 128–149.
- 472 25 A. Farhat, C. Ginies, M. Romdhane and F. Chemat, J. Chromatogr. A, 2009,
- 473 **1216**, 5077–5085.
- 474 26 Z. B. Hu and M. Du, *Plant Biol.*, 2006, **48**, 121–127.

475	Figure Captions:
476	
477	Fig. 1. The work diagram of HSH-CAE-LC-MS/MS procedure.
478	
479	Fig. 2. Response surfaces for target analytes extraction during HSH-CAE process: (A)
480	varying negative pressure and liquid/solid ratio; (B) varying negative pressure and
481	homogenization time; (C) varying liquid/solid ratio and extraction time; (D) varying
482	homogenization time and liquid/solid ratio; (E) varying extraction time and negative
483	pressure; (F) varying extraction time and homogenization time.
484	
485	Fig. 3. Microscopic photographs of AMHRCs samples before extraction (A), after
486	HSH (B), and after CAE (C). Microscopic photographs were acquired via a light
487	microscope (Leica DM 4000B) equipped with a digital camera (Nikon DS-Ri1).
488	
489	Fig. 4. LC-MS/MS total ion chromatogram with SRM model of standard mixture (A),
490	and the product ion mass spectra of CAG (B), ON (C), ASG (D), AG IV & AG III (E),
491	CA (F), AG II & IAG II (G), AG I (H), FO (I) and CY (J). The elution order of target
492	compounds as follows: 1. CAG, 2. ON, 3. ASG, 4. AG IV, 5. AG III, 6. CA, 7. AG II, 8.
493	IAG II, 9. AG I, 10. FO, 11. CY.
494	
495	Fig. 5. LC-MS/MS total ion chromatogram with SRM model of AMHRCs sample (A),
496	and the corresponding extracted ion chromatograms of CAG (B), ON (C), ASG (D),
497	AG IV & AG III (E), CA (F), AG II & IAG II (G), AG I (H), FO (I) and CY (J). The
498	elution order of target compounds as follows: 1. CAG, 2. ON, 3. ASG, 4. AG IV, 5.

499 AG III, 6. CA, 7. AG II, 8. IAG II, 9. AG I, 10. FO, 11. CY.

Analytes	DP (V)	CE (V)	CXP (V)	SRM (amu)	
AG I	-80	-34	-5	$867.7 \rightarrow 807.4$	
AG II & IAG II	-124	-36	-13	$825.4 \rightarrow 765.5$	
AG III & AG IV	-80	-54	-9	$783.6 \rightarrow 106.9$	
СҮ	-195	-40	-12	$489.3 \rightarrow 383.3$	
CAG	-20	-10	-5	$445.2 \rightarrow 283.0$	
ON	-31	-10	-5	$428.8 \rightarrow 266.9$	
ASG	-58	-23	-5	$463.2 \rightarrow 301.1$	
CA	-70	-24	-5	$283.0 \rightarrow 268.0$	
FO	-55	-31	-5	$267.0 \rightarrow 252.0$	

Table 1. Optimized MS/MS parameters for the eleven target analytes ^a.

^a Other parameters: nebulising gas, curtain gas and collision gas set as 12, 10 and 6 a.u., respectively; ion source temperature 300 °C; ion spray voltage -4500 V; focusing potential and entrance potential set as -75 and -10 V, respectively.

Amolantos	Calibration aumon ^a	D^2	L ::::::::::::::::::::::::::::::::::::	LOD^{b} (manual -1)	Intra-day RSD (%) ^c		Inter-day RSD (%)		Standard addition recovery (%) $^{\rm f}$	
Analytes	Calibration curves	K	Linear range (ng mL)	LOD (ng mL)	Rt ^d	PA ^e	Rt	PA	Mean \pm RSD (n=3)	
AG I	Y = 986 X + 2570	0.9991	8.64-8640	0.48	0.27	1.91	0.39	5.22	98.13 ± 2.59	
AG II	Y = 263 X + 382	1.0000	9.03–9030	0.86	0.38	2.35	0.21	4.96	99.51 ± 3.07	
IAG II	Y = 212 X - 108	1.0000	9.73–9730	1.50	0.16	3.88	0.37	6.01	103.27 ± 1.83	
AG III	<i>Y</i> =188 <i>X</i> +656	0.9999	9.36–9360	0.86	0.22	1.07	0.69	3.75	96.84 ± 2.91	
AG IV	Y = 42.6 X + 293	1.0000	8.82-8820	1.02	0.44	1.12	0.57	3.89	101.31 ± 1.64	
CY	Y = 149 X - 175	0.9996	8.36-8360	1.77	0.53	3.49	0.40	4.73	104.76 ± 3.29	
CAG	Y = 1640 X + 14860	1.0000	9.55–9550	0.11	0.29	2.77	0.73	5.15	99.02 ± 2.43	
ON	Y = 6410 X + 32400	1.0000	8.45-8450	0.08	0.58	3.02	0.65	5.86	97.87 ± 1.52	
ASG	Y = 9900 X + 14600	1.0000	8.91-8910	0.06	0.35	1.83	0.44	2.91	101.31 ± 1.18	
CA	Y = 22500 X + 319000	1.0000	9.01–9010	0.02	0.19	3.10	0.57	5.39	97.14 ± 2.03	
FO	Y = 63700 X + 262000	1.0000	8.82-8820	0.01	0.41	3.75	0.84	5.28	102.39 ± 1.76	

Table 2. Calibration curves, LODs, precision and accuracy (recovery of standard addition) for the eleven target compounds as determined by the developed HSH-CAE-LC-MS/MS method.

^a The calibration curves were constructed by plotting the peak areas versus the concentration (ng mL⁻¹) of each analyte, and each regression equation included eight data points; ^b LOD refers to the limit of detection; ^c RSD (%) = (SD/mean) × 100; ^d Rt refers to the retention time for each analyte in the present LC-MS/MS method; ^e PA refers to the peak area for each analyte in the present LC-MS/MS method; ^f Three different spiking levels (10.57, 21.65 and 30.81 μ g g⁻¹ for AG I; 11.03, 20.79 and 33.66 μ g g⁻¹ for AG II; 9.79, 19.92 and 31.04 μ g g⁻¹ for IAG II; 11.46, 23.39 and 33.51 μ g g⁻¹ for AG III; 10.84, 20.73 and 29.56 μ g g⁻¹ for AG IV; 11.57, 23.84 and 33.25 μ g g⁻¹ for CY; 10.39, 22.55 and 31.26 μ g g⁻¹ for CAG; 9.61, 22.80 and 30.49 μ g g⁻¹ for ON; 11.97, 19.63 and 28.46 μ g g⁻¹ for ASG; 9.33, 20.86 and 30.72 μ g g⁻¹ for CA; and 10.65, 21.07 and 29.16 μ g g⁻¹ for FO) were applied in the standard addition recovery study; and the data are presented as the average of three determinations, where standard addition recovery (%) = (amount found – original amount)/amount spiked × 100.

Table 3. Analysis of astragalosides and isoflavonoids in different AMHRCs via the developed HSH-CAE-LC-MS/MS method^a.

A MUD Catana b	Contents of astragalosides in AMHRCs (µg g ⁻¹) ^c					Contents of isoflavonoids in AMHRCs (µg g ⁻¹)					
AMHRCs types	AG I	AG II	IAG II	AG III	AG IV	CY	CAG	ON	ASG	CA	FO 📩
AMHRCs I	927.35 ± 21.37	564.61 ± 14.88	182.33 ± 9.63	162.57 ± 8.52	166.72 ± 7.44	13.94 ± 1.15	6.37 ± 0.41	4.79 ± 0.58	44.56 ± 5.77	65.53 ± 2.28	51.89 ± 3.99
AMHRCs II	1216.83 ± 33.05	637.51 ± 17.52	171.42 ± 11.23	158.69 ± 11.66	163.96 ± 9.93	15.84 ± 0.94	10.52 ± 0.66	5.79 ± 0.13	68.27 ± 3.72	97.26 ± 5.64	65.93 ± 1.57 🕓
AMHRCs III	914.22 ± 28.69	567.56 ± 23.35	185.19 ± 8.45	155.84 ± 14.74	165.55 ± 13.50	14.67 ± 1.33	7.58 ± 0.38	5.03 ± 0.27	44.91 ± 5.40	69.84 ± 8.13	57.62 ± 5.46 🤦
AMHRCs IV	933.11 ± 19.40	571.23 ± 29.88	176.87 ± 15.02	163.95 ± 13.91	168.64 ± 10.67	15.33 ± 1.62	7.94 ± 0.72	4.88 ± 0.50	47.32 ± 1.67	68.15 ± 5.43	53.61 ± 4.02
AMHRCs V	949.51 ± 32.33	593.88 ± 12.79	195.03 ± 15.17	165.49 ± 7.26	158.76 ± 13.89	16.77 ± 1.29	8.45 ± 0.45	5.54 ± 0.22	53.82 ± 3.51	75.09 ± 4.60	58.71 ± 3.15
AMHRCs VI	1275.39 ± 51.27	707.61 ± 25.03	203.72 ± 9.01	198.55 ± 13.23	179.88 ± 16.09	17.63 ± 1.87	9.51 ± 0.43	6.07 ± 0.19	60.92 ± 2.53	88.73 ± 1.99	63.80 ± 3.34
AMHRCs VII	1231.06 ± 43.94	695.82 ± 31.17	211.69 ± 16.83	180.23 ± 14.19	162.46 ± 11.68	17.69 ± 2.03	9.78 ± 0.96	5.93 ± 0.44	64.76 ± 4.32	91.35 ± 3.85	61.62 ± 4.73
AMHRCs VIII	1184.22 ± 35.52	610.75 ± 18.93	184.26 ± 10.75	151.65 ± 8.33	166.43 ± 7.27	15.29 ± 1.41	6.49 ± 0.63	4.18 ± 0.35	49.28 ± 2.27	63.97 ± 4.41	56.35 ± 2.13 😃

^a Operational conditions of HSH-CAE were performed as follows: extraction solvent 80% ethanol, homogenization time 56 s, negative pressure -0.077 MPa, liquid/solid ratio 5.2 and extraction time 19.3 min; ^b Eight candidate AMHRCs (I–VIII) were originated from eight distinct hairy root lines; ^c The contents of analytes were calculated based on dry weights of AMHRCs which were obtained through converting fresh weights by the ail of their moisture contents.

Fig. 1, Jiao et al.

Fig. 2, Jiao et al.

Fig. 3, Jiao et al.

Fig. 4, Jiao et al.

RSC Advances Accepted Manuscript

Fig. 5, Jiao et al.